
RESO's UPI
A Real World Implementation

westmynt@gmail.comAllan Shepherd

Technical Advisor

Allan Shepherd

Technical Advisor

Allan Shepherd

Technical Advisor

Allan Shepherd

Technical Advisor

Christian Kuroki christian.kuroki@jovio.com

William Birtwell william@bitwell.io

Devin Dvorak devin@jovio.com

Allan Shepherd

Technical Advisor

Allan Shepherd

Technical Advisor

mailto:christian.kuroki@jovio.com
mailto:william@bitwell.io

● Real estate brokerage based in Austin, TX

● Jovio builds proprietary products that enable streamlined

brokerage services and enhance the home selling experience

● Jovio customers range from first time home sellers to

experienced home sellers to tech idealists

About Jovio

● During data acquisition from multiple providers, Jovio

generates UPI’s

● Property data warehouse queries use UPI’s as foreign keys

(and addresses)

● Historical property records are collated from Datatree, Actris,

etc.

Jovio Objectives

Use Cases

● Postgres functions generate UPI’s for each data provider

● UPI’s are validated syntactically and locally for uniqueness

● Property data from Datatree’s generates PID’s 99.7%

○ Failures are duplicate parcel numbers

● Property data from ACTRIS generates PID’s 76%

○ Failures are duplicate or missing parcel numbers

Implementation Results

Implementation Example

● Postgres psql UPI generator example

CREATE or replace FUNCTION datatree.upi(p datatree.properties) RETURNS varchar AS $$

DECLARE

country varchar := 'US';

sub_county varchar:= 'N';

prop_type varchar:= 'R'; /* Datatree has a unique parcel number per unit, so there is no Stock

cooperative, ... */

sub_property_id varchar:= 'N'; /* ... all properties will be prop_type = R */

sub_country varchar;

local_id varchar;

BEGIN

sub_country := p."FIPS";

local_id := regexp_replace(p."FormattedAPN", '[^a-zA-Z0-9]+', '','g');

return concat_ws('-',country,sub_country,sub_county,prop_type,local_id,sub_property_id);

END;

Implementation Technical Issues

● UPI definition depends on missing data (e.g. parcel numbers)

● Provider data schemas are changeable

● Other data fields are not in standard formats (e.g. street
addresses)

Discussion

● Open standards vs. proprietary implementations?
○ Lower cost and lower technical risk

● From portability to interoperability?

● The importance of implementations to standards works?

● Identifier attributes, such as permissions for access control

○ File system analogy

● Christian Kuroki in Buenos Aires

● Cliff (William) Birtwell in CT

● Megan McMahon, BJ Thomas, and Floyd Hebert in Austin

Jovio Credits

