
Copyright 2016 RESO

 RETS 1.9 Specification

Copyright 2016 RESO

 Section 1 - Introduction . 6
 1.1 Purpose . 7

 1.2 Scope . 7
 1.3 Requirements . 7

 1.4 Terminology . 7
 Section 2 - Notational Conventions . 8

 2.1 Augmented BNF . 9
 2.2 Typographic Conventions . 9

 2.3 Rules . 9
 2.4 Atoms And Primitive Entries . 9

 Section 3 - Message Format . 13
 3.1 General Message Format . 14

 3.2 Request Format . 14
 3.3 Required Client Request Header Fields . 15

 3.4 Optional Client Request Header Fields . 16
 3.5 Response Format . 17

 3.6 Required Server Response Header Fields . 18
 3.7 Optional Server Response Header Fields . 19
 3.8 Data Compression in RETS Transactions . 21

 3.9 General Status Codes . 21
 3.10 Computing the RETS-UA-Authorization Value . 22

 Section 4 - Login Transaction . 23
 4.1 Security . 24

 4.2 Authorization Example . 24
 4.3 Required Request Arguments . 25

 4.4 Optional Request Arguments . 25
 4.5 Optional Response Header Fields . 25

 4.6 Login Response Body Format . 25
 4.7 Required Response Arguments . 26

 4.8 Optional Response Arguments . 29
 4.9 Well-Known Names . 29
 4.10 Capability URL List . 30

 4.11 Reply Codes . 31
 Section 5 - GetObject Transaction . 32

 5.1 Required Client Request Header Fields . 33
 5.2 Optional Client Request Header Fields . 33

 5.3 Required Request Arguments . 33
 5.4 Optional Request Arguments . 34

 5.5 Required Server Response Header Fields . 35
 5.6 Optional Server Response Header Fields . 36

 5.7 Required Response Arguments . 38
 5.8 Optional Response Arguments . 38

 5.9 Multipart Responses . 38
 5.10 ObjectData Classes . 40

 5.11 Reply Codes . 41
 Section 6 - Logout Transaction . 42

 6.1 Optional Response Arguments . 43
 6.2 Logout Response Body Format . 43

 6.3 Reply Codes . 43
 Section 7 - Search Transaction . 44

 7.1 Search Types . 45
 7.2 Search Terminology . 45

 7.3 Required Request Arguments . 45
 7.4 Optional Request Arguments . 46

 7.5 Search Response Body Format . 51
 7.6 Query language . 52

 7.7 Reply Codes . 56
 Section 8 - Get Transaction . 57

 Section 9 - Change Password Transaction . 58
 9.1 Required Request Arguments . 59

 9.2 Optional Request Arguments . 59
 9.3 Required Response Arguments . 59

 9.4 Optional Response Arguments . 59
 9.5 Reply Codes . 59

 9.6 Encryption Key Construction . 59
 9.7 ECB Padding . 59

 9.8 Effect of change . 60
 Section 10 - Update Transaction . 60

 10.1 Required Request Arguments . 61
 10.2 Optional Request Arguments . 62

 10.3 Required Response Arguments . 64
 10.4 Optional Response Arguments . 64

Copyright 2016 RESO

 10.5 Update Response Body Format . 64
 10.6 Record Locking . 66

 10.7 Validation . 67
 10.8 Reply Codes . 67

 Section 11 - Metadata Format . 68
 11.1 Organization and Retrieval . 69

 11.2 System-Level Metadata . 72
 11.3 Metadata Format for Class Elements . 79

 11.3.1 Class . 79
 11.3.2 Table . 81

 11.3.3 Update . 84
 11.3.4 Update Type . 85

 11.3.5 Child Action . 87
 11.4 Metadata Format for Shared Elements . 88

 11.4.1 Object . 88
 11.4.2 Lookup . 89

 11.4.3 Lookup Type . 90
 11.4.4 Search Help . 91

 11.4.5 Edit Mask . 92
 11.4.6 Update Help . 93

 11.4.7 Validation Expression . 93
 11.4.7.1 Validation Expression Types and Data Types . 94

 11.4.7.2 Validation Expression BNF Representation . 95
 11.4.7.3 Validation Expression Special Operand Tokens . 96
 11.4.7.4 Validation Expression Functions and Operators . 97

 11.4.8 Validation External . 99
 11.4.9 Validation External Type . 100

 11.5 Metadata Format for Presentation Elements . 100
 11.5.1 Column Group Set . 100

 11.5.2 Column Group . 102
 11.5.3 Column Group Control . 103

 11.5.4 Column Group Table . 103
 11.5.5 Column Group Normalization . 104

 Section 12 - GetMetadata Transaction . 105
 12.1 Required Request Header Fields . 106

 12.2 Required Request Arguments . 106
 12.3 Optional Request Arguments . 106

 12.4 Required Response Header Fields . 107
 12.5 Required Response Arguments . 107

 12.6 Optional Response Arguments . 107
 12.7 Metadata Response Body Format . 107

 12.8 Reply Codes . 108
 Section 13 - PostObject Transaction . 109

 13.1 Required Request Header Fields . 110
 13.2 Optional Request Header Fields . 112

 13.3 Request Body . 112
 13.4 PostObject Response Body Format . 112

 13.5 Reply Codes . 113
 Section 14 - **DEPRECATED** GetPayloadList Transaction . 113

 14.1 Required Request Arguments . 114
 14.2 **DEPRECATED** Optional Request Arguments . 114

 14.3 Required Response Arguments . 114
 14.4 Optional Response Arguments . 115

 14.5 **DEPRECATED** Payload Response Body Format . 115
 14.6 **DEPRECATED** Reply Codes . 116

 Section 15 - Compact Data Format . 116
 15.1 Overall format . 117

 15.2 Decoded Format . 117
 15.3 Multivalued Fields . 117

 15.4 Transmission standards . 117
 Section 16 - Session Protocol . 118

 16.1 Connection Establishment . 119
 16.2 Authorization . 119

 16.3 Session . 119
 16.4 Termination . 120

 Section 17 - Update Response Blocks . 120
 Section 18 - Authors . 123

 Section 18 - Acknowledgments . 124
 Section 19 - References . 126
 Section 20 - Appendices . 127

 Appendix A - XML Schema References . 128
 Appendix B - Sample Compact Metadata Response . 129

Copyright 2016 RESO

 Appendix C - Summary of RETS Reply Codes . 138
 Appendix D - Maximum Field Length and Display Information . 141

 Appendix E - Approved RCPs . 142
 Version 1.7.2 . 142

 RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata . 143
 RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring 144

 RETS Change Proposal 71 - Time Zone Data . 145
 RETS Change Proposal 72 - LookupType String Length . 148

 Version 1.8.0 . 149
 RCP 59 - Revised Update Transaction . 150

 RCP 60 - Metadata Changes for Update . 154
 RCP 61 - Validation Expression Replacement . 163

 RCP 63 - Object Data and Upload . 169
 RCP 65 - Session information tokens . 175

 RCP 68 - Search Has Key Index Support . 179
 RCP 69 - LookupType Value . 181

 RCP 70 - Metadata Role Support . 182
 RCP 74 - Location Availability in Object Metadata . 184

 RCP 75 - Offset Availability in the Metadata . 185
 RCP 76 - GetPayloadList . 186

 RCP 77 - Maximum Field Length . 188
 RCP 78 - Specification Errata Changes . 190

 RCP 79 - Add Preferred Flag to GetObject Responses . 191
 RCP 80 - Optional Query . 192

 RCP 82 - LookupMulti Quoting Rule . 193
 RCP 87 - RETS 1.7.2 Errata Document . 194

 RCP 90 - Deprecate CommonInterest Class Well-Known Name . 199
 RCP 91 - StandardNames Version Information in Login Transaction . 199

 RCP 92 - RESO Payload Transport-Level Metadata Support . 200
 RCP 93 - Add Content-Sub-Description to GetObject . 201

 RCP 94 - Improved Error Handling in GetObject . 202
 RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login . 203

 RCP 99 - Mixing StandardNames and SystemNames . 205
 RCP 100 - Alternate Standard Names . 206

 RCP 101 - Child Rows Support . 209
 RCP 102 - GetObject URL as Default Location . 215

 Version 1.9.0 . 216
 RCP 103 - Geospatial Search . 216

 RCP 104 - StandardValue for Enumerations . 218
 RCP 105 - Update Transaction Response Format Correction . 219

 RCP 106 - Client cookie support for RFC 6265 . 220
 RCP 107 - IETF HTTP RFC Updates to references in the RETS specification . 221

 RCP 108 - Migrate RETS specific HTTP Headers to HTTP User Space headers (X-*) . 225
 RCP 109 - Update TLS specification references to current Internet/Industry Standards 227

 RCP 110 - Deprecate and Replace GetPayloadList . 229
 RCP 112 - RETS Metadata Version Header . 230

 RCP 113 - Search Transaction Optional Format Argument - Add JSON . 231

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 5 of 232

RETS 1.9 Specification
Copyright 2017 RESO.

By using this document you agree to the RESO End User License Agreement (EULA) posted .here

Chapters

Section 1 - Introduction

Section 2 - Notational Conventions

Section 3 - Message Format

Section 4 - Login Transaction

Section 5 - GetObject Transaction

Section 6 - Logout Transaction

Section 7 - Search Transaction

Section 8 - Get Transaction

Section 9 - Change Password

Section 10 - Update Transaction

Section 11 - Metadata Format

Section 12 - GetMetadata
Transaction

Section 13 - PostObject Transaction

Section 14 - **DEPRECATED**
GetPayloadList Transaction

Section 15 - Compact Data Format

Section 16 - Session Protocol

Section 18 - Authors

Section 18 - Acknowledgements

Section 19 - References

Additional Sections

List of Tables & Figures

Appendix A - DTD References

Appendix B - Sample Compact
Metadata Response

Appendix C - Summary of RETS
Reply Codes

Appendix D - Maximum Field
Length and Display Information

Appendix E - Approved RCPs

DTDs Related to this Version for

Download

NOTE The links below are meant to be downloaded

https://reso.memberclicks.net/assets/docs/reso%20eula.pdf
http://members.reso.org/pages/viewpage.action?pageId=8716430
http://members.reso.org/display/rets18/Appendix+B+-+Sample+Compact+Metadata+Response
http://members.reso.org/display/rets18/Appendix+B+-+Sample+Compact+Metadata+Response
http://members.reso.org/display/rets18/Appendix+C+-+Summary+of+RETS+Reply+Codes
http://members.reso.org/display/rets18/Appendix+C+-+Summary+of+RETS+Reply+Codes
http://members.reso.org/display/rets18/Appendix+D+-+Maximum+Field+Length+and+Display+Information
http://members.reso.org/display/rets18/Appendix+D+-+Maximum+Field+Length+and+Display+Information
http://members.reso.org/display/rets18/Appendix+E+-+Approved+RCPs

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 6 of 232

and are not intended for use when linking an
application to a DTD. See for theAppendix A
complete list of DTD references.

RETS
Version

RETS
Schema
Format

Response
Type

Download
Link

1.9.0 Compact Metadata Download
Schema
(TBD)

1.9.0 Standard Metadata Download
Schema
(TBD)

1.9.0 Compact Search Download
Schema
(TBD)

1.9.0 Standard Search Download
Schema
(TBD)

RETS 1.9.0 Recent News & Updates

Recently

Updated

As you and your
team create
content this area
will fill up and
display the latest
updates.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 7 of 232

Section 1 - Introduction
1.1 Purpose
1.2 Scope
1.3 Requirements
1.4 Terminology

1.1 Purpose

The Real Estate Transaction Standard (RETS) is a specification for a standard communication method between computer systems exchanging
real estate information. It defines a standard interface for use by applications such as agent desktop software, IDX (Internet Data Exchange)
systems, data aggregation systems, and many other systems that store, display or operate on real estate listing, sales and other data.

This specification describes the Real Estate Transaction Standard communication protocol. Together with the companion XML DTDs (Document
Type Definitions) listed in Appendix A, it constitutes the specification for the standard.

1.2 Scope

This specification is intended to define only the minimum a product or service must do in order to be considered "compliant". This specification is
extensible and nothing in the specification precludes a vendor from adding data or functionality over and above that detailed here. However, when
a function is provided or a data element is stored by a compliant system, it must offer access to the function or mechanism in a way that complies
with the specification in order to be considered compliant.

1.3 Requirements

1.3.1 Required Features

This specification uses the same words as RFC 1123 for defining the significance of each particular requirement. These words are:(1)

MUST This word or the adjective "required" means that the item is an
absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an
implementation in order to be considered compliant.

SHOULD This word or the adjective "recommended" means that there may exist
valid reasons in particular circumstances to ignore this item, but the
full implications should be understood and the case carefully weighed
before choosing a different course. A feature that the specification
states SHOULD be implemented is treated for compliance purposes
as a feature that may be implemented.

MAY This word or the adjective "optional" means that this item is truly
optional. A feature that the specification states MAY be implemented
need not be implemented in order to be considered compliant.
However, if it is implemented, the feature MUST be implemented in
accordance with the specification.

An implementation is not compliant if it fails to satisfy one or more of the MUST requirements for the protocols it implements. An implementation
that satisfies all the MUST and all the SHOULD requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the
MUST requirements but not all the SHOULD requirements for its protocols is said to be "conditionally compliant."

Client and server implementations should generally follow the Internet protocol convention of being strict in what they generate, but tolerant in
what they accept. However, in cases where tolerance of deviations from the specification could result in an incorrect interpretation of user data or
intentions, implementers are urged to reject transactions rather than supplying possibly-incorrect defaults.

1.3.2 Compatibility with Prior Versions

The RETS 1.9.0 specification supersedes previous versions of the RETS specification. There is no for a client or server thatrequirement
advertises itself as "compliant with RETS 1.9.0" to interoperate with earlier versions. However, client and server implementers are urged to
support the prior versions, RETS 1.8.0, RETS 1.7.2, RETS 1.7 and RETS 1.5, in order to insure a smooth transition.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-1

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 8 of 232

1.4 Terminology

Class A subset of data elements within a Resource that share common metadata
elements.

Client The system requesting data. This may well be a server seeking to update itself
from another server. The specification does not assume any particular kind of
client.

Endpoint Either a server or client.

Metadata The set of data that describes data fields in detail.

Metadata Dictionary The set of data that describes the available metadata. It is used to determine
the different classes of accessible data on the server and does not describe
the fields within the those classes. It also defines what different types of
searches are available (tax, open house, etc.)

Object For purposes of RETS and its GetObject transaction, a collection of octets
treated as a unit and associated with a unique resource element.

Optional A field or feature described by this specification but not required for an
endpoint to be considered compliant. The specification states the action to be
taken by a compliant system in the absence of an optional field. The fact that
the specification designates a field as optional does not mean that the
recipient of a transaction that is missing optional fields is required to provide all
services that could be required if the field were present.

Required A compliant server or client MUST include any field designated as required. A
transaction that does not include every required field MUST be rejected by the
recipient.

Resource A collection of data having the external appearance of belonging to a single
database and being accessible for search or update via RETS transactions.

Resource Element An individual record from a resource identified by a Resource Key.

Resource Key The unique key that identifies a resource element.

Server The system providing data (also referred to as the "host").

Request ID A client-provided character string of up to 64 printable characters which
uniquely identifies a request to a client. The contents are
implementation-defined. Defined in Section 3.4, "Optional Client Request
Header Fields".

StandardName The name of a data field as it is known in the Real Estate Transaction
Standard Data Dictionary.

SystemName The name of a data field as it is known in the metadata.

http://members.reso.org/display/rets18/3.4+Optional+Client+Request+Header+Fields
http://members.reso.org/display/rets18/3.4+Optional+Client+Request+Header+Fields

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 9 of 232

Section 2 - Notational Conventions
2.1 Augmented BNF
2.2 Typographic Conventions
2.3 Rules
2.4 Atoms And Primitive Entries

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented Backus-Naur Form (BNF) similar to that used by RFC
2822 and defined in RFC 2234 .(4) (22)

2.2 Typographic Conventions

Parsing constructs and examples are set in a font:monospaced
Server: Microsoft-IIS/4.0

In parsing constructs, textual elements that are required exactly as shown are indicated by ., while textual elements that representboldface
placeholders for actual data are indicated by a italic font:
Server:server identifier

Entities designated by a textual definition contain that definition enclosed in angle brackets:
<any 8-bit sequence of data>

Atoms and primitive entities are indicated by ITALIC CAPS
1*64ALPHANUM

Two nonprinting characters also have significance in some RETS constructs. These may be
represented by special printing graphics to assist in understanding. Note that the printing graphics ARE NOT the octet representation. They are a
placeholder for the correct octet representation;

Tab character, ASCII HT, an octet with a value of 09

Space character, ASCII SP, an octet with a value of The symbol is used where needed for clarity..32

Certain features of the standard may be superseded as the standard develops. These features should be avoided and are indicated by the text
[deprecated] which will follow the first use of the feature terminology. Future releases of the standard may remove deprecated features.

2.3 Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-ASCII coded character set is defined by
ANSI X3.4-1986 .(5)

Parsed entities are constructed combinations of atoms or other entities as defined below. Atoms may be combined and repeated to form longer
constructs. When there are constraints on the repetition of atoms, the constraints are expressed by a notation of the form:

 m * n

where both and are integers. represents the minimum allowed number of repetitions, and represents the maximum. If is omitted, it ism n m n m
presumed to be zero; if is omitted, it is presumed to be infinite. For example, the syntactic constructn

1*64ALPHANUM

means a string of s containing at least 1 and at most 64.ALPHANUM

When a parsing construct is represented by a string of entities, some of which are optional, the optional entities are enclosed in square brackets.
For example, in the string

error-number [error-code]the entity is required, while the entity is optional.error-number error-code

Elements separated by the vertical bar are alternatives. The entity description
ALPHA | DIGIT

means "either an or a ".ALPHA DIGIT

2.4 Atoms And Primitive Entries

NOTE: The definitions for , , , , and are derived from RFC 2234.ALPHA CHAR CTL DIGIT HEXDIG OCTET

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-4
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-22
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-5

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 10 of 232

ALPHA ::= %x41-5A | %x61-7A
; A-Z | a-z

CHAR ::= %x01-7F
; ANY 7-BIT US-ASCII CHARACTER,
; EXCLUDING NUL

CTL ::= %x00-1F | %x7F
; controls

DIGIT ::= %x30-39
; 0-9

HEXDIG ::= DIGIT | "A" | "B" | "C" | "D" | "E" | "F"

OCTET := %x00-FF
; any 8-bit sequence of data

BOOLEAN ::= | TRUE FALSE

TRUE ::= "1"

FALSE ::= "0"

RETSID ::= 1*32ALPHANUM

RETSNAME ::= 1*64IDALPHANUM

rets-version-type 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
; A convention to represent the version as a "<major>.<minor>.<release>" numbering scheme.

IDALPHANUM ::= ALPHANUM | "_"

ALPHANUM ::= ALPHA | DIGIT

SQLFIELDNAME ::= ALPHA *31ALPHANUM <except ANSI SQL 92 reserved words>

CR ::= <US-ASCII CR, carriage return (13)>

LF ::= <US-ASCII LF, linefeed (10)>

SP ::= <US-ASCII SP, space (32)>

HT ::= <US-ASCII HT, horizontal-tab (9)>

<"> or " ::= <US-ASCII double-quote mark (34)>

; this is a problematic use of the double quote in the BNF, use QUOTE for new BNF entries

QUOTE ::= %x22

NULL ::= <no character>

CRLF or ::= CR LF

; special character U+21B5 crarr

LWS ::= [CRLF] 1*(SP | HT)

HEX ::= "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

LHEX ::= "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

OPTNONNEGATIVENUM ::= | NULL NONNEGATIVENUM ; null or >= 0

OPTPOSITIVENUM ::= | NULL POSITIVENUM
; null or >= 1

NONNEGATIVENUM ::= "0" | POSITIVENUM
; also known as cardinal numbers or counting numbers
; consisting of integers greater than 0

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 11 of 232

NONZERODIGIT ::= %x31-39
; 1-9

PLAINTEXT ::= <any except s>OCTET CTL

POSITIVENUM ::= *NONZERODIGIT DIGIT
; > 0

SERIAL ::= "-1" | NONNEGATIVENUM
;

TEXT ::= <any OCTET except s, but including >CTL LWS

NOTE: Implementers are cautioned that the definition of the TEXT atom may conflict with certain outputs, in particular a collision between the
delimiter octet of and the output information when using the formats COMPACT or COMPACT-DECODED. Further, the definitionSection 7.2.1
may conflict with escaping rules for well-formed XML responses. The responsibility for resolving these conflicts lies with the transmitting party. In
particular, the responses to Search, Update and GetMetadata may have this conflict.

TOKENCHAR ::= <any CHAR except CTL s or >TSPECIALS

TOKEN ::= 1*TOKENCHAR

TSPECIALS ::= "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\" | <"> | "/" | "[" | "]" | "?" |
"=" | "}" | "{" | SP | HT

quoted-string ::= (<"> *() <">)QDTEXT

QDTEXT ::= <any TEXT except <">>

RETSDATETIME ::= | date-time partial-date-time

RETSTIME ::= | full-time partial-time

DATE ::= <Date using the format defined in RFC 2616 as >rfc1123-date

NOTE: The definitions for the date and time are derived from RFC 3339.

date-fullyear ::= 4DIGIT

date-month ::= 2DIGIT ; 01 - 12

date-mday ::= 2DIGIT ; 01 - 28, 01-29, 01-30, 01-31, based on month/year

time-hour ::= 2DIGIT ; 00 - 23

time-minute ::= 2DIGIT ; 00 - 59

time-second ::= 2DIGIT ; 00 - 58, 00 - 59, 00 - 60 based on leap second rules

time-secfrac ::= "."1DIGIT

time-numoffset ::= ("+"|"-") ":" time-hour time-minute

time-offset ::= "Z" | time-numoffset

partial-time ::= ":" ":" []time-hour time-minute time-second time-secfrac

full-date ::= date-fullyear " - " date-month " - " date-mday

full-time ::= partial-time time-offset

date-time ::= full-date "T" full-time

partial-date-time ::= full-date "T" partial-time

NOTE: ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats. Based on common usage patterns, this standard
applies the following additional constraints to improve interoperability and compatibility. The representation of the time offset UTC character 'Z'
and the date-time separator character 'T' MUST be upper case.

The time-secfrac is limited to one digit only. The date and time representations are intended for machine processing, therefore, no whitespace is
expected in any of the atoms. Examples of the format are similar to that of the W3C note, for example, 1997-07- 16T19:20:30.4+01:00 or

http://members.reso.org/display/rets18/7.2+Search+Terminology#id-7.2SearchTerminology-7.2.1FieldDelimiter

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 12 of 232

1997-07-16T18:20:30.4Z. Servers and Clients MUST treat the time-offset 'Z' and "+00:00" as identical times. Servers and Clients MAY use the
interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-offset "-00:00" is semantically different from "+00:00"
and represents a known UTC time but unknown local time.

URI ::= scheme ":" hier-part ["?" query] ["#" fragment]

hier-part ::= "//" authority path-abempty
| path-absolute
| path-rootless
|path-empty

scheme ::= |"+" |"-" |".")ALPHA *(ALPHA |DIGIT

authority := [userinfo "@"] host [":" port]

userinfo ::= *(unreserved |pct-encoded |sub-delims |":")

host ::= IP-literal |IPv4address |reg-name

port ::= *DIGIT

IP-literal ::= "[" (IPv6address |IPvFuture) "]"

IPvFuture ::= "v" 1* "." 1*(unreserved |sub-delims |":")HEXDIG

IPv6address ::= 6(h16 ":") ls32
|"::" 5(h16 ":") ls32
|[h16] "::" 4(h16 ":") ls32
|[*1(h16 ":") h16] "::" 3(h16 ":") ls32
|[*2(h16 ":") h16] "::" 2(h16 ":") ls32
|[*3(h16 ":") h16] "::" h16 ":" ls32
|[*4(h16 ":") h16] "::" ls32
|[*5(h16 ":") h16] "::" h16
|[*6(h16 ":") h16] "::"

h16 ::= 1*4 HEXDIG

ls32 ::= (h16 ":" h16) / IPv4address

IPv4address ::= dec-octet "." dec-octet "." dec-octet "." dec-octet

dec-octet ::= DIGIT ; 0-9 |%x31-39 ; 10-99 DIGIT
|"1" ; 100-199 2DIGIT
|"2" %x30-34 ; 200-249 DIGIT
|"25" %x30-35 ; 250-255

reg-name ::= *(unreserved / pct-encoded / sub-delims)

path ::= path-abempty ; begins with "/" or is empty
| path-absolute ; begins with "/" but not "//"
|path-noscheme ; begins with a non-colon segment
|path-rootless ; begins with a segment
|path-empty ; zero characters

path-abempty ::= *("/" segment)

path-absolute := "/" [segment-nz *("/" segment)]

path-noscheme ::= segment-nz-nc *("/" segment)

path-rootless ::= segment-nz *("/" segment)

path-empty ::= 0<pchar>

segment ::= *pchar

segment-nz ::= 1*pchar

segment-nz-nc ::= 1*(unreserved |pct-encoded |sub-delims |"@")
; non-zero-length segment without any colon ":"

pchar ::= unreserved |pct-encoded |sub-delims |":" |"@"

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 13 of 232

query ::= *(pchar |"/" |"?")

fragment ::= *(pchar |"/" |"?")

pct-encoded ::= "%" HEXDIG HEXDIG

unreserved ::= ALPHA|DIGIT |"-" |"." |"_" |"~"

reserved ::= gen-delims |sub-delims

gen-delims ::= ":" |"/" |"?" |"#" |"[" |"]" |"@"

sub-delims ::= "!" |"$" |"&" |"'" |"(" / ")"| "*" |"+" |","| ";" |"="

Note: The definition for URI is derived from RFC 3986.

Note: An Approved RCP is Related to this Section
Section 2.4 is related to the following approved RCP(s):

RETS 1.7.2

RCP 71 Time Zone Data

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+71+Time+Zone+Data

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 14 of 232

Section 3 - Message Format

RETS uses HTTP for sending messages between clients and servers. It defines three additional HTTP headers, and some RETS() (2 23)

transactions constrain the values of certain headers defined by HTTP and/or make certain headers designated as optional in HTTP mandatory
when used for RETS. In addition, RETS requests use HTML 4.01 form encoding to encapsulate request parameters. In addition, a compliant() 16

RETS client MUST implement cookie handling as specified in RFC 2109 and are encouraged to implement cookie handling as specified in RFC
6265()15 .

The information below summarizes some of the requirements of HTTP and HTML 4.01 for ease of reference. However, in all cases, the
underlying standards are the normative references for message formats.

3.1 General Message Format
3.2 Request Format
3.3 Required Client Request Header Fields
3.4 Optional Client Request Header Fields
3.5 Response Format
3.6 Required Server Response Header Fields
3.7 Optional Server Response Header Fields
3.8 Data Compression in RETS Transactions
3.9 General Status Codes
3.10 Computing the RETS-UA-Authorization Value

3.1 General Message Format

3.1.1 RETS HTTP/1.1 Encapsulation

RETS messages are encapsulated as the bodies of HTTP requests and responses. The request body may be null, depending on the request.2 23

The response body is never null.

As defined in RFC 2822 , keywords in header key-value pairs are not case-sensitive. The values, however, may be case-sensitive depending on4

context.

3.1.2 Request Arguments

RETS requests are HTML 4.01- compliant form submissions, following all of the specifications in the HTML 4.01 recommendation. Note that the
HTML 4.01 specification provides that:

Key names in key/value pairs are not case-sensitive.
Both key names and key values MUST be encoded as specified in HTML 4.01 section 17.13.4, with + characters replacing spaces, and

then reserved characters being escaped per RFC 239613

3.1.3 Response Bodies

The body of a response to most RETS requests is a well-formed XML document; the exceptions are the Get transaction () and thesection 8
GetObject transaction (). This means that servers must construct the body in accordance with the XML specification , and that clientssection 5 17

must parse the body in accordance with that specification.

3.2 Request Format

A RETS request is either an HTTP GET request or an HTTP POST request. In the case of the GET-request the Argument-List is appended to the
Request-URI after a delimiting question mark ("?"). For the post-request the Argument-List is sent as the first entity body for the POST method.

get-request ::= [] GET Request-URI ? Argument-List HTTP-Version
CRLF

 *message-header
CRLF

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.1 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-16
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-15
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-4
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-13
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-17

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 15 of 232

post-request ::= POST Request-URI HTTP-Version CRLF
 *message-header

 CRLF
[]Argument-List

The , and are defined in the HTTP Specification . The detailed construction of the Request-URI HTTP-Version message-header 2 23 Argume

 is defined in HTML 4.01nt-List 16

.

3.3 Required Client Request Header Fields

The HTTP header of any messages sent from the client MUST contain the following header fields:

User-Agent This header field contains information about the user agent originating
the request. This is for statistical purposes, the tracing of protocol
violations, and automated recognition of user agents for the sake of
tailoring responses to avoid particular user agent limitations, as well
as providing enhanced capabilities to some user-agents. All client
requests MUST include this field. This is a standard HTTP header field
as defined in the HTTP Specification . 2 23

User-Agent ::= 1* User-Agent: product

product ::= []token / product-version

product-version ::= token

Example: User-Agent: CMAZilla/4.00

Product tokens should be short and to the point: use of them for advertising or other non-essential information is explicitly forbidden. Although any
token character may appear in a product-version, this token SHOULD only be used for a version identifier (i.e., successive versions of the same
product SHOULD only differ in the product-version portion of the product value). For more information about User-Agent see the HTTP
Specification . 2 23

A server MAY advertise additional capabilities based on the client's User-Agent, and MAY refuse to proceed with the authorization if an
acceptable User-Agent has not been supplied. A server MAY also choose to authenticate the client's identity cryptographically using the
RETS-UA-Authorization header; see for additional information.section 3.4

X-RETS-Version The client MUST send the X-RETS-Version. The use of the X-RETS-V
ersion as a maker for versioning metadata may require additional
digits to correctly represent the version of metadata. Specifically,

 implementers should be permissive in the use of X-RETS-Version and
should accept values where there are more than a single digit for the

The convention used is a numberingrelease or minor positions.
scheme similar to the HTTP-version of the Protocol Versioning section

. The version of a RETS message is indicated by a 2 23

X-RETS-Version field in the header of the message.

X-RETS-Version ::= "X-RETS-Version:" version-info

version-info ::= 1* 1* 1*"RETS/" DIGIT "." DIGIT "." DIGIT

Example: X-RETS-Version: RETS/1.9.0

The behaviour of a request may depend on the correct handling of header Cookies are handled as specified in .RFC 6265 15

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.1 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-16
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/rets18/3.4+Optional+Client+Request+Header+Fields
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-15

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 16 of 232

Cookie Servers and clients are encouraged to implement cookie handling as
specified in RFC 6265 15. The client MUST implement cookie handling
as specified in RFC 2109 and MAY implement cookie handling as
specified in RFC 6265. Since RFC 6265 is the current version of the
standard, current libraries will use this over the obsolete RFC 2109
and will handle cookies as described in RFC 6265. Future versions of
this standard will obsolete the reference to RFC 2109. If any server
response has included a valid Set-Cookie header, and the cookie in
that header has not expired, the client MUST return the corresponding
Cookie header. See RFC 2109 for the full specification., 6265

3.4 Optional Client Request Header Fields

Authorization Authorization header field as defined in the HTTP Specification . 2 23

See Section 4.1, "Security", as well as the HTTP Specification , for 2 23

additional information.

X-RETS-Request-ID A character string of printable characters which the client can use to
identify this request. The contents are implementation-defined. If this
field is included in a request from the client then the server MUST
return it in the response.

X-RETS-Request-ID ::= 1*64ALPHANUM

Accept-Encoding A comma-separated list of MIME types indicating the content
encoding schemes that the client is willing to accept. This is intended
to support the use of compression in data returns; see forsection 3.8
additional information.

Accept-Encoding ::= 1*64ALPHANUM/1*64ALPHANUM *[,1*64ALPHANUM/1*64A
LPHANUM...]

X-RETS-UA-Authorization A client MAY support authentication of its User-Agent value by
including the X-RETS-UA-Authorization header. Servers MAY require
this header with a valid value before providing services.

X-RETS-UA-Authorization ::= ua-method ua-digest-response

ua-method ::= Digest

Note: RETS 1.8.0: An approved RCP is related to this section
Section 3.3 is related to the following approved RCP(s):

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.3 is related to the following approved RCP(s):

RCP 106 Client cookie support for RFC 6265
RCP 107 IETF HTTP RFC Updates
RCP 108 HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-15
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/rets18/3.8+Data+Compression+in+RETS+Transactions

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 17 of 232

ua-digest-response ::= "*LHEX "

See for the method of computing the section 3.10 ua-digest-respo
 value. nse

The client MAY send this header under any circumstances. It need not
send this header if the server has not indicated that it requires
user-agent authentication by responding to a transaction with a RETS
error code of 20037.

In addition to the header fields listed here, the client may send any header compliant with the HTTP Specification 2 23

3.5 Response Format

The general server response to a request is either a well-formed XML document returning RETS-encapsulated data or error information, or, for
the transaction and for successful transactions, the content of the requested object in the format given in the response's HTTPGet GetObject

Content-Type header. Note that this is an ordinary HTTP response as described in the HTTP Specifications .2 23

The more common HTTP are provided in , though any status code defined in the HTTP Specifications issStatus-Code Section 3.9 2 23

permissible. Servers MUST use appropriate predefined status codes when communicating with the client.

The is intended to provide HTTP level errors to the client (Authorization, URI, etc.). Software level errors (search queries, invalidStatus-Code
argument values, etc.) should be returned in the reply-code. If the server is unable to determine that a particular request is in fact a RETS request,
it MUST return an HTTP status code indicating the type of error.

Except in those transactions specifically stating otherwise, a RETS response body is a well-formed XML document with the following general
form:

response-body ::= RETS-response

RETS-response ::= body-start-line
 response

 [rets-status]
][body-end-line

body-start-line ::= <RETS 1*SP ReplyCode= quoted-reply-code
 1*SP ReplyText= quoted-string *SP>

response ::= { key-value-body | data}

key-value-body ::= <RETS-RESPONSE>CRLF
 *(key = value CRLF)

</RETS-RESPONSE>

rets-status ::= [<RETS-STATUS 1*SP ReplyCode=quoted-end-reply-code

]1*SP ReplyText=quotedstring *SP />

The MAY be included in the response if the ReplyCode or ReplyText given in the becomes invalid during therets-status body-start-line
creation of the response. If the server includes a in its reply, the client MUST use the ReplyCode and ReplyText from therets-status
rets-status rather than from the body-start-line.

body-end-line ::= </RETS>

If a is returned in the response then the MUST also be returned.body-start-line body-end-line

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.4 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates
RCP 108 HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/3.10+Computing+the+RETS-UA-Authorization+Value
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/rets18/3.9+General+Status+Codes
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 18 of 232

quoted-reply-code ::=<">1*5DIGITS<">

The is included to provide a mechanism to pass additional information to the client in the event that the request is processed OKreply-code
(Status-Code = 200) but some condition still exist that may require an action by the client. A value of '0' indicates success. reply-codes are

 specific to a transaction. Please refer to the applicable transaction for the meaning of the reply-code or refer to Appendix C of this document for a
consolidated list.

quoted-end-reply-code ::= <">1*5DIGITS<">

The is included to provide a mechanism to pass additional information to the client in the event that the request beingend-reply-code
processed by the server errors before the request has been completed. This allows the server to start streaming out data before it has completed
processing the request. A value of indicates success, however the server SHOULD only send an if there is an error. 0 end-reply-code
The valid , and elements are defined in the Response Arguments section for each transaction.< >key < >value < >data

NOTE

RETS 1.8.0 requires all server responses to be well-formed XML, In addition, this specification requires that clients parse RETS
responses as XML, not as simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that complies with the W3C XML
1.0 recommendation. XML escaping of content is implied, as is XML processing of line endings and white space. See the W3C XML

, for full information on XML.Recommendation 1.0, Third Edition

NOTE

This section describes the general form of a response. Please refer to individual sections and the metadata to see the exact form of
a response for a specific request.

An example server-reply where the reply body consists of key-value pairs:

HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0

 Date: Sun, 20 Mar 2005 12:03:38 GMT
 Content-Type: text/xml
 Cache-Control: private

 RETS-Version: RETS/1.8.0
 CRLF

"0" "SUCCESS" <RETS ReplyCode= ReplyText= >
 <RETS-RESPONSE>

 Key1=Value1
 Key2=Value2

 </RETS-RESPONSE>
 </RETS> CRLF

3.6 Required Server Response Header Fields

The HTTP header of any messages sent from the server MUST contain the following header fields:

Date The server MUST send the date using the format defined in the HTTP
Specification . using format . 2 23 rfc1123-date

Example: Date: Sun, 20 Mar 2005 12:03:38 GMT

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 3.5 is related to the following approved RCP(s):

RCP 87 RETS 1.7.2 Errata Document
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.5 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 19 of 232

As defined by , the Date MUST be represented in Greenwich Mean Time (GMT), without exception.rfc1123-date

Cache-Control The HTTP Specification standard general-header field is used to 2 23

specify directives that MUST be obeyed by all caching mechanisms
along the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the request
or response. This field SHOULD be set to "private" for all transaction
in this specification.

Example: Cache-Control: private

Content-Type This is a standard HTTP header field as defined in the HTTP
Specification . It specifies the media type of the underlying data. 2 23

The server MUST return this field in all replies. For most replies this
will be set to . in the GetObject" "text/xml See Section 5.5
Transaction for exceptions and more information on this field.

Example: Content-Type: text/xml

X-RETS-Version The server MUST send the X-RETS-Version. The convention used is
a "<major>.<minor>.<revision>" numbering scheme similar to the HTT

. The version of aP-version of the Protocol Versioning section 2 23

RETS message is indicated by a inRX-RETS-Version field
header of the message.

X-RETS-Version ::= "X-RETS-Version:" version-info

version-info ::= 1* 1* 1*"RETS/" DIGIT "." DIGIT "." DIGIT

Example: X-RETS-Version: RETS/1.9.0

Applications sending request or response messages, as defined by this specification, MUST include a X-RETS-Version of . Use"RETS/1.9.0"
of this version number indicates that the sending application is compliant with this specification.

Note: RETS 1.7.2: An Approved RCP is Related to this Section
Section 3.6 is related to the following approved RCP(s):

RCP 71 Time Zone Data

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.6 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates
RCP 108 HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/rets18/5.5+Required+Server+Response+Header+Fields
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 20 of 232

3.7 Optional Server Response Header Fields

Content-Length The Content-Length entity-header field indicates the size of the
message-body, in decimal number of octets. This is a standard header
field defined in the HTTP Specifications and is required for all (2) (23)

requests containing a message-body not using Chunked transfer
encoding.

Transfer-Encoding The Transfer-Encoding entity-header field when set to the Chunked
value, indicates the size of the message-body is in the chunk stream.
This is a standard header field defined in the HTTP Specifications(2) (2

and is required for all responses with a body not using 3) Content-Le
 or a response.ngth Content-Type: Multipart

Content-Encoding The Content Encoding entity-header field MAY be returned by the
server if the client has included an AcceptEncoding header in its
request () indicating that it can accept one or more compression types
supported by the server. It is recommended that servers accept at
least (see application/gzip 3.8 Data Compression in RETS

). Transactions

Content-Encoding ::= 1*64ALPHANUM / 1*64ALPHANUM

X-RETS-Request-ID The contents of the header, if any, sent by theX-RETS-Request-ID
client in the request. If an is included in aX-RETS-Request-ID
request from the client then the server MUST return it in the response.

X-RETS-Request-ID ::=1*64ALPHANUM

Server The server standard response-header field contains information about
the software used to handle the request. The format of this field
specified in .the HTTP Specifications(2) (23)

Example: Server: Microsoft-IIS/4.0

X-RETS-Server The RETS server vendor and server-controlled version number. This
is not necessarily the same as the Server response-header field; it will
be different if the HTTP server is separate from the RETS server. The
format of this field is specified in .the HTTP Specifications (2) (23)

Example: X-RETS-Server: AcmeRETS/1.0

Set-Cookie The server MAY use HTTP cookies to maintain state information. See
RFC or the format of the 6265 (15) (obsolete standard 2109) f Set-Coo

 header. A cookie having a name of defineskie RETS-Session-ID
the RETS session ID, which is used in calculating the RETS
User-Agent Authentication ().section 3.10

Cookies with other names have no special meaning in RETS but MAY
be used when necessary.

X-RETS-MetadataVersion ::=metadata-identity / rets-version

;The X-RETS-MetadataVersion header permits the server to
communicate to the client what metadata identity and version is
applied to the response of the transaction. This is primarily intended to
communicate metadata change to the client in an immediately
discoverable manner.

metadata-identity ::= 1*128ALPHANUM

;The metadata-id for the METADATA-SYSTEM that this response is
built from.

rets-version ::=rets-version-type

;The version of RETS that this response is built for. See Section 2.4.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-15
http://members.reso.org/display/rets18/3.10+Computing+the+RETS-UA-Authorization+Value

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 21 of 232

Example: X-RETS-MetadataVersion: 14576/1.9.0

In addition to the header fields listed here, the server may send any header compliant with .the HTTP Specifications(2) (23)

3.8 Data Compression in RETS Transactions

Clients and servers may choose to support data compression in data returned from the server. To indicate its willingness to accept compressed
data, a client includes an header in its request. If the server supports one of the compression methods accepted by the client,AcceptEncoding
it can include a header in its response indicating the compression method it has chosen.Content-Encoding

Clients and servers choosing to implement compression SHOULD at least support GZip compression. This method is implemented by
freely-available source code in a number of languages, as well as in several proprietary software development environments. A second
freely-available alternative is BZIP. Clients and servers are free to choose other encoding methods as well.

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in may be returned by a server in response tothe HTTP Specifications() ()2 23

any request:

Table 3-1 General Status Codes

Status Meaning

200 Operation successful.

400 Bad Request
The request could not be understood by the server due to malformed syntax.

401 Not Authorized
Either the header did not contain an acceptable Authorization or the username/password was invalid. The server response MUST
include a WWW-Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be authorized.

403 Forbidden
The server understood the request, but is refusing to fulfill it.

404 Not Found
The server has not found anything matching the Request-URI.

405 Method Not Allowed
The method specified in the Request-Line is not allowed for the resource identified by the Request-URI.

406 Not Acceptable
The resource identified by the request is only capable of generating response entities which have content characteristics not
acceptable according to the accept headers sent in the request.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.7 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates
RCP 106 Client Cookie Support
RCP 108 IETF HTTP User Space Headers
RCP 112 - RETS Metadata Version Header

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS1.8.0: An Approved RCP is Related to this Section
Section 3.8 is related to the following approved RCP(s):

RCP 87 RETS 1.7.2 Errata Document
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-23
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 22 of 232

408 Request Timeout
The client did not produce a request within the time that the server was prepared to wait.

411 Length Required
The server refuses to accept the request without a defined Content-Length.

412 Precondition Failed
Transaction not permitted at this point in the session

413 Request Entity Too Large
The server is refusing to process a request because the request entity is larger than the server is willing or able to process.

414 Request-URI Too Long
The server is refusing to service the request because the Request-URI is longer than the server is willing to interpret. This error
usually only occurs for a GET method.

500 Internal server error.
The server encountered an unexpected condition which prevented it from fulfilling the request.

501 Not Implemented
The server does not support the functionality required to fulfill the request.

503 Service Unavailable
The server is currently unable to handle the request due to a temporary overloading or maintenance of the server.

505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol version that was used in the request message.

HTTP error status returns are only to be used for system level, transport syntax, and invalid transaction errors. RETS error status codes are used
to indicate errors in the request arguments or the transaction processing.

3.10 Computing the RETS-UA-Authorization Value

The RETS User Agent Authorization digest response value is used in the header specified in . It isX-RETS-UA-Authorization section 3.4
computed as follows:

a1 ::= MD5()product ":" UserAgent-Password

ua-digest-response ::= LHEX(MD5(LHEX(a1)))":" RETS-Request-ID ":" session-id ":" version-info

where:

product The first value taken from the User-Agent header (product section
). Note that the value consists of both the product token3.3 product

and version.

UserAgent-Password ::=TOKEN
This value is a secret shared between the client and server.

RETS-Request-ID ::=X-RETS-Request-ID
This value MUST be the same as that sent with the X-RETS-Reques

 header. If the client does not use the het-ID X-RETS-Request-ID
ader, this token is empty in the calculation.

session-id ::= If the server has sent a header with a cookie nameSet-Cookie
of , is the value of that cookie. IfX-RETS-Session-ID session-id
the server has not sent a cookie with that name, or if the cookie by
that name has expired, this token is empty in the calculation.

version-info ::= The value of the header sent by the client withX-RETS-Version
this transaction.

Each individual value in the concatenated string is included with whitespace removed from the beginning and end of that element, that is, there is
no whitespace on either side of the delimiting colon characters.

The method of performing the MD5 calculation is given in RFC 1321.

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 3.6 is related to the following approved RCP(s):

http://members.reso.org/display/rets18/3.4+Optional+Client+Request+Header+Fields
http://members.reso.org/display/rets18/3.3+Required+Client+Request+Header+Fields
http://members.reso.org/display/rets18/3.3+Required+Client+Request+Header+Fields

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 23 of 232

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 3.10 is related to the following approved RCP(s):

RCP 108 IETF HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 24 of 232

Section 4 - Login Transaction

A client MUST issue a login request prior to proceeding with any other request. The Login transaction verifies all login information provided by the
user and begins a RETS session. Subsequent session control may be mediated by HTTP cookies or any other method, though clients are
required to support at least session control via HTTP cookies. describes the session protocol in detail.Session Protocol

The server's response to the Login transaction contains the information necessary for a client to issue other requests. It includes URLs that may
be used for other RETS requests, and may also contain identity and parameter information if required by the functions supported by the server

4.1 Security
4.2 Authorization Example
4.3 Required Request Arguments
4.4 Optional Request Arguments
4.5 Optional Response Header Fields
4.6 Login Response Body Format
4.7 Required Response Arguments
4.8 Optional Response Arguments
4.9 Well-Known Names
4.10 Capability URL List
4.11 Reply Codes

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it is permissible, for example, to operate a publicly-accessible RETS server — most

operators of RETS servers will wish to authenticate users. A server that requires that users be authenticated MAY implement RFC 7235 ,()2

HTTP Authentication. The use of at least digest authentication is strongly recommended.

4.1.2 Client Authentication

Client authentication may be performed through the use of the optional X-RETS-UA-Authorization header . Prior versions of this(section 3.4)
specification used a specially-calculated cnonce value in the Authorization header to implement this function. A server implementing this version
of the RETS specification MUST accept the X-RETS-UA-Authorization header for client authentication. It MAY accept RFC 7235 -style()2
authentication as in prior versions of the RETS specification.

4.1.3 Data Security

The need for secure HTTP transactions cannot be met by authentication schemes. Vendors MAY require authentication and transport to be
For those needs, HTTP-over-TLS (commonly known as HTTPS) is a more appropriate protocol . A compliant server MAY supportsecured. (24)

only HTTP-ove . In this case, the server SHOULD listen on port 12109 rather than the standard RETS port, 6103. Clients should use the r-TLS Cap
 to determine the correct port and protocol to talk to the server for any transaction.ability URL List

4.2 Authorization Example

The following example assumes that a client application is trying to access the Login URI on the server using the POST method, and without
using client authentication. The URI is . Both client and server know that the username is "joesmith", and"http://www.example.com/login"
the password is "SuperAgent". The example also assumes the use of authentication using RFC 2617.

The first time the client requests the document, no Authorization header is sent, so the server responds with:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="Users@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0"
opaque="5ccdef346870ab04ddfe0412367fccba"

Note: RETS 1.9.0: An approved RCP is related to this section
Section 4.1 is related to the following approved RCP(s):

RCP 107 IETF HTTP RFC Updates
RCP 109 - Update TLS specification references

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/Section+16+-+Session+Protocol
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/rets18/3.4+Optional+Client+Request+Header+Fields
http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 25 of 232

The client may prompt the user for the username and password, after which it will respond with a new request, including the following
Authorization header:

 Authorization: Digest username="joesmith",
 realm="Users@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0",
 opaque="5ccdef346870ab04ddfe0412367fccba",

 uri="/login",
response="13258d9b0bc217c9502b47e32dff8ee9"

4.3 Required Request Arguments

There are no required request arguments.

4.4 Optional Request Arguments

4.4.1 BrokerCode Argument

brokerCodeArgument ::= [] Broker = broker-code , broker-branch

Some servers may support the scenario where a user belongs to multiple brokerages. If this is the case then the broker information (broker-code
and broker-branch) must be input during login. If they are not included then the list of broker codes/branches is passed back to the client
application through the response along with a "20012 Broker Code Required" reply-code.

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

4.4.2 SavedMetadataTimestamp Argument

savedMetadataTimestamp ::= SavedMetadataTimestamp = aved-timestamps

The client MAY inform the server of the timestamp associated with the version of metadata that it has currently saved. The server MAY use this to
adapt to an earlier version of metadata than it chooses to advertise, or simply log the value to note out-of-date client metadata, or ignore the value
entirely. In particular, the server is not required to alter its behavior in any way based on the value of this argument.

saved-timestamp ::= RETSDATETIME

4.5 Optional Response Header Fields

There are no additional optional response header fields.

4.6 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The simplest form is when there is an error:

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 4.4.1 is related to the following approved RCP(s):

RCP 65 Session information tokens
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

Note: RETS 1.7.2: An Approved RCP is Related to this Section
Section 4.4.2 is related to the following approved RCP(s):

RCP 71 Time Zone Data

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens
http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 26 of 232

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP />

The second case is where the user belongs to more than one broker and they have not provided broker information as part of the login. The reply
contains a list of all brokerages the user belongs to.

 <RETS ReplyCode = "20012" 1*SP ReplyText = quoted-string SP >
 <RETS-RESPONSE>CRLF

 *()2 brokerCodeArgument CRLF
 </RETS-RESPONSE>

</RETS>

The definition for brokerCodeArgument is provided in section 4.4.1.

The third case is the normal "OK" response. In this case several arguments are passed back to the client in the response.

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP>

 <RETS-RESPONSE>
 []member-name-key

 []user-info-key
 []broker-key

 []metadata-ver-key
 []metadata-timestamp-key

 []min-metadata-timestamp-key
 []office-list-key

 []balance-key
 []timeout-key

 []pwd-expire-key
 *(info-token-key)
 capability-url-list

 </RETS-RESPONSE>
 [[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SPReplyText=

]quoted-string *SP />
 </RETS>

CRLF

4.7 Required Response Arguments

4.7.1 Session Information Tokens

info-token-key ::= [;] ; Info = info-token-name info-token-type info-token-value CRLF

info-token-name ::= RETSNAME

info-token-type ::= TOKEN

info-token-value ::= TEXT

An information token is a named and typed piece of information about the current session. This information is sent by the server to the client for
use in various contexts. For example, session and password management, creating search queries targeted to the current user or in validation
expressions (see).Table 11-43

Any number of information tokens can be sent in the Login response, provided all of them have unique names.

The may be any of the DataTypes defined in . The must conform to the token's data type.info-token-type Table 11-15 info-token-value

If the is null or missing, the data type of the token is Character. In this case, the MUST NOT include semicolons.info-token-type info-token-value
When the is defined in Table 4-1, Servers MUST use the DataType described therein. Clients SHOULD be permissive, that is,info-token-name

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 4.6 is related to the following approved RCP(s):

RCP 65 Session information tokens
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.4.9+Validation+Expression#id-11.4.9ValidationExpression-Table11-43MetadataContent:ValidationExpression
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-Table11-15MetadataContent-Tables
http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 27 of 232

when a Server has omitted an info-token-type for a well-known name, Clients should infer the DataType based on the name defined in Table 4-1.

Names and types of well known tokens are listed in Table 4-1. The server MUST send all names shown in bold in that table. Theinfo-token-name
server MUST use the well-known name for optional names when providing information for those arguments (see Section 4.8). Forinfo-toke-name
forward compatibility, Clients MUST use the Session Information Token info-token-value.

Names, data types and the corresponding response argument for well-known tokens are listed in Table 4-1.

Table 4-1 Well-Known Information Tokens

Token name Data type Deprecated argument

USERID user-id user-id

USERCLASS user-class user-class

USERLEVEL user-level user-level

AGENTCODE agent-code agent-code

BROKERCODE broker-code broker-code

BROKERBRANCH broker-branch broker-branch

MEMBERNAME member-name member-name

MetadataID metadata-id none

MetadataVersion metadata-version metadata-version

MetadataTimestamp metadata-timestamp metadata-timestamp-key

MinMetadataTimestamp min-metadata-timestamp min-metadata-timestamp-key

Balance balance balance

TimeoutSeconds timeout timeout-key

PasswordExpiration pwd-expire-date pwd-expr

WarnPasswordExpirationDays pwd-expire-warn expr-warn-per

OfficeList Character office-list-key
The value of the OfficeList token will be comma-delimited, rather than
semicolon-delimited as it was in the case of the OfficeList response argument

StandardNamesVersion Character standard-names-version

VendorName Character none

ServerProductName Character none

ServerProductVersion Character none

OperatorName Character none

RoleName Character none

SupportContactInformation Character none

The user tokens contain basic information about the user that is stored on the server. If a server does not support one of these fields then it MUST
set the returned value to empty (a zero-length string).

user-id ::= 1*30ALPHANUM

user-class ::= 1*30ALPHANUM

user-level ::= 1*5DIGIT

agent-code ::= 1*30ALPHANUM

The agent-code is the code that is stored in the property records for the listing agent, selling agent, etc. In some implementations this may be the
same as the user-id. The fields user-class and user-level are implementation dependent and may not exist on some systems, in which case, an

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 28 of 232

empty string should be returned. These parameters are used in the validation routines of the Update transaction (see Section 10 for more
information).

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

The and parameters are used in the validation routines of the Update transaction (see for morebroker-code broker-branch Section 10
information).

member-name ::= 1*48TEXT

The is the member's full name (display name) as it is to appear on any printed output, for example "Jane T. Row".member-name

metadata-version ::= []1*2DIGITS . 1*2DIGITS . 1*5DIGITS

The is the most current version of the metadata that is available on the server. It uses a "<major>.<minor>.<release>"metadata-version
numbering scheme. The version is advisory and is not used by the metadata currency scheme.

metadata-timestamp ::= RETSDATETIME

The is the time stamp associated with the current version of metadata on the host. If the client has cached an earliermetadata-timestamp
version of metadata, it SHOULD take whatever action is necessary to load the current version of metadata.

min-metadata-timestamp ::= RETSDATETIME

The is the earliest version of the metadata that the host will support. If the version of the metadata being used bymin-metadata-timestamp
the client has a time stamp earlier than this time the client SHOULD retrieve the newer metadata from the host. In any case, the client MUST NOT
send transactions using metadata older than .min-metadata-timestamp

The reasoning behind the definition of the minimum version of the metadata is to permit clients to ignore non-essential changes to components
such as help text and user-readable descriptions.

metadata-id ::=)1*128(IDALPHANUM

The is a persistent ID associated with the metdata applied to the current user session. The advertised by themetadata-id metadata-id
server MUST match the Metadata ID attribute defined in Section 11.2.1 System Metadata. This requirement explicitly binds the metadata
advertised by the Login Transaction response to the metadata advertised by the GetMetadata Transaction response. This relationship is
necessary to eliminate confusion and assist metadata updates. If, following a Login response, the Metadata ID does not match the Login
response value, the client MUST update the client metadata using the GetMetadata Transaction and recognize that the metadatametadata-id
for the current session has changed.

balance ::= 1*32ALPHANUM

If the server supports an active billing account then the value SHOULD represent a user-readable indication of the money balance inbalance
the account.

timeout ::= 1*5DIGIT CRLF

The is the number of seconds after a transaction that a session will remain alive, after which the server will terminate the sessiontimeout
automatically (e.g. invalidate the session-id). This is commonly referred to as the inactivity timeout. A server need not provide this capability;
however, if it does use session timeouts in order to prevent monopolization of resources, it MUST inform the client of the timeout interval by
returning this response field.

pwd-expire-date ::= RETSDATETIME

pwd-expire-warn ::= ["-"]1*3DIGIT

The value is the date that the current user password becomes invalid. The value is the number of dayspwd-expire-date pwd-expire-warn
before the expiration date that the user should be warned of the upcoming password expiration. A value of "-1" indicates thatpwd-expire-warn
the password expiration is disabled.

standard-names-version ::= 1*128TEXT CRLF

The indicates the date version of StandardNames that this system supports. A system is only expected to support astandard-names-version

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 29 of 232

single version of the StandardNames and, in most cases, this will be the current version.

Server systems that do not provide this optional field make no representation about the version of StandardNames that they support, therefore,
client applications should not assume any specific version of the StandardNames.

Server systems that do provide this optional field return a value for the standard-names-version that matches one of the values from theMUST
Adopted StandardNames List from Real Estate Transaction Standard website.

The format of the is a string where is the year of adoption and is the month of adoption. Forstandard-names-version YYYY-MM YYYY MM
example, a version of the StandardNames is 2010-04

VendorName is the name of the product vendor. It is required.

ServerProductName is the name of the server product provided by the vendor. It is required.

ServerProductVersion is the version of the server product. It is required.

OperatorName is the name of the MLS or Association operating the system. It is required.

RoleName is the name of the role restriction where the metadata may be restricted. It is optional.

SupportContactInformation is free text that provides a contact email, phone or website for development support. It is optional.

Vendors may provide additional Session Information Tokens to meet local business needs. Clients MUST ignore Sessioninfo-token-name
Information Tokens that they do not understand.

More well-known Session Information Tokens may be added in later version of this document.

4.7.2 Capability URL List

capability-url-list ::= see for format informationSection 4.10

The server MUST return a capability list that includes at least Search, Login and GetMetadata. The server MAY in addition return any of the other
types in . If the server supports any of the additional functions (and the client is entitled to access the function by virtue of theSection 4.10
supplied login information), it MUST provide URLs for those functions. The server MAY supply URLs in addition to those in Section 4.10 based on
the user-agent. If it does, it MUST follow the format specified in Section 4.10.

4.8 Optional Response Arguments

There are no optional response arguments. See Section 4.7.1 Session Information Tokens.

4.9 Well-Known Names

Some fields returned from the login are considered "Well-Known" and are used in the validation routines of the Update transaction. Those fields
are as follows:

Note: An Approved RCP is Related to this Section
Section 4.7.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 65 Session information tokens
RCP 70 Metadata Role Support
RCP 91 StandardNames Version Information in Login Transaction Role Support
RCP 98 Additional Information Fields in METADATA-SYSTEM and Login

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 4.8.3 is related to the following approved RCP(s):

RCP 65 Session information tokens

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/4.10+Capability+URL+List
http://members.reso.org/display/rets18/4.10+Capability+URL+List
http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens
http://members.reso.org/display/RCP/RCP+70+-+Metadata+Role+Support
http://members.reso.org/display/RCP/RCP+91+-+StandardNames+Version+Information+in+Login+Transaction
http://members.reso.org/display/RCP/RCP+98+-+Additional+Information+Fields+in+METADATA-SYSTEM+and+Login
http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 30 of 232

Table 4-2 Well-Known Names for Input Fields

Well-Known name Input Return Field

.USERID. user-id

.USERCLASS. user-class

.USERLEVEL. user-level

.AGENTCODE. agent-code

.BROKERCODE. broker-code

.BROKERBRANCH. broker-branch

The client MUST assume a blank value for any well-known name for which the server does not supply an input field.

These values are used in .Table 11-37, "Validation Expression Special Operand Tokens"

4.10 Capability URL List

The capability-url-list is the set of functions or URLs to which the login grants access. A capability consists of a key and a URL. The list returned
from the server in the login reply has the following format:

[]Action = action-URL CRLF
 []ChangePassword = change-password-URL CRLF

 []GetObject = get-object-URL CRLF
 Login = login-URL CRLF

 []LoginComplete = login-complete-URL CRLF
 []Logout = logout-URL CRLF

 Search = search-URL CRLF
 GetMetadata = get-metadata-URL CRLF

 []Update = update-URL CRLF
 []PostObject = postobject-URL CRLF

[]GetPayloadList = getpayloadlist-URL CRLF

Table 4-3 Capability URL Descriptions

Parameter Purpose

action-URL A URL on which the client MUST perform a GET immediately after login. This might include a bulletin or the
notification of email. The client application SHOULD provide a means for the user to view the retrieved document.
A server is not required to supply an Action URL.

change-password-URL A URL for the ChangePassword transaction.

get-metadata-URL A URL for the Get Metadata transaction.

get-object-URL A URL for the Get Object transaction.

login-URL A URL for the Login Transaction. The client software should use this URL the next time it performs a Login. If this
URL is different from the one currently stored by the client the client, MUST update the stored one to the new one.
This provides a mechanism to move the Login server.

login-complete-URL RESERVED

logout-URL A URL for the Logout transaction.

search-URL A URL for the Search transaction.

update-URL A URL for the Update transaction.

postobject-URL A URL for the PostObject transaction.

getpayloadlist-URL A URL for the GetPayloadList transaction.

The URLs in the capability-url-list may be specified in any order. Since the list is returned in the body, servers MAY include whitespace between
the parameter, equals sign and URL. Clients SHOULD be prepared to receive the capability-url-list either with or without whitespace in the
response. The format of each URL follows the pattern defined in the atom. In addition, the table is extensible; servers may define additionalURL

http://members.reso.org/display/RETS180a/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-Table11-37ValidationExpressionSpecialOperandTokens

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 31 of 232

transactions for clients to access. If a transaction is offered only to particular user agents, the keys for those additional transactions MUST begin
with the user-agent token, followed by a dash "-", followed by an implementation-defined function name. Note that this definition does not permit
spaces in the additional-transaction definition per the ABNF rules.

additional-transaction ("X" |) "-" ::= user-agent-token function-name CRLF

user-agent-token ::= <token portion of the >User-Agent (Section 3.3)

function-name ::= 1*ALPHA

Example: MLSWindows-special = /special_function

Example: X-Delete = http://www.example.com:6103/deletemyrecord

A compliant client need not recognize any transaction that is not included in this specification. If some extended transactions are offered to any
user-agent, the keys for those transactions MUST begin with an "X" followed by a dash, followed by an implementation-defined function name.
Server implementers who implement potentially-unrestricted extension transactions are urged to register their keys and service descriptions on
the RETS web site to encourage wider adoption.

URLs other than the Login URL may be relative URLs. The Login URL MUST be an absolute URL. If a URL is not absolute, the client application
should canonicalize it according to the rules in RFC 2396, section 5. The "base URL" (as defined in RFC 2396, section 5.1.1) for this operation is
the URL used for the login transaction, not the new Login URL.current

URLs MUST be URL-encoded per RFC 2396.

4.11 Reply Codes

Table 4-4 Login Transaction Reply Codes

Reply
Code

Meaning

0 Operation successful

20003 Zero Balance
The user has zero balance left in their account.

20004 thru
20011

RESERVED

20012 Broker Code Required
The user belongs to multiple broker codes and one must be supplied as part of the login. The broker list is sent back to the client
as part of the login response (see).section 4.6

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru
20019

RESERVED

20022 Additional login not permitted
There is already a user logged in with this user name, and this server does not permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be displayed to the user

20037 User-agent authentication failed.
The server requires the use of user-agent authentication (), and the client either did not supply the correctsection 4.1.2
user-agent password or did not properly compute its challenge response value.

Note: RETS 1.8.0: An Approved RCP is Related to this Section
Section 4.10 is related to the following approved RCP(s):

RCP 63 Object Data and Upload
RCP 76 GetPayloadList
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/3.3+Required+Client+Request+Header+Fields
http://www.example.com:6103/deletemyrecord
http://members.reso.org/display/rets18/4.6+Login+Response+Body+Format
http://members.reso.org/display/rets18/4.1+Security#id-4.1Security-4.1.3ClientAuthentication
http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload
http://members.reso.org/display/RCP/RCP+76+-+GetPayloadList

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 32 of 232

20041 User-agent authentication required.
The server requires the use of user-agent authentication (), and the client did not supply the user-agent headersection 4.1.2
values.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

NOTE: RETS does not require that a server maintain user accounts.

http://members.reso.org/display/rets18/4.1+Security#id-4.1Security-4.1.2ClientAuthentication

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 33 of 232

Section 5 - GetObject Transaction

To retrieve objects the client MAY first retrieve the metadata that describes the Resources and Objects that are available with the GetMetadata
transaction described in . A full description of the Metadata Dictionary is provided in .section 12 Section 11

RETS does not require that any particular type of object be made available by a server. However, a server MUST use a standard well-known
name under which to make its data available if a suitable well-known name is defined in the standard.

5.1 Required Client Request Header Fields
5.2 Optional Client Request Header Fields
5.3 Required Request Arguments
5.4 Optional Request Arguments
5.5 Required Server Response Header Fields
5.6 Optional Server Response Header Fields
5.7 Required Response Arguments
5.8 Optional Response Arguments
5.9 Multipart Responses
5.10 ObjectData Classes
5.11 Reply Codes

5.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in , the header of any messages sent from the client MUST containSection 3.3
the following header fields:

Accept The client MUST request a media type using the standard HTTP
Accept header field. Media-type formats (subtypes) are registered with
the Internet Assigned Number Authority (IANA) and use a format
outlined in RFC 2045 [8]. When submitting a request the client MUST
specify the desired type and format. If the server is unable to provide
the desired format it SHOULD return a "406 Not Acceptable" status.
However, if there are no objects of any subtype available for the
requested object the server SHOULD return "404 Not Found." The
format of the Accept field is as follows:

Accept ::= [] (Accept: type / subtype ; parameter * , SP t
 [])ype / subtype ; parameter

type * | <a publicly-defined type>::=

subtype ::= * | <A publicly-defined extension token that
has been registered with IANA>

parameter < qvalue scale from 0 to 1 >::= q =

A complete list of media types and subtypes is available at:

http://www.iana.org/assignments/media-types/

The qvalue is used to specify the desirability of a given media type/subtype, with "1" being the most desirable, "0" being the least desirable, and a
range in between. The default qvalue is "1".

Example: Accept: image/jpeg, image/tiff;q=0.5, image/gif;q=0.1

Verbally, this would be interpreted as "image/jpeg is the preferred media type, but if that does not exist, then send the image/tiff entity, and if that
does not exist, send the image/gif entity."

The types supported by the server are defined in the Metadata Dictionary as defined in .section 11.4.1

5.2 Optional Client Request Header Fields

The GetObject transaction has no optional request header fields.

5.3 Required Request Arguments

Resource A resource defined in the metadata dictionary (see)Section 11.2.2

http://members.reso.org/display/rets18/3.3+Required+Client+Request+Header+Fields
http://www.iana.org/assignments/media-types/
http://members.reso.org/display/RETS180a/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.1Object
http://members.reso.org/display/RETS180a/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-11.2.2Resources

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 34 of 232

The resource from which the object should be retrieved is specified by this entry. For more information see . The resource MUST be a5.9
resource defined in the metadata ().section 11.4.1

Type The object type as defined in the metadata (see)section 11.4.1

The grouping category to which the object belongs. Type MUST be an defined in the Object metadata for this Resource. For moreObjectType
information see .section 11.4.1

ID | UID OBJECT_SET ; A string identifying the object or objects being requested

UID ::= *(" ")TOKEN , TOKEN

OBJECT_SET ::= *(" ")resource-set , resource-set

resource-set ::= [" "]resource-entity : object-id-list

resource-entity ::= 1*ALPHANUM

object-id-list ::= " " | *(" ")* object-id : object-id

object-id ::= 1*5DIGIT

The argument is a string identifying the object(s) being requested. It allows an object to be requested by their as described in Table 5-1.UID UID
Either the or MUST be present in the request, but not both of them.OBJECT_SET UID

If the server does not support for the requested type of objects and the client submits a instead of the , the server MUSTUID UID OBJECT_SET
respond with an error. The preferred error code is 20403: No Object Found. Servers that do not implement the PostObject functionality (Section
13) MAY respond with a 20402: Invalid Identifier. If the requested type of object has an ObjectData class linked in the metadata, the server MUST
support this argument.

For objects, the is a value (e.g., MLS number, AgentID) from the of the Resource for which the object is to beresource-entity KeyField
retrieved.

The is the particular object to be retrieved. Objects are assumed to be stored sequentially on the host beginning with an object-id object-id
of "1". If the is 0 (zero or not provided), the designated preferred object of the given type is returned. If the is set to " "object-id object-id *
then all objects corresponding to the are returned. This parameter can be used to specify the photo number, e.g. a value ofresource-entity
"3" would indicate photo number 3.

If multiple or values are sent, or if any object-id-list is " ", then the host MUST respond with a multipart MIME [8]resource-entity object-id *
response. See , for more detail.5.11, "Multipart Responses"

5.4 Optional Request Arguments

5.4.1 Location

Location | 0 1

This parameter indicates whether the object or a URL to the object should be returned. This is used to provide access to the semi-permanent
storage location of information for access outside of the transaction (e.g. for use in email to a customer). The lifetime of this semi-permanent
storage is not defined by this specification.

If is set to "1" the server should return a URL to the given object. The default is "1". The server SHOULD support this functionality (Location Lo
=1) but support =0. In other words, some servers may store the objects in a database or generate them dynamically.cation MAY Location

Therefore, it may not be possible for those servers to return a permanent URL to the requested object. In these cases the server MAY choose not
to support =1. However, all servers MUST support a method to get the object and therefore, MUST support either the case where Location Loc

=1 OR =0. Client vendors should be prepared to handle HTTP 410 responses when the URL expires or is removed and shouldation Location
not depend on the URL existing for all time.

Note: An Approved RCP is Related to this Section
Section 5.3 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 Object Data and Upload

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/5.9+Metadata
http://members.reso.org/display/rets18/11.4.1+Object
http://members.reso.org/display/rets18/11.4.1+Object
http://members.reso.org/display/rets18/11.4.1+Object
http://members.reso.org/display/rets18/5.11+Multipart+Responses

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 35 of 232

When the Location=1, the message body SHOULD contain a RETS response as described in .Section 3.5

5.4.2 ObjectData

ObjectData * | FieldName *(,FieldName)

FieldName ::= RETSNAME

This parameter indicates that data relevant to the object should be sent as HTTP headers in the server response. If is set to thObjectData ,"*"
e server MUST include a header line for each field in the ObjectData class linked to the requested Object type, as described in Section 5.6. If Obj

 is set to a list of fields, ObjectData headers for the requested fields only MUST be sent in the response. If this argument is missing or is ectData
, no ObjectData will be sent.NULL

5.5 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in the following response header fields are required.Section 3.6

5.5.1 Content-Type

Content-Type The media type of the underlying data. The server MUST return this
field in all replies. Additionally, this field MUST be returned as part of
the header for each body part. This field MUST be set to the type of
media returned. See for more information on and Section 5.1 < >type

.< >subtype

Content-Type ::= Content-Type: type /subtype

Example: Content-Type: image/jpeg

If the client has requested multiple IDs, the server MUST return a multipart message. If it does, it MUST return a Content-Type of
"multipart/parallel" along with a boundary delimiter in the response header. See for more information on multipart responses.Section 5.11

Example: Content-Type: multipart/parallel; boundary=AAABBBCCC

5.5.2 Content-ID

Content-ID An ID for the object. This field MUST be returned as part of the header
for each body part in a multipart response. A value for this field MUST
be returned for each body part. This value is the resource-entity from
the GetObject request and MUST match the corresponding Resource
KeyField value.

Content-ID ::= Content-ID: 1*128PLAINTEXT

Note: An Approved RCP is Related to this Section
Section 5.4.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 102 GetObject URL as Default Location

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 5.4 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 Object Data and Upload

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/3.5+Response+Format
http://members.reso.org/display/rets18/3.6+Required+Server+Response+Header+Fields
http://members.reso.org/display/rets18/5.1+Required+Client+Request+Header+Fields
http://members.reso.org/display/rets18/5.11+Multipart+Responses
http://members.reso.org/display/rcpcenter/RCP+102+-+GetObject+URL+as+Default+Location

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 36 of 232

Example: Content-ID: 123456

5.5.3 Object-ID

Object-ID The object number being returned. This field MUST be returned as
part of the header for each body part in a multipart response.

Object-ID ::= | "*"Object-ID: 1*5DIGIT

Example: Object-ID: 2

Note: The Object-ID may only have the value of " " in the response when there is an error in the response and the request was for all objects*
using the wildcard request of " ".*

5.5.4 MIME-Version

MIME-Version All responses MUST include a MIME-Version of "1.0" in the response
header.

Example: MIME-Version: 1.0

5.6 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in the following response header fields are also optional.Section 3.7

5.6.1 Location

Location If the client has submitted a request with " =1" the header ofLocation
any non-error response MUST contain the Location header field. If the
server does not support this functionality for a specific object, then "Lo

" without a MUST be returned. If the server does notcation: URI
support this functionality for any object, the server should return an
error type of 20414.

Location ::= Location: URI

Example: Location: http://www.example.com/pic/123456.jpg

If the server is returning a multipart response, then this header MUST be included in the MIME part headers for each object successfully
requested.

5.6.2 Description

Description A text description of the object.

Description ::= Content-Description: *1024<PlainTEXT, excluding CR/LF>

Example: Content-Description: Front View

If the object does not have a description or if the server does not support this feature, the header MAY not be returned. If the object has a
description and the server is returning a multipart response, then this header MUST be included in the MIME part headers for the object.

5.6.3 Preferred

Preferred If the requested object is determined by the server to be the preferred
object for the requested record, the server MAY return the Preferred:
header with a value of 1 (true). If the server does not support this
functionality or if the requested object is not the preferred object, the
server MUST return either with a value of 0 (false) or omitPreferred:
the header. Preferred:

Preferred ::= Preferred: BOOLEAN

http://members.reso.org/display/rets18/3.7+Optional+Server+Response+Header+Fields
http://www.example.com/pic/123456.jpg

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 37 of 232

Example: Preferred: 1

If the server is returning a multipart response, this header MAY be included in the MIME part headers for each object it applies to and MUST NOT
be included in the MIME part headers for objects it doesn't apply to.

If the client is sending a request with an object-id of 0, the server SHOULD only include a “Preferred” header if the server further supports
identifying preferred or primary objects when not using an object-id of 0.

5.6.4 UID

UID The identifier of the object. This field is required and MUST be
returned if the request used rather than the argument andUID ID
MAY be sent if the argument has been used.ID

UID ::= UID: TOKEN

5.6.5 ObjectData

ObjectData If the client has submitted a request with ObjectData, the header of
the response MUST contain the ObjectData header fields. The server
MUST include a header line for each requested field in the ObjectData
class linked to the requested Object Type. Each such header will have
the name of "ObjectData" and its value will be the SystemName of the
field followed by an equals sign, followed by the value of the field.

ObjectData ::= ObjectData: ETSNAMER =*TEXT

Note that the value is one of the metadata defined system field names and will be constrained to that defined in the metadataRETSNAME TEXT
for the particular field. See for the definition.Table 11-15

Example:
ObjectData: PropMediaCaption=caption for kitchen
ObjectData: PropMediaDescription=details about kitchen

5.6.6 Sub-Description

Note: An Approved RCP is Related to this Section
Section 5.6.3 is related to the following approved RCP(s):

RETS 1.8.0

RCP 79 Add Preferred Flag to GetObject Responses

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 5.6.4 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 - Object Data and Upload

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 5.6.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 - Object Data and Upload

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-Table11-15MetadataContent-Tables
http://members.reso.org/display/RCP/RCP+79+-+Add+Preferred+Flag+to+GetObject+Responses
http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload
http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 38 of 232

Sub-Description A secondary description of the object.

Sub-Description ::= Content-Sub-Description: *1024<PlainTEXT, excluding CR/LF>

Example: Content-Sub-Description: Enjoy the evening sunsets from the front porch

If the object does not have a sub-description or if the server does not support this feature, the header MAY not be returned. If the object has a
sub-description and the server is returning a multipart response, then this header MUST be included in the MIME part headers for the object.

5.6.7 RETS-Error

RETS-Error If a server is unable to deliver a requested object which generates an
error, "RETS-Error" MUST be included and have a value of 1 (true).
Otherwise, RETS-Error MUST NOT be included as a header.

RETS-Error ::= RETS-Error: BOOLEAN

Example: RETS-Error: 1

If the server is returning a multipart response, this header MUST be included in the MIME part headers for each object it applies to and MUST
NOT be included in the MIME part headers for objects it doesn't apply to.

See Section 5.11.2 Error Handling for examples of error responses.

5.7 Required Response Arguments

There are no required response arguments.

5.8 Optional Response Arguments

There are no optional response arguments.

5.9 Multipart Responses

As described in , in the case where the client has requested multiple resource-entity or object-id values or if any object-id-list is theSection 5.3 "*",
server MUST return a multipart response. In the case of multipart responses, in which one or more different sets of data are combined in a single
body, a "multipart" media type field must appear in the entity's header.

5.9.1 General Construction

RFC 2045 describes the format of an Internet message body containing a MIME message. The body contains one or more body parts, each
preceded by a boundary delimiter line, and the last one followed by a closing boundary delimiter line. After its boundary delimiter line, each body
part then consists of a header area, two blank lines, and a body area.

Example:

HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 18 APR 2014 12:03:38 GMT
Cache-Control: private
X-RETS-Version: RETS/1.9.0
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary

Note: An Approved RCP is Related to this Section
Section 5.6.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 93 - Add Content-Sub-Description to GetObject
Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/5.3+Required+Request+Arguments
http://members.reso.org/display/RCP/RCP+93+-+Add+Content-Sub-Description+to+GetObject

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 39 of 232

Content-Type: image/jpeg
Content-ID: 123456
Object-ID: 1

<binary data>
--simple boundary
Content-Type: image/jpeg
Content-ID: 123457
Object-ID: 1

<binary data>
----simple boundary

5.9.2 Error Handling

When a client requests multiple objects in a single transaction, one or more of those objects may be unavailable. In this case, the server
communicates the failure by including a RETS return message in place of the unavailable object. In this case, the Content-Type will be text/xml,
and the content will be a RETS response:
Example:

HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 18 APR 2014 12:03:38 GMT
Cache-Control: private
X-RETS-Version: RETS/1.9.0
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
Object-ID: 1

<binary data>
--simple boundary
Content-Type: text/xml
Content-ID: 123457
Object-ID: 1

<RETS ReplyCode="20403" ReplyText="There is no listing with that ListingID"/>

--simple boundary--

If the server is supplying an error message for a wild-card object request (of), the for the error part SHOULD be asObject-ID * Object-ID *
well.

Note: An Approved RCP is Related to this Section
Section 5.9.1 is related to the following approved RCP(s):

RCP 71 Time Zone Data
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 5.9.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 94 - Improved Error Handling in GetObject

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 5.9 is related to the following approved RCP(s):

RCP 108 HTTP User Space Headers

http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data
http://members.reso.org/display/RCP/RCP+94+-+Improved+Error+Handling+in+GetObject

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 40 of 232

5.10 ObjectData Classes

The server MAY expose additional data for Objects. If it does, data MUST be exposed in a Class linked to an Object type via the ObjectData
metadata field in the Object metadata. Any Table linked this way to the Objects MUST hold exactly one record for each Object file available
through the GetObject transaction on the linked Resource and ObjectType. The data must correctly describe the Object. For example, if a
FileSize field is exposed, the value MUST be the length of the file sent by the GetObject transaction.

The standard does not specify how a server exposes this information. One implementation might expose this information for all such tables within
one Resource named OBJECT; however, the server is free to use any Resource and ClassName as it sees fit.

Any Class linked to an Object metadata item MAY provide additional information about the Object; however, if the data is one of the fields listed in
Table 5-1, the Class MUST use the standard name for the data from the Table. Required fields of ObjectData are shown in .s bold

Data from the ObjectData Table will be communicated via HTTP headers (see and Section 13.1.2).Section 5.4.2

Table 5-1 ObjectData Content

Standard Name DataType Description

UID CHARACTER Unique ID. This field must be unique within the class and its resource.

ObjectType CHARACTER ObjectType of this object. This is the Type parameter in the GetObject request.

ResourceName CHARACTER Standard name of the resource this object belongs to. This is the Resource parameter in
the GetObject request.

ResourceID CHARACTER Value of the Key Field identifying a record within the resource described by
ResourceName. This is the first part of the ID parameter in the GetObject request.

ObjectID INT Ordinal number of this object within all objects belonging to the record identified by
ResourceName and ResourceID. This is the ObjectID in the GetObject request.

MimeType CHARACTER MimeType of the object

IsDefault BOOLEAN 1 if this object is the default one (sent when an object with ObjectId= 0 was requested).
This is the main object that should be displayed for the ObjectType.

ObjectModificationTimestamp RETSDATETIME Time of the last modification of the object

ModificationTimestamp RETSDATETIME Time of the last modification of this data record (including the object modification)

OrderHint INT Provides an override for the ObjectId value so a client can specify an alternate ordering of
ObjectData while preserving the one specified by the ObjectIds. This allows clients
performing updates using the UID field perform operations such as resource reordering
more easily.

Unlike the ObjectId, where ordinal values are defined by starting with the number 1 and
using the formula to arrive at each consecutive term in the sequence, the OrderHintn+1
values can form any integer set provided that sequence of items within the set is
preserved.

If A and B are two objects in a collection then the following expression must be true:
If ObjectA.OrderHint > ObjectB.OrderHint then
ObjectA.ObjectId > ObjectB.ObjectId

If the OrderHint is supported, then the server must maintain the number as sent by the
client.

Description CHARACTER Description of the object.

Caption CHARACTER Short title of the object.

FileSize INT Size, in bytes, of the object

WidthPix INT Width of an image, in pixels

HeightPix INT Height of an image, in pixels

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/5.4+Optional+Request+Arguments#id-5.4OptionalRequestArguments-5.4.2ObjectData

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 41 of 232

Duration INT Length of a movie or audio, in seconds

WidthInch INT Width of an image, in inches

HeightInch INT Height of an image, in inches

Searching for objects: ObjectData classes are searchable like any other class. The object data may be searched by any searchable field
specified in the class. The ResourceName, ResourceID and Order or UID of the matching results may be used as parameters in a subsequent
GetObject transaction requesting the matching objects.

Updating object data: The server MAY permit updates for the ObjectData class. In this case, the data MUST stay consistent with the object files.
For example, a server must not allow changing the WidthPix field unless it is able to crop or resize the underlying image file.

A server MUST NOT permit an UpdateAction on the Update Transaction for the ObjectData class, since objects will be added via theAdd
PostObject transaction.

The system MAY expose a UpdateAction on the Update Transaction, which will have a similar effect as the PostObject Transaction withDelete
the UpdateAction= (namely, it will remove a record from the Object table and delete the object file).Delete

The system MAY also expose a UpdateAction on the PostObject Transaction to allow for reusing an existing object in more than oneClone
record.

A server MAY provide an UpdateAction on the PostObject Transaction. Clients MUST NOT use this UpdateAction directly; if they do, theUpload
server MUST refuse it. This UpdateAction type is used to associate validation expressions and update help with the PostObject Transaction. If the

 UpdateAction exists, both client and server SHOULD use it to check data sent via the PostObject transaction.Upload

Clients are cautioned that the validation expressions for the UpdateAction on the PostObject Transaction may place constraints on any Upload
field defined in the Object table, with the effect of providing additional acceptable file characteristics.

5.11 Reply Codes

Table 5-2 GetObject Reply Codes

Reply Code Meaning

20400 Invalid Resource
The request could not be understood due to an unknown resource.

20401 Invalid Type
The request could not be understood due to an unknown object type for the resource.

20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.

20403 No Object Found
No matching object was found to satisfy the request.

20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.

20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the supplied login does not grant access.

20408 Resource Unavailable
The requested resource is currently unavailable.

20409 Object Unavailable
The requested object is currently unavailable.

Note: An Approved RCP is Related to this Section
Section 5.10 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 Object Data and Upload

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 42 of 232

20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.

20411 TimeoutThe request timed out while executing

20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be accepted at this time.

20413 Miscellaneous error
The server encountered an internal error.

20414 URL Location Not Supported
The server does not support retrieving Objects by URL.of this type

20415 Objects in the response body, Location=0 Not Supported

The server does not support retrieving Objects in the response body.

Note: An Approved RCP is Related to this Section
Section 5.11 is related to the following approved RCP(s):

RETS 1.8.0

RCP 102 GetObject URL as Default Location

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rcpcenter/RCP+102+-+GetObject+URL+as+Default+Location

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 43 of 232

Section 6 - Logout Transaction

The Logout transaction terminates a session. Except in cases where connection failure prevents it or the user has requested an immediate
shutdown of the client, the client SHOULD send the Logout transaction. If the client sends a Logout transaction, the server MUST attempt to send
a response before terminating the session.

The server MAY send accounting information back to the client in the response to this transaction. The client is not required to display or
otherwise process the accounting information.

There are no required or optional request arguments. There are no required response arguments.

6.1 Optional Response Arguments
6.2 Logout Response Body Format
6.3 Reply Codes

6.1 Optional Response Arguments

ConnectTime The amount of time that the client spent connected to the server,
specified in seconds.

connect-time ::= ConnectTime=1*9DIGITS CRLF

Billing If the server supports an active billing account, this is total amount
billed for this session, specified as TEXT which is
implementation-defined

billing ::= *< > Billing= TEXT, excluding CR/LF CRLF

SignOffMessage Any text. The client MAY display this message, if the server includes it
in the response. Servers should not expect, however, that users would
read or see the message, since communication failure may make it
impossible for the client to receive the Logoff response.

sign-off-message ::= *< > SignOffMessage= TEXT, excluding CR/LF CRLF

6.2 Logout Response Body Format

The Logout response body is a key/value response (see).section 3.5, "Response Format"

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP >

 [<RETS-RESPONSE>
 [connect-time]

 [billing]
 [sign-off-message]

 [[]</RETS-RESPONSE>] <RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=quoted-string *SP /
]>

</RETS>

6.3 Reply Codes

Table 6-1 Logout Reply Codes

Reply Code Meaning

0 Operation successful

http://members.reso.org/display/rets18/3.5+Response+Format

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 44 of 232

20701 Not logged in
The server did not detect an active login for the session in which the Logout transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional information.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 45 of 232

Section 7 - Search Transaction

The Search transaction requests that the server search one or more searchable databases and return the list of qualifying records. The body of
the response contains the records matching the query, presented in the requested format. The data can be returned in one of three formats:
COMPACT, COMPACT-DECODED or STANDARD-XML.

7.1 Search Types
7.2 Search Terminology
7.3 Required Request Arguments
7.4 Optional Request Arguments
7.5 Search Response Body Format
7.6 Query language
7.7 Reply Codes

7.1 Search Types

Searches are performed on logical groupings of records called Resources. The definition of the grouping of records for a specific Resource is
determined by the server implementation. Different server implementations may have different available Resource, depending on local rules,
practices or conditions. Servers may further group the records by Class. Different users or different client applications may be provided with
different sets of Resources and different sets of Classes. A specific value for Resource or Class is referred to in this document as a type. For
example, a type of Resource is Property using the Standard Names definition. Another example may be a type of Resource called Appraisers,
being a collection of locally licensed real estate property value appraisers. As defined below, a server only searches on a single Resource and Cla
ss per request. A server MAY provide more than one type of Resource in the metadata. The server MUST support searching at least one type of
Resource. The types of Resource supported by the server MUST be specified in the metadata. Each of the Resource searches may by conducted
against different databases or tables depending on the server implementation.

Some Resource are specified by well-known names. If a server implementation supports searches of any of these Resource, it MUST use the
well-known Resource name to identify that Resource. The list of well-known Resource names is provided in Table 11-4, Well-Known Resource

 ; well-known Classes for those Resource are given in .Names Table 11-10, Metadata Content: Resource Class

StandardNames for Classes are given in .Table 11-10, Metadata Content: Resource Class

NOTE: RETS does not require that a server support any specific Resource type or Class. The user or maintainer of a server is responsible for
deciding which Resource should be made searchable.

7.2 Search Terminology

7.2.1 Field Delimiter

A server may designate a particular OCTET to be used as a delimiter for separating entries in both the COLUMNS list and the DATA returned
using the COMPACT and COMPACT-DECODED formats. The octet should be chosen to avoid the need to escape data within a record

field-delimiter ::= HEX HEX

7.2.2 Field Name

A field is the keyword or code that the server uses to identify a particular column in the database table. Each field may be either a System-Name,
as defined in the metadata, or a Standard-Name, as defined in the Real Estate Transaction XML DTD. The server MUST accept either set of
names interchangeably.

7.2.3 Record Count

This value indicates the number of records on the server matching the search criteria sent in the search query.

record-count ::= 1*9DIGITS

Note that this value may be greater than the number of records returned, if the server has limited the size of the return for any reason.

7.2.4 Other terms

XML-data-record <A data record as defined by the RETS Data XML DTD>.::=

7.3 Required Request Arguments

7.3.1 Search Type and Class

http://members.reso.org/display/RETS180a/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-Table11-4Well-KnownResourceNames
http://members.reso.org/display/RETS180a/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-Table11-4Well-KnownResourceNames
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-Table11-10MetadataContent:ResourceClass
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-Table11-10MetadataContent:ResourceClass

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 46 of 232

The SearchType and Class arguments specify the data that the server is to search.

SearchType ::= RETSID

The argument specifies the resource to search. It MUST be a , as defined in Table 11-6 or a Well-Known ResourceSearchType ResourceID
Name, Table 11-4 based on value of the () argument. It MUST be a resource existing in the metadata for thisStandardNames Section 7.4.7
system. Not all system provide all Well-Known Resources.

Class :: = 1*32ALPHANUM

The argument specifies the class of the resource to search. It MUST be a , as defined in () or aClass ClassName section 11.3.1 Table 11-13
Well-Known Class Name, based on the value of the (). It MUST be a class existing in the metadataTable 11-12a StandardNames Section 7.4.7
for this system. Not all systems provide all Well-Known Class Names.

If the resource represented by the has no classes, the parameter will be ignored by the server and MAY be omitted by theSearchType Class
client. If the client does include the parameter for a classless search, the value SHOULD be the same as the in order toClass ResourceID
insure forward compatibility.

Note that if () is set to 1, the and arguments be specifiedStandardNames Section 7.4.7 both SearchType Class SHOULD
using the StandardName. If no StandardName a specific Resource or Class, the server MUST accept the Resource and Class valuesexists for
by their SystemName even when StandardNames is set to 1. A server MAY reject a request with a 20203 error when StandardNames=1 and a
SystemName is used where a StandardName exists in the metadata for that resource or class.

7.4 Optional Request Arguments

7.4.1 Count

The Count argument controls whether the server's response includes a count.

Count ::= | | 0 1 2

If the argument is not present or set to zero ("0") there is no record count returned. If this argument is set to one ("1"), then a record-countCount
is returned in the response in addition to the data, all matches are counted regardless of any or parameter. Note that on someOffset Limit
servers this will cause the search to take longer since the count must be returned before any records are received. If this entry is set to two ("2")
then only a record-count is returned; no data is returned, but all matches are counted regardless of any or parameter.Offset Limit

Example: Count=2

Instructs the server to return only a count of the records matching the query.

7.4.2 Format

The Format argument selects one of the supported data return formats for the query response.

Format ::= | | |COMPACT COMPACT-DECODED STANDARD-XML
| | dd-version |:STANDARD-XML dtd-version JSON JSON:

| | dd-version JSON-DECODED JSON-DECODED: payload-n
 | ame payload-name":"payload-version

dtd-version 1*64PLAINTEXT

dd-version 1*64PLAINTEXT

payload-name RETSNAME

Note: An Approved RCP is Related to this Section
Section 7.3 is related to the following approved RCP(s):

RETS 1.8.0

RCP 99 Mixing StandardNames and SystemNames

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/7.4+Optional+Request+Arguments#id-7.4OptionalRequestArguments-7.4.7StandardNames
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.1Class
http://members.reso.org/display/rets18/7.4+Optional+Request+Arguments#id-7.4OptionalRequestArguments-7.4.7StandardNames
http://members.reso.org/display/rets18/7.4+Optional+Request+Arguments#id-7.4OptionalRequestArguments-7.4.7StandardNames
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 47 of 232

payload-version 1*64PLAINTEXT

"COMPACT" means a field list <COLUMNS> followed by a delimited set of the data fields <DATA>.

"COMPACT-DECODED" is the same as COMPACT except the data for any field with an interpretation of Lookup, LookupMulti, LookupBitString
or LookupBitMask, is returned in a fully-decoded format using the LongValue. See Section 13 for more information on the COMPACT formats and
section 11.4.3 for more information on the Lookup types.

"STANDARD-XML" means an XML presentation of the data in the format defined by the RETS Data XML DTD. Optionally, a dtd-version may be
added to the literal "STANDARD-XML:" to indicate a specific version of the DTD.

"JSON" means a JSON presentation of the data in the format defined by the METADATA-TABLE information. This allows legacy systems to
Oprepresent their metadata as JSON. The intent of the change is to allow the Data Dictionary to be used within existing RETS1 implementations.

tionally, where the implementation supports multiple versions of the data dictionary, a version may be added to the literal "JSON:" to indicate a
specific version of the data dictionary.

A Server that supports Data Dictionary names does not have to support all valid Data Dictionary payload-name values for a specific
payload-version.

Servers MUST support COMPACT, COMPACT-DECODED and Data Dictionary formats. A Server MAY support STANDARD-XML. A Server
If the format is not specified, theMAY support JSON, JSON-DECODED, Payloads, data dictionary versions or any valid combination of them.

server MUST return the Data Dictionary response body for the Resource/Class combination.

Example: Format=COMPACT-DECODED

If the client requests STANDARD-XML, it MAY also append a preferred DTD version. Where the server supports STANDARD-XML, the server
MUST support the current version and SHOULD additionally support at least the prior version.

Example: Format=STANDARD-XML:1.0

If the client requests a payload or JSON from the Data Dictionary, if MAY also append a preferred version of the Data Dictionary. Where the
server supports Data Dictionary names, the server MUST support the current version and SHOULD additionally support at least the prior version.

A Client MUST only request the Format argument, and optionally the Select argument OR the Payload argument.

A Server MUST return an error code 20216 Invalid Argument Combination, Format and Payload when a Client submits a request with both
Format and Payload optional arguments.

A Server MUST return an error code 20219 Invalid FORMAT when a Client submits a request with an optional format that is not supported on this
Server.

A Server MUST return an error code 20220 Requested Data Dictionary version unavailable when a Client submits a request with an optional
format data dictionary version that is not supported on this Server.

7.4.3 Limit

The Limit argument requests the server to apply or suspend a limit on the number of records returned in the search.

Limit ::= | "NONE" 1*9DIGIT

In general, the argument operates without consideration of other factors like the settings in the system metadata or the fields selected inLimit
the Select argument. A special case when the Limit="NONE" is described below.

Note: An Approved RCP is Related to this Section
Section 7.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 76 GetPayloadList
RCP 100 Alternate Standard Names

RETS 1.9.0

RCP 113 - Search Transaction JSON Format

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 48 of 232

If this entry is set to a number greater than zero, the server MUST not return more than the specified number of records. If the request results in
more matches than the server returns, the <MAXROWS> tag MUST be sent at the end of the data stream, regardless of any parameterLimit
specified in the client request.

In general, if this entry is set to ("NONE") or is not present, the server SHOULD treat this as a request to suspend enforcement of any internal
download limit. Servers that permit the suspension of the limit MUST disable both the <MAXROWS> tag and the return code 20208, Maximum
Records Exceeded when responding to a ="NONE" request. Servers that do not permit the suspension of the limit MUST apply theLimit
<MAXROWS> and return code 20208 in the cases where the query results in more rows than permitted. Client implementers should be aware
that some server implementations might not honor the request to disable the limit or may restrict the request to the selection of certain fields as
described below; the server operator's business rules take precedence over the request to waive the system download limit.

A server may only support the suspension of the limit for a certain scenario of requests. When a server has Classes with a HasKeyIndex value of
TRUE in the Class Metadata the server MUST suspend enforcement of the download limit for such a Class when the ="NONE" and theLimit
Select argument contains only field names that have the InKeyIndex value of TRUE in the Table Metadata. A server SHOULD support
HasKeyIndex for each Class and MUST have the InKeyField value of TRUE for at least the KeyField of the Class when the HasKeyIndex is TRUE
for that Class. A server MAY have more than one field with the InKeyField value of TRUE for any Class.

Any request that sets a numeric Limit disables support for unlimited key index results as described in .section 7.4.5 Select

7.4.4 Offset

The client may specify that a retrieval start at other than the first record in the set of records matching the query by specifying the Offset argument

Offset ::= 1*9DIGIT

This argument indicates to the server that it SHOULD start sending the data to the client beginning with the record number indicated, with a value
of "1" indicating to start with the first record. This can be useful when requesting records in batches, however, client implementers should be
aware that data on the server MAY change as they iterate through the batches and it is possible that some records may be missed or added. In
other words, the server is not required to maintain a cursor to the data.

Any time an Offset argument is supplied, the resulting data SHOULD be returned in a consistent order based on an ordering of the KeyField of the
Resource. This ordering should be applied to the entire data set and not just the returned data which may be less that the total number of records
matching the criteria. It is a recommended practice that an ascending order be used as the ordering scheme when the KeyField value is a
sequentially increasing unique identifier, however, servers MAY choose to implement some other ordering scheme. This practice will help to
ensure subsequent requests will not contain duplicate records. Ascending order of the KeyField in this case will also provide assurance that newly
added records will be more reliably contained in the final Offset record set.

Clients iterating over the entire record set on systems that implement this practices MUST provide Offset=1 in the first request to assist the server
to order the results.

The offset value of '0' is not defined in this standard.

7.4.5 Select

By default, the server MUST return all fields accessible to the client. The client may select a subset of those fields by specifying the Select
argument.

Select ::= *()field , field

This parameter is used to set the fields that are returned by the query. If this entry is not present then all allowable fields for the search/class are
returned. The server MAY return an error when there are unknown fields in the select list. The server MUST NOT return more fields than are
specified in the Select argument when the client requests COMPACT or COMPACT-DECODED data. It MAY return fewer if some of the field
names are invalid or if a requested field is unavailable to the user based on security or other restrictions.

If the requested Class advertises HasKeyIndex as True in the Class Metadata and the client only selects fields advertised with InKeyIndex as
True in the Table Metadata, the Server MUST return all the matching records unless the Client has declared a Limit other than NONE.

A Client MUST only request the Select argument, and optionally the Format argument OR the Payload argument.

A Server MUST return an error code 20217 Invalid Argument Combination, Select and Payload when a Client submits a request with both Select
and Payload optional arguments.

Note: An Approved RCP is Related to this Section
Section 7.4.3 is related to the following approved RCP(s):

RETS 1.8.0

 RCP 68 Search Has Key Index Support

 Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/7.4+Optional+Request+Arguments#id-7.4OptionalRequestArguments-7.4.5Select
http://members.reso.org/display/RCP/RCP+68+-+Search+Has+Key+Index+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 49 of 232

In requests where the argument is set to 0 and values are given within the Select argument, the client and server MUSTStandardNames
reference fields by their .SystemName

In requests where the argument is set to 1 and values are given within the Select argument, the client SHOULD reference fieldsStandardNames
by their when StandardName labels exist but MAY send for fields that do not have a . In theStandardName SystemNames StandardName
request, the server MUST interpret fields in the Select as the for the field. If no field exists with the provided , theStandardName StandardName
server MUST attempt to interpret the field using the value as a . In the response, for appropriate Format values, the server MUSTSystemName
used the provided field name for the <COLUMNS> list. That is, if a client provided a for a field, then the server should return theStandardName
<COLUMNS> list value using that . Where the client provided a for a field, then the server should return theStandardName SystemName
<COLUMNS> list value using the .SystemName

7.4.6 Restricted Indicator

In some instances, the server may withhold the values of selected fields on selected records. When business rules withhold the value but the field
is returned as part of a response, a MUST be used in place of the value.RestrictedIndicator

RestrictedIndicator ::= 1*9TOKENCHAR

This entry indicates to the server that it MUST set the restriction indicator to the value specified by this tag. The default restricted indicator is a NU
 value.LL

Example: = RestrictedIndicator ####

This would mean that all fields that the user is not allowed to see within a record (e.g. ExpirationDate) are returned with a value of ####.

Note that if the client requests fields that the server would withhold for every record, the server MAY choose to omit the field from the list returned
rather than use the RestrictedIndicator for every record.

7.4.7 StandardNames

Queries may use either standard names or system names in the query (). If the client chooses to use standard names, it MUSTSection 7.6
indicate this using the StandardNames argument.

StandardNames ::= | 0 1 | DataDictionary

If this argument is set to 0 (zero) or is not present, the field names passed in the search are the SystemName, as defined in Table 11-15 of the

metadata.

If this argument is set to 1 (one), the client reference fields by their MUST StandardName as declared in the metadata for the default

Standard-XML format when StandardName labels exist but MAY send SystemName.

If this argument is set to DataDictionary, the client SHOULD reference fields by their data dictionary name as declared by the metadata for the
DataDictionary format when DataDictionary labels exist but MAY send .SystemName

In the response, the server MUST reference fields by their StandardName when StandardName labels exist and by their SystemNames where

no StandardName label exists. The StandardNames designation applies to all names used in the SearchType, Class, Query and Select arg

uments.

Note: An Approved RCP is Related to this Section
Section 7.4.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 68 Search Has Key Index Support
RCP 76 GetPayloadList
RCP 99 - Mixing StandardNames and SystemNames

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 7.4.7 is related to the following approved RCP(s):

RETS 1.8.0

RCP 99 - Mixing StandardNames and SystemNames
RCP 100 - Alternate Standard Names

http://members.reso.org/display/RCP/RCP+68+-+Search+Has+Key+Index+Support
http://members.reso.org/display/RCP/RCP+76+-+GetPayloadList
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames
http://members.reso.org/display/rcpcenter/RCP+100+-++Alternate+Standard+Names

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 50 of 232

7.4.8 Payload

The Client may request a specific XML format for the return set.

Payload ::= < a valid RESO schema name as found in the
GetPayloadList Transaction >

This entry must match a schema name discovered using the GetPayloadList. Please note that there are restrictions between the use of this
optional argument and the Format argument (Section 7.4.2) and the Select argument (Section 7.4.5).

A Client MUST only request the Payload argument, OR the Format and optionally, the Select arguments.

A Server MUST return an error code 20216 Invalid Argument Combination, Format and Payload when the Client submits a request with both the
Format and Payload optional arguments.

A Server MUST return an error code 20217 Invalid Argument Combination, Select and Payload when a Client submits a request with both the
Select and Payload optional arguments.

A Server MUST return an error code 20218 Invalid Argument Combination when the Client submits a request with the Format, Select and Payload
optional arguments.

7.4.9 Query

Query ::= <The query to be executed by the server>

The query is specified by the language denoted in the parameter. For DMQL2, the language is described in () .QueryType Section 7.6

Clients are not required to provide a Query parameter unless one or more fields in the requested Class are marked as Required (see Metadata
) in which case an error type of 20203 MUST be returned if the server is refusing to accept this request. If the server acceptsContent - Tables

this request, it MUST interpret the absence of a Query parameter as a request by the client to forfeit its option of filtering records past the filters
that may be automatically applied by the server.

In requests where the argument is set to 0 and values are given within the Select argument, the client and server MUSTStandardNames
reference the fields of the query by their .SystemName

In requests where the argument is set to 1 and values are given within the argument, the client reference fields byStandardNames Query MUST
their when StandardName labels exist but MAY send for fields that do not have a . The serverStandardName SystemNames StandardName
MUST interpret fields in the as the for the field. If no field exists with the provided , the server MUSTQuery StandardName StandardName
attempt to interpret the field using the value as a .SystemName

7.4.10 QueryType

The QueryType designates the query language used in the Query

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 7.4.8 is related to the following approved RCP(s):

RETS 1.8.0

RCP 76 GetPayloadList

Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 7.4.9 is related to the following approved RCP(s):

RETS 1.8.0

RCP 80 Optional Query
RCP 99 - Mixing StandardNames and SystemNames

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.3.2+Table#id-11.3.2Table-Table11-15-MetadataContent-Tables
http://members.reso.org/display/rets18/11.3.2+Table#id-11.3.2Table-Table11-15-MetadataContent-Tables
http://members.reso.org/display/RCP/RCP+76+-+GetPayloadList
http://members.reso.org/display/RCP/RCP+80+-+Optional+Query
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 51 of 232

QueryType ::= DMQL2

An enumeration giving the language in which the query is presented. The only valid value for RETS 1.8 is "DMQL2" which indicates the query
language described in (). In the future, other query languages may be permitted.Section 7.6

Clients MUST provide the QueryType parameter if the Query parameter is sent.

7.5 Search Response Body Format

NOTE

RETS 1.8 requires all server responses to be well-formed XML, and additionally requires search transaction responses to be valid
XML. In addition, RETS requires that clients parse server responses as XML, not as simple text streams. The response formats
shown here are normative with respect to content, but not normative with respect to form. That is, servers are free to produce
response XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the
appropriate DTD. So, for example, when the response format below calls out an empty XML tag, either the abbreviated tag format (

) or the full format () may be sent by the server and should be interpreted appropriately<MAXROWS/> <MAXROWS></MAXROWS>
by the client. In addition, XML escaping of content is implied. See the W3C for fullXML Recommendation 1.0, Third Edition,
information on XML.

The body of the search response has the following format when replying to a request with the Format set to "COMPACT" or
"COMPACT-DECODED":

 <RETS1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP >

 []count-tag
 []delimiter-tag

 []column-tag
 *()compact-data

 []max-row-tag
 [[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP

]]ReplyText= quoted-string *SP />
 </RETS> CRLF

The body of the search response has the following format when replying to a Format request of "STANDARD-XML" data:

 <?xml version="1.0" ?>
 [doctype]

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP >

 [* count-tag]
 *()XML-data-record

 [max-row-tag]
 [<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP

 ReplyText= quoted-string *SP]/>]
 </RETS> CRLF

The body of the search response has the following format when replying to a Payload request:

 <?xml version="1.0" ?>
 <RETS 1*SP name-space 1*SP xsi-value 1*SP schema-location 1*SP ReplyCode= quoted-reply-code 1*SP

 ReplyText= quoted-string *SP >
 [count-tag]

 *()RESO-data-record
 [max-row-tag]

 [<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP
 ReplyText= quoted-string *SP]/>]

 </RETS> CRLF

doctype ::= <!DOCTYPE RETS PUBLIC "-//RETS//DTD RETS XML
 Search Response 1.9.0//EN"SPC

" ">dtd-version

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 52 of 232

dtd-version ::= <Name of the RETS DTD used to produce this document>

example: http://www.rets.org/dtd/2010/09/RETS-20100926.dtd

RESO-data-record <A record structure as defined in the:=
rets-xml-search-response-1_9_0.xsd document>

When the client requests the STANDARD-XML representation, it may also specify a DTD version. The server MUST support the current version
and SHOULD support the previous version. Data DTD versions are of the form

RETS- .dtdyyyymmdd where is the release date of the DTD.yyyymmdd

compact-data ::= *()<DATA> field-delimiter field-data field-delimiter

</DATA>

If a "COMPACT" or "COMPACT-DECODED" format is specified in the request then a "<DATA>" tag, a delimited list of field-data and a "</DATA>"
end tag are returned to the client for each record returned. The field-delimiter is determined by the delimiter-tag.

count-tag ::= <COUNT 1*SP Records="record-count" 1*SP />

When the client application specifies that a count should be returned (count-type = "1" | "2") a count-tag MUST be sent by the server in the
response. The "<COUNT>" tag MUST be on the first line following the reply-code line. The record-count value indicates the number of records on
the server matching the search criteria sent in the search query.

column-tag ::= 1*()<COLUMNS> field-delimiter field field-delimiter

</COLUMNS>

If a “COMPACT” or “COMPACT-DECODED” format is specified in the request then a “<COLUMNS>” tag is also included containing a delimited
list of the names of all of the fields being returned. If the StandardNames argument was set to 0 (zero) or not provided, these fields MUST be the
SystemName label for every field returned. If the StandardNames argument was set to 1, these fields MUST reference the StandardName label
where they exist and the SystemName label when no StandardName label exists. A server MUST NOT return the SystemName for a field that
has a StandardName label.

The field-delimiter is determined by the delimiter-tag.

delimiter-tag ::= <DELIMITER value =" field-delimiter "/>

This parameter tells the client which character (OCTET) is used as a delimiter for both the COLUMNS list and the DATA returned. The server
MUST send this parameter for "COMPACT" or "COMPACT-DECODED" formats. The "<DELIMITER>" tag MUST precede column-tag.

max-row-tag ::= <MAXROWS/>
| <MAXROWS></MAXROWS>

A tag that indicates the maximum number of records allowed to be returned by the server has been exceeded, or alternatively, the Limit number
passed by the client in the request has been exceeded.

7.6 Query language

The query takes the form indicated below. This is the actual search criteria passed to the server. The server parses this query and generates a
server-compatible query based on the parameters passed in the query-list.

7.6.1 Query language BNF

Note: An Approved RCP is Related to this Section
Section 7.5 is related to the following RCP(s):

RETS 1.8.0

RCP 92 RESO Payload Transport-Level Metadata Support
RCP 99 - Mixing StandardNames and SystemNames

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that are proposed for this version.

http://www.rets.org/dtd/2010/09/RETS-20100926.dtd
http://members.reso.org/display/RCP/RCP+92+-+RESO+Payload+Transport-Level+Metadata+Support
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 53 of 232

search-condition ::= | ()query-clause search-condition or query-clause

query-clause ::= | ()boolean-element query-clause and boolean-element

boolean-element :: = [] not query-element

query-element ::= (search-condition) |field-criteria ()

or ::= | OR |

and ::= | AND ,

not ::= | NOT ~

field-criteria ::= (field=field-value)

field-value ::= | | | | | | lookup-list string-list range-list period number string-literal area | .E
MPTY.

lookup-list ::= | | |lookup-or lookup-not lookup-and .ANY.

lookup-or ::=)| lookup (*,lookup

lookup-not ::= *()~ lookup , lookup

lookup-and ::= *()+ lookup , lookup

lookup ::= | 1*128ALPHANUM string-literal
;legal values are further constrained by the relevant lookup metadata

string-list ::= *(,)string string

string ::= | | | string-eq string-start string-contains string-char

string-eq ::= 1*ALPHANUM

string-start ::= *1*ALPHANUM

string-contains ::= * *1*ALPHANUM

string-char ::= *()*ALPHANUM ? *ALPHANUM

string-literal ::= except except <" PLAINTEXT > *(*<" 2" PLAINTEXT >) " "

range-list ::= *()range , range

range ::= | | }}between greater less

between ::= (|) (|)period number "-" period number

greater ::= (| |) period number string-eq +

less ::= (| |) period number string-eq -

period ::= (| |)dmqldate dmqldatetime partial-time

number ::= [] [*DIGIT]- 1*DIGIT .

area ::= circle-by-radius | circle-by-points | rectangle | polygon

circle-by-radius ::= map-point “:“ number [length-unit]

circle-by-points ::= map-point “:” map-point

rectangle ::= map-point “, ” map-point

polygon ::= map-point 2*(“, ” map-point)

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 54 of 232

map-point ::= number “ ” number

length-unit ::= “M” | “K”

dmqldate ::= | full-date TODAY

dmqldatetime ::= | RETSDATETIME NOW

dmqltime ::= partial-time

An value represents the area that contains values that match the search criteria. The area may be shaped as a circle or aarea map-point
polygon.

A circular area , circle-by-radius may be described by its centre and the radius of the circle. An optional radius may bemap-point length-unit
included to indicate the distance units. The default radius is miles (M). The radius length may also be measured in kilometers (K).length-unit

A circular area circle-by-points may also be described by its center and a single arbitrary point on the circle’s circumference. By convention, the
first value is the centre point and the second value is a point on the circumference.

A area is described by a list of values. Each defines a vertex of the . The edges of the arepolygonal map-point map-point polygon polygon
described by two adjacent values in the list of . The MUST be closed and convex, that is, each edge must form amap-point map-points polygon
chain, sharing a vertex with the previous edge. If the last point in the list is not the same as the first one, another side is defined by the first and
last point in the list. Any two sides of the polygon MUST NOT intersect. A special case of a polygonal area is a , which can be definedrectangle
by just two points where the points MUST be opposite vertices of the .rectangle

Client and Server implementations SHOULD use Spherical Mercator for search criteria content and return results using WGS84 if possible.

7.6.2 Query parameter interpretation

Query literal values are interpreted in the value space of the searched field. That is, the data type of the searched field determines the
interpretation of the search literal values, which MUST be valid in that value space.

Dates and times submitted in a query MAY utilize time offsets relative to UTC using the If a is submitted withdmqldatetime dmqldatetime
time offset information, the server system MUST interpret the request using the time offset information. If the time offset is not declared in the
query, the server system MUST interpret the request using the default System time zone offset. This default must match the advertised time zone
offset of the METADATA-SYSTEM SYSTEM TimeZoneOffset. If no time zone offset is advertised for the server system system, the default time
zone offset MUST be UTC. The server system MUST interpret the token as the current date and time of the server system. For backwardTODAY

Note: RETS 1.7.2: An Approved RCP is Related to this Section
Section 7.7.1 is related to the following approved RCP(s):

RCP 71 Time Zone Data
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

Note: RETS1.8.0: An Approved RCP is Related to this Section
Section 7.7.1 is related to the following approved RCP(s):

RCP 69 LookupType Value
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

RETS1.9.0 An Approved RCP is related to this section
Section 7.6.1 is related to the following approved RCP(s):

RCP 103 - Geospatial Search

Content in this section has been updated or modified sing the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data
http://members.reso.org/display/RCP/RCP+69+-+LookupType+Value
http://members.reso.org/display/RCP/RCP+103+-+Geospatial+Search

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 55 of 232

compatibility, the server system MUST treat clients with version less than 1.7.2 as submitting dates and times using a time zone offset of
UTC/GMT. In this case, the advertised time zone offset is ignored since the client is not expected to be aware of the time zone offset. The server
system MUST interpret the token as the current date and time of the server system.NOW

In processing a literal string, a server MAY substitute a expression (s) for the range of characters that contain anystring-char ?
non-ALPHANUM not supported by that server.

In processing decimal numbers, where rounding is necessary, a server SHOULD round down for the bottom of ranges or values less than 0.5 and
round up for the tops of ranges or values 0.5 or greater.

There are four types of field values that can be passed in the query string. They are a , a , a and the special token lookup-list range string
. A is a field that may only contain predefined values, or the special token , indicating that any value is acceptable..EMPTY. lookup-list .ANY.

"Status" and "Type" are typical examples of fields with a limited range of predefined values.

The token, if used, is to be interpreted exactly as if it contained all possible values for the given field. In particular, the use of does.ANY. .ANY.
not alter any limitation on the number of lookup values allowed for the field. It is merely a shorthand method of specifying all possible lookup
values.

range fields can be searched based on a range of values. "ListPrice" and "ListDate" fall into this category. All values specified in a are torange
be treated as inclusive (e.g. 2+ is the same as 2 or greater, inclusive of 2; 2-3 is the same as 2 to 3, inclusive of 2 and 3; 2- is the same as 2 or
less, inclusive of 2). The types of the range endpoints MUST match the data type of the field being searched. In addition, the valuerange-start
MUST be less than the value in the value space defined by the searched field, or the result is undefined.range-end

A field is any other character field not falling into the other two categories. These are usually freeform text fields. An example of this kindstring
of field is "OwnerName".

The special value is to be interpreted as whatever the value of the field would be if no value had been entered. Note that this is .EMPTY.
implementation-defined: it may be the same as a search for a null value, or it may be blank or zero. A client should not expect to be able to
distinguish unentered values from any other values using this search token.

Each MUST be a SystemName, as defined in the metadata, when the StandardNames argument is set to 0 (or not given) in the request.field
When the StandardNames argument is set to 1, the client SHOULD reference the StandardName when StandardName labels exist but MAY
reference SystemNames.

All values submitted for lookup-lists must be the Value in compact format, as defined in .Section 13

The data types for field values may be determined by examining the metadata for the searched field. In a query using StandardNames, the RETS
Data Dictionary gives the acceptable data type for search values.

Within range criteria, the datatype of the start and end range values MUST be identical. That is, no mixing of datatypes within a specific range is
permitted.

If a client submits a value containing non-alphanumeric characters, the client MUST use the representation of thelookup string-literal
Lookup value.

7.7.3 Sub-queries

This query language provides for a nesting of sub-queries. For example:

Query=((AREA= | 1,2) | (CITY=ACTON)),(LP=200000+)

Example:

Query=(ST=|ACT,SOLD),
(LP=200000-350000),
(STR=RIVER*),
(STYLE=RANCH),
(EXT=WTRFRNT,DOCK),
(LDATE=2000-03-01),
(REM=FORECLOSE),
(TYPE=~CONDO,TWNHME),
(OWNER=P?LE)

Note: An Approved RCP is Related to this Section
Section 7.6.2 is related to the following approved RCP(s):

RCP 71 Time Zone Data
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.
RCP 99 Mixing StandardNames and SystemNames

http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data
http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 56 of 232

Verbally, this would be interpreted as "return properties with (equal or) and (between 200000 and 350000, inclusive) and (bST ACT SOLD LP STR
eginning with) and (equal) and (equal and) and (greater than or equal to 2000-03-01) and (RIVER STYLE RANCH EXT WTRFRNT DOCK LDATE REM
containing) and (not equal to and not equal to) and (starting with and having in the 3rd and 4thFORECLOSE TYPE CONDO TWNHME OWNER P LE
characters)."

7.7 Reply Codes

Table 7-1 Search Transaction Reply Codes

Reply
Code

Meaning

0 Operation successful.

20200 Unknown Query Field
The query could not be understood due to an unknown field name.

20201 No Records Found
No matching records were found.

20202 Invalid Select
The Select statement contains field names that are not recognized by the server.

20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed to the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the supplied login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This reply code indicates that the maximum records allowed to be
returned by the server have been exceeded. Note: reaching/exceeding the "Limit" value in the client request is not a cause for the
server to generate this error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be accepted at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains too many nesting levels or too many values for a lookup
field.

20214 Unsupported Argument - Payload
The server does not support the Payload argument.

20215 Invalid Payload
The transaction is requesting an output Payload that does not match the Resource value.

20216 Invalid Argument Combination - Format and Payload
The transaction uses both the Format and Payload arguments. This is not supported by the Standard.

20217 Invalid Argument Combination - Select and Payload
The transaction uses both the Select and Payload arguments. This is not supported by the Standard.

20218 Invalid Argument Combination - Format, Select and Payload
The transaction uses the Format, Select and Payload arguments. This is not supported by the Standard.

20219 Invalid FORMAT - The selected optional Format argument is not supported by this implementation.

20220 Requested Data Dictionary version unavailable - The selected optional Format argument data dictionary version is not supported by
this implementation.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using a DTD version that the server cannot provide.

Note: An Approved RCP is Related to this Section

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 57 of 232

Section 7.8 is related to the following approved RCP(s):

RETS 1.8.0

 RCP 76 GetPayloadList

RETS 1.9.0

 RCP 113 - Search Transaction Optional Format Argument - Add JSON

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 58 of 232

Section 8 - Get Transaction

Gets an arbitrary file from the server or performs an arbitrary action, specified by URI. This is a standard HTTP GET, as described in the HTTP

Specifications[. The file to GET is passed as part of the Request-URI.]2

RETS servers need not support the GET transaction to any greater extent than is necessary to implement the functionality of the Action URL (see
). If a RETS server does not intend to include an Action URL in its login responses, it need not support the GET4.10, "Capability URL List"

transaction.

There are no required or optional arguments for either the request or response. Those sections have been removed.

See the General Status Codes in for typical Status-Codes.Section 3.9

http://members.reso.org/display/RETS180a/Section+19+-+References#Section19-References-2
http://members.reso.org/display/rets18/4.10+Capability+URL+List
http://members.reso.org/display/rets18/3.9+General+Status+Codes

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 59 of 232

1.
2.
3.

Section 9 - Change Password Transaction

The Change Password transaction provides a means for the user to change their password. The new password is appended to the username and
encrypted using the Data Encryption Standard (DES), ANSI X3.92, using a hash of the old password as the key.

9.1 Required Request Arguments
9.2 Optional Request Arguments
9.3 Required Response Arguments
9.4 Optional Response Arguments
9.5 Reply Codes
9.6 Encryption Key Construction
9.7 ECB Padding
9.8 Effect of change

9.1 Required Request Arguments

PWD (* ::= PWD= <BASE64(<*DES Password : UserName)>)

This is the Base64 representation of the DES-encrypted UserName and Password. The new Password and the UserName are appended together
with a colon (":") between and the resulting string is encrypted using DES in Electronic Code Book (ECB) mode. The DES key is constructed
using the procedure in . Base64 encoding is defined in RFC 2045 section 6.8.Section 9.6

9.2 Optional Request Arguments

There are no optional request arguments.

9.3 Required Response Arguments

There are no required response arguments.

9.4 Optional Response Arguments

There are no optional response arguments.

9.5 Reply Codes

Table 9-1 Change Password Reply Codes

Reply Code Meaning

0 Operation successful.

20140 Insecure password.
The password does not meet the site's rules for password security.

20141 Same as Previous Password.
The new password is the same as the old one.

20142 The encrypted user name was invalid.

9.6 Encryption Key Construction

The new password is communicated to the host as a string encrypted with the Data Encryption Standard, ANSI X3.92. DES requires a 64-bit key,
which is constructed as follows:

The old password and username are converted to uppercase and concatenated together.
The resulting string is hashed using MD5.
The key is taken as the first 64 bits of the resulting hash value. Parity bits must be corrected for encoders that check parity.

9.7 ECB Padding

The input to the DES ECB encryption process shall be padded to a multiple of 8 octets in the following manner:

Let be the length in octets of the input. Pad the input by appending 8 – (mod 8) octets to the end of the input, each having the value 8 – (mon n n
d 8), the number of octets being added. In hexadecimal, the possible paddings are , , , , , 0x01 0x0202 0x030303 0x04040404 0x0505050505 0

 and and . All input is padded with 1 to 8 octets to produce an input string that is ax060606060606 0x07070707070707 0x0808080808080808

http://members.reso.org/display/rets18/9.6+Encryption+Key+Construction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 60 of 232

multiple of 8 octets in length. The padding can be unambiguously removed after decryption.

This padding method is compatible with RFC 2315 section 10.3, note 2.

9.8 Effect of change

Servers that return a success status MUST accept the new password and reject the old password for all subsequent Login transactions and
sessions. Servers that return a success status MAY require the use of the new password for all subsequent transactions in the current session by
issuing a WWW-Authenticate challenge for transactions that do not contain the correct credentials.

If a client fails to receive a response to this transaction, it SHOULD retain both the old and new passwords until the effect of the Change
Password transaction can be ascertained via a successful login.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 61 of 232

Section 10 - Update Transaction

The update transaction is used to modify data on the server. The client transmits information describing the update to perform. The information is
then validated by the server. Based on the metadata for a particular implementation, the information of the update may be structured as a

If there are errors in the parent-child relationship where each parent record may have several associated child records. information or the
, the server returns an error reply associated child information and no information is saved. That is, on an error in any of the information,

. If there are no errors, theparent-child or flat, the server MUST be returned to the state it was before the update transaction was attempted
record as updated on the server will be returned. The record is returned in the same manner as a record is returned from a search.(s) added or

Update requests MUST use the POST method (rather than the GET method). The request MUST use a content-type appropriate to the encoding
of the request, per [16]. A content-type of is recommended, but any other method of encoding HTML formtext/www-url-formencoded
parameters may be used.

10.1 Required Request Arguments
10.2 Optional Request Arguments
10.3 Required Response Arguments
10.4 Optional Response Arguments
10.5 Update Response Body Format
10.6 Record Locking
10.7 Validation
10.8 Reply Codes

10.1 Required Request Arguments

10.1.1 Resource and ClassName

The Resource and Class arguments specify the RETS resource and class that the update is applied against.

Resource ::= resource-name

resource-name ::= RETSID

The name of the resource to be updated, as specified in the metadata. This is the as defined in .ResourceID Section 11.2.2

ClassName class-name

class-name ::= RETSNAME

The name of the class to be updated, as defined in the metadata. This is the as defined in .ClassName section 11.3.1

10.1.2 Validate

Validate validate-flag

validate-flag ::= | | 0 1 2

If this entry is set to and there are no errors in the record, the record in the server database is updated.0

If this parameter is set to , the server expects that the record is not complete and that it will not be stored on the server as a result of this1
UpdateAction. The partial record is validated by the host. Any fields that are not provided are not validated. Any fields with the metadata field
"Attributes" set to "Autopop" in the metadata (see) will have their field values filled in by the server and returned to the client. TheSection 11.3.4
"Autopop" mode is used to automatically populate the fields of the data record. The record in the server database is not updated.

If this entry is set to , the server validates all fields and returns any errors found, but does store the record. The record in the server database2 not
is not updated.

Note: An Approved RCP is Related to this Section
Section 10 is related to the following approved RCP(s):

RETS 1.8.0

RCP 101 Child Row Support

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RETS180a/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-11.2.2Resources
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.1Class
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.4UpdateType
http://members.reso.org/display/rcpcenter/RCP+101+-++Child+Rows+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 62 of 232

10.1.3 Action

Action ::= update-action

update-action ::= 1*24 ALPHANUM

The type of update to perform, as specified by the metadata. This is the as defined in .UpdateAction Section 11.3.3

10.1.4 Record

Record ::= = *(=)field_name field-value field-delimiter field_name field-value

The Record provides values for the fields that are being used in the Update Transaction. This includes those fields that are to be changed. For
Action values like Clone, Change and Delete, the value for the (as defined in Section 11.3.3) MUST be provided in the Record, toKeyField
identify the record on the server that is to be modified.

field-name ::= RETSNAME

The name of the field to be updated, as specified in the metadata. This is the as defined in .SystemName Section 11.3.2

field-delimiter ::= OCTET

The octet that will separate the fields in the record. The delimiter is specified by the optional argument Delimiter (See Section 10.2). If this is not
specified, an ASCII HT character (OCTET 09) is used as the default.

field-value ::= <varies depending on the field>

The text representation of the field value as defined by the metadata in subject to the business rules. If the value is a Lookup type,Section 11.3.2
the value MUST be submitted using the Value of the LookupType rather than the LongValue or ShortValue of the LookupType, formatted in the
COMPACT data format.

10.2 Optional Request Arguments

10.2.1 Delimiter

Delimiter ::= HEX HEX

The specifies the octet that will separate fields in the record. If it is not specified, the default value of ASCII HT character (09) will beDelimiter
used.

10.2.2 Lock

 Lock ::= lock-time

lock-time ::= 1*DIGIT

The specifies a request to lock the requested record to prevent changes to the specific record by other clients. If the lock-time is a numberLock
greater than zero, the server SHOULD lock the requested record for the next seconds. If the record has already been locked by thislock-time
user and the server receives another request with the same value, the period is set to the new value seconds. ALock LockKey lock-time lock-time
server MAY substitute a shorter period or ignore the lock request completely, based on server-specific rules. The requested islock-time lock-time
a hint from the client about how long it may take before the final update on the record will be requested.

Note: An Approved RCP is Related to this Section
Section 10.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.3Update
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 63 of 232

If the argument is missing, the server will use its own discretion about locking the record.lock-time

A zero value for the request argument means that the client does not want to lock the record. The server will still use its own lockinglock-time
policy. For example, if the UpdateAction is BeginUpdate, the server MAY lock the record and the client MUST submit another Update Transaction
to release the lock.

If the server supports , the server should implement a lock expiration strategy. Network or other types of problems may prevent the releaseLock
lock request from reaching the server, thus the server should be prepared to clean up an expired lock on a record.

10.2.3 LockKey

LockKey ::= lock-key-value

lock-key-value ::= TOKEN

If the server locks the requested record, it MAY return a value for . The MUST be sent back by the client in the nextLockKey lock-key-value
Update transaction on this record. This allows the server to verify that the record started with the values stored at the time of the lock.

If the client fails to submit the correct , the server MAY fail the Update request. In that case, the client has to submit anotherlock-key-value
BeginUpdate action to lock the record and get the record values and a new then submit the desired Update request with the new lock-key-value lo

.ck-key-value

10.2.4 Select

Select ::= field-name *(, field-name)

Specifies a list of fields that should be returned in the response. Server MUST return current (updated) values for all fields in this list.

The behavior of the Select is identical to that of Section 7.4.5. If this argument is omitted, all fields will be returned.

The field-names in the Select argument must be the System Names as defined in the Table Metadata (11.3.2).

10.2.5 WarningResponse

See Section 21.3 WarningBlock for details.

10.2.6 ChildRecord

 If the Update metadata (11.3.3) describes Child_Action metadata (11.3.5) then the client can submit updated child data with the ChildRecord
parameter in the same transaction.

ChildRecord ::= ChildAction = child-action-id field-delimiter

 ChildRequestID = child-request-id field-delimiter

 Sequence = process-order field-delimiter

field_name = field-value *(field-delimiter
 field_name = field-value)

; 123 3324 2ChildAction= ChildRequestID= Sequence=
ListPrice=250000 Status=1

child-action-id ::= RETSID

child-request-id ::= RETSID

process-order ::= POSITIVENUM

field-name ::= RETSNAME

field-delimiter ::= OCTET

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 64 of 232

field-value ::=<varies depending on the field>

The ChildRecord provides details for child rows of the class being updated. This MUST include the , followed by a ChildRequestID,child-action-id
then a Sequence, and the fields that are to be change. Multiple ChildRecord parameters may be specified both for the same andchild-action-id
for different if the server describes multiple ChildActions for this UpdateAction. For example, in the case that a server supportschild-action-ids
three different types of ChildActions, a client can choose to update a room in one ChildRecord, remove a room in a second, and add an Open
House with a third ChildRecord parameter in the same Update Transaction.

The child-action-id describes both the relationship between the parent row and this child row, and the UpdateAction to apply for this child
 row. This is the child-action-id as defined in section 11.3.5.

The is a means for the client to identify a particular child row to the server. The server will reference this ID when communicatingchild-request-id
errors, warnings, and success back to the client. These ids SHOULD be unique within a request.

The describes to the server in what order child rows are to be processed. The server MUST process child rows in ascending process-order proce

 may lead to undetermined behaviour. For order. The ss-order process-order values need not be contiguous. Coincident process-order values

example, two child rows within the same Update Transaction with the same process-order . It is at the discretion of the server vendor to continue

processing child rows after a data validation error has been encountered.

The is the name of the field to be updated, as specified in the meta-data. This is the SystemName as defined in Section 11.3.2. field-name The fie
 ld-delimiter is the octet that separates the fields in the record. This is as defined for Delimiter in Section 10.2. The is the text value offield-value

the field as defined by the metadata subject to the business rules.

10.2.7 ChildSelect

ChildSelect ::= ForeignKey = ForeignKeyID , field-name *(, field-name)

The ChildSelect specifies a list of fields that should be returned in the response. The server MUST return current (updated) values for all fields in
this list. If this argument is omitted, no child sections will be returned. Multiple ChildSelect parameters may be specified for additional child table
data. Each ChildSelect parameter MUST specify a different ForeignKeyID.

10.3 Required Response Arguments

There are no required response arguments.

10.4 Optional Response Arguments

There are no optional response arguments.

10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:

Note: An Approved RCP is Related to this Section
Section 10.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction
RCP 102 Child Row Support

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction
http://members.reso.org/display/rcpcenter/RCP+101+-++Child+Rows+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 65 of 232

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP > CRLF

 [lock-tag]
 [lock-key]

 [delimiter-tag]
 column-tag

compact-data

* (child-data)
 [<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP

 ReplyText= quoted-string *SP/>
 </RETS> CRLF

The body of the update response has the following format when there are errors or warnings:

 <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
 ReplyText= quoted-string *SP > CRLF

 [lock-tag]
 [lock-key]

 [delimiter-tag]
 column-tag

 compact-data
 [error-block]

 [warning-block]
* (child-data)

 </RETS> CRLF

lock-tag ::= =Lock lock-time

lock-time ::= 1*DIGIT

The is the number of seconds that the record will be locked on the server. If is zero, the lock has been already released. Notelock-time lock-time
that the MAY be less than requested, if the server uses any internal logic to limit the time for which a record will be locked.lock-time

A server that supports record locking MUST return the in the response. If no lock was requested, a server that supports locking MUSTlock-tag
return . A missing indicates that the server does not support record locking.=0Lock lock-tag

lock-key ::= =LockKey lock-key-value

lock-key-value ::= TOKEN

If the server locks the requested record, it MAY return a . The MUST be sent back in the next Update Transaction to allowLockKey lock-key-value
the server to verify that the client operates with the values the record had at the time it had been locked.

If the client fails to provide the correct , the server MAY respond with an error code to the Update request. In that case, the clientlock-key-value
has to request another BeginUpdate UpdateAction to lock the record and get the actual data, and then request the Update request with the new
lock-key.

If a BeginUpdate UpdateAction was requested on a record that is already locked by the same user, , if present, MUST be thethe lock-key-value
same as when the record was originally locked. That allows the client to verify that the record has not changed since the original lock has been
granted.

child-data ::= open-child-data-tag [column-tag] *(child-row)
close-child-data-tag

open-child-data-tag ::= <ChildData ForeignKey = QUOTE foreign-key-id
QUOTE >

foreign-key-id ::= RETSID

close-child-data-tag ::= </ChildData>

Optionally, child data rows may be included following the parent data row. Child data rows start with a tag and the foreign key. The foreign-key-id
attribute links the relationship between the child rows in this section and the row in the primary table.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 66 of 232

1.

2.

3.

4.

child-row ::= open-child-row-tag compact-data [error-block]
[warning-block] close-child-row-tag

open-child-row-tag ::= <ChildRow ChildRequestID = QUOTE child-request-id QUOTE >

child-request-id ::= RETSID

close-child-row-tag ::= </ChildRow>

The contains the updated child row along with related error and warning blocks. child-row The attribute is the ChildRequestIDchild-request-id
specified by the client in the ChildRecord request argument.

10.5.1 Error block

See Section 17.1

10.5.2 Warning block

See Section 17.2

10.6 Record Locking

Clients are encouraged to use record locking to avoid conflicting changes by other parties. A typical procedure for modifying an existing record in
an interactive client application would be as follows:

The Client requests an Update transaction with UpdateAction=BeginUpdate, the Record specifying only the key value of the requested
record, and (optionally) requesting a Lock argument value with some time period to allow the user to edit the Record. The Server locks
the requested record and returns the current data for the Record, along with (optionally) the Lock and LockKey arguments.
The Client presents the current data to the user and lets them make necessary changes. If the lock-time value returned by the Server will
expire before the user is ready, the Client should request another Update transaction with UpdateAction=BeginUpdate, the Record
specifying only the key value of the requested record, the LockKey with the lock-key-value sent by the server (if the server has sent one),
and Lock value set to some additional period of time. The server should extend the lock on the Record and (optionally) send back Lock
and LockKey arguments. If it does send LockKey, its value SHOULD be the same as that in the the original lock, to indicate to the client
that nothing has changed since the original Lock request.
To update the Record and maintain the transaction for further update, the Client should request the Update Transaction with
UpdateAction=Update, the complete Record with updated data, the LockKey with value provided by the server, and Lock value set to
some additional period of time. The server should extend the lock on the Record. If the Server returns the LockKey, it should return the
same lock-key-value as returned with the original lock, to indicate to the client that nothing has changed since the original Lock request.
To complete the Update of the Record, the Client requests an Update Transaction with the lock-key-value provided by the server and
Lock=0. The Server updates the Record and releases the lock.

Clients should expect that the Lock has been released by the Server if the lock-time has expired.

A Client may send an UpdateAction=Update Transaction without first sending an UpdateAction=BeginUpdate Transaction. If a server allows for
updating a unlocked record, then the Record is updated, the server sends back a response with a lock-time of zero (or missing), and that

finishes the transaction. If the server does require the BeginUpdate action, it will return with error 20314. Note that the server MUST specify
RequiresBegin=1 in the metadata if it requires the BeginUpdate action.

The server may choose to not implement the locking mechanism. If this is the case, the response to any BeginUpdate action will respond without
the , providing the requested data for the Record. The missing tells the Client that locking is not in effect.lock-tag lock-tag

Note: An Approved RCP is Related to this Section
Section 10.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction
RCP TBD Child Row Support

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 10.6 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction
http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 67 of 232

10.7 Validation

Validation routines are indications of the checks the host system will perform against a field value before it is accepted for storage on the host.
Some of these routines require data available only on the host system. However, others are relatively simple and could be performed by any
RETS client to prevent invalid field values from being submitted. There are several different types of validation to be performed by the client.

A compliant client is not required to enforce the local validations provided in this section. However, if a client does not enforce the validations then
the likelihood of the server rejecting the record is greatly increased.

10.7.1 Lookup

The entry is validated against a list of acceptable values. If the metadata described in specifies the Interpretation as Lookup theSection 11.3.2
only acceptable values for the field are defined in the referenced by . Alternatively, if the metadata specifies a METADATA-LOOKUP LookupName V

 the only acceptable values for the field are defined in the referenced by thealidationLookup METADATA-VALIDATION_LOOKUP
ValidationLookup field.

10.7.2 MultiSelect Lookup

The entry is validated against a list of acceptable values. If the metadata described in specifies the Interpretation as Section 11.3.2 LookupMulti
, the only acceptable values for the field are defined in the referenced by . The maximum number of values thatMETADATA-LOOKUP LookupName
can be selected is defined by .MaxUpdate

10.7.3 Range

The entry must be between the and values specified in the metadata. The entry text length must not exceed theMinimum Maximum
MaximumLength (see).Section 11.3.2

10.7.4 Test Expression

For each field being updated, evaluate all ValidationExpressions as defined in the metadata. See for more information on TestSection 11.4.9
Expressions.

10.7.5 External

The entry may be validated by searching a server resource. The Resource is defined for searching and the parameter list includes a set of
suggested input fields, a set of result fields to display and a set of result fields to populate into the fields of the resource being updated.
Information for external validation is provided in .Section 11.4.10

10.8 Reply Codes

Table 10-1 Update Transaction Reply Codes

Reply
Code

Meaning

0 Operation successful.

20301 Invalid parameter.
Additional information is provided in the error block.

20302 Unable to save record on server.

20303 Miscellaneous Update Error.

20311 WarningResponse was not given for all warnings that contained a value of 2.response-required

20312 WarningResponse was given for a warning that contained a value of 0.response-required

20313 Incorrect LockKey.
The record is locked, but the LockKey is not correct.

20314 Record Has Not Been Locked.
The BeginUpdate action has to be requested before the Update. This error will be returned if the server requires the UpdBeginUpdate
ateAction and the request did not specify the , implying that no lock has been acquired, see RequiresBegin.LockKey Table 11-17

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.9ValidationExpression
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.10ValidationExternal
http://members.reso.org/display/rets18/11.3.3+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 68 of 232

20315 Record Lock Expired.
The BeginUpdate action has to be requested before the Update. This error will be returned if the record is not locked and the request
specified the LockKey, indicating that a lock had been previously requested.

20316 Unknown UpdateAction.
The requested UpdateAction is not defined for this class.

20317 Unknown Resource or ClassName.

20318 Requested record does not exist.

The quoted-string of the body-start-line contains text that MAY be displayed to the user.

Note: An Approved RCP is Related to this Section
Section 10.8 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 69 of 232

Section 11 - Metadata Format

Metadata enables a client that receives data from a compliant server to better format the data for display, and to store it efficiently for future
retrieval. While use of the metadata is not necessary to retrieve data for simple display purposes, more sophisticated clients will want to use the
metadata to make more intelligent use of the information retrieved. Metadata MUST be supplied by a compliant server.

11.1 Organization and Retrieval
11.2 System-Level Metadata
11.3 Metadata Format for Class Elements

11.3.1 Class
11.3.2 Table
11.3.3 Update
11.3.4 Update Type
11.3.5 Child Action

11.4 Metadata Format for Shared Elements
11.4.1 Object
11.4.2 Lookup
11.4.3 Lookup Type
11.4.4 Search Help
11.4.5 Edit Mask
11.4.6 Update Help
11.4.7 Validation Expression

11.4.7.1 Validation Expression Types and Data Types
11.4.7.2 Validation Expression BNF Representation
11.4.7.3 Validation Expression Special Operand Tokens
11.4.7.4 Validation Expression Functions and Operators

11.4.8 Validation External
11.4.9 Validation External Type

11.5 Metadata Format for Presentation Elements
11.5.1 Column Group Set
11.5.2 Column Group
11.5.3 Column Group Control
11.5.4 Column Group Table
11.5.5 Column Group Normalization

11.1 Organization and Retrieval

11.1.1 Metadata Organization

Metadata is organized by table/object, with each table having its own unique set of metadata describing the fields available in that table/object.
The organization permits access to summary or detailed information about one or more resources (see Figure 11.1, "Metadata Structure").

The client retrieves the metadata by using the GetMetadata Transaction specifying the METADATA table/object(s) of interest as the Type, and the
specific instance in the ID (see). The server supplies the metadata as documents using the formats described in this section. TheSection 12
client MUST accept fields and attributes in the metadata that are not defined in this standard, although it is not required to process those fields in
any way.

The client MAY cache the metadata between sessions. If it does, it MUST record the value of the timestamp attribute fromMETADATA-SYSTEM
each session in which it caches retrieved metadata, and MUST request new metadata whenever the Login responseMetadataTimestamp
value changes except when previous versions are permitted by the value. Further, if the is used in theMinMetadataTimestamp MetadataID
System metadata, see Section 11.2.1, the client MAY cache separate metadata for each MetadataID. If it does, it MUST maintain both the METAD

 and the and use the correct and timestamp based on the Login Transaction response values.ATA-SYSTEM MetadataID MetadataID

If a client sends transactions using outdated metadata or uses metadata that does not match the Login Transaction value, whenMetadataID
present, the server operation is undefined. Server vendors MAY respond with an ErrorCode, but that may not be possible for all cases of
metadata mismatch.

Figure 11.1 - Metadata Structure

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 70 of 232

NOTE:

The names of the metadata provided in the figure may not be the correct header tag values that should be used in a GetMetadata
transaction Request or Response. For the proper metadata-id value please refer to the appropriate version of the RETS Metadata

.Schema

Note: RETS1.8.0: An Approved RCP is Related to this Section
Section 11.1.1 is related to the following approved RCP(s):

RCP 60 Metadata Changes for Update
RCP 87 RETS 1.7.2 Errata Document
RCP 101 Child Rows Support
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document
http://members.reso.org/display/rcpcenter/RCP+101+-++Child+Rows+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 71 of 232

11.1.2 General Rules for Interpretation

In general, metadata keywords defined in this standard such as field names and reserved values are not case-sensitive. However, implementers
are urged to adopt the strict-generation/tolerant-acceptance rule and follow the case shown in this standard.

Clients requesting metadata in COMPACT format MUST ignore any metadata fields which they do not understand. In addition, the servers are
permitted to send columns in any order. The order shown in the examples is not normative.

Servers may choose to extend the content of any metadata table by including additional keywords. These keywords MUST be contained under
the < > element. The use of the < > element is reserved for the standard. See Figure 11.2 for further information.PROPRIETARY EXTENSION

Metadata field names for such extensions SHOULD begin with the letter "X" followed by a hyphen, followed by an implementation-defined token
in order to insure compatibility with future versions of the standard.

Clients requesting metadata in XML format MUST ignore any < > or < > elements that they do not understand.EXTENSION PROPRIETARY

Figure 11.2 - Metadata Structure

NOTE:

RETS 1.8.0 requires all server responses to be well-formed XML, and additionally requires GetMetadata responses to be valid XML.
In addition, RETS requires that clients parse server responses as XML, not as simple text streams. The response formats shown
here are normative with respect to content, but not normative with respect to form. That is, servers are free to produce response
XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML Recommendation 1.0,

, for full information on XML.Third Edition

11.1.3 Metadata Retrieval Hierarchy

The ID argument in the GetMetadata transaction reflects the metadata hierarchy as shown in Figure 11.1. For any metadata element, the ID
argument is a list of the names of the parent elements for the desired element, separated by colons. For example, to retrieve the EditMask table
for a given named Resource, the argument is simply the ResourceID:

Type: METADATA-EDITMASK

ID Property

where is the of one of the Resources listed in the Metadata-Resource table.Property ID

Since Tables are children of Classes, which are in turn children of Properties, the ID parameter contains both parents:

Type METADATA-TABLE

ID Property : Res

where is a class listed in the Metadata-Class table under the resource .Res Property

Note: RETS1.9.0: An Approved RCP is Related to this Section
Section 11.1.1 is related to the following approved RCP(s):

RCP 110 - Deprecate and Replace GetPayloadList
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

Note: RETS1.8.0: An Approved RCP is Related to this Section
Section 11.1.2 is related to the following approved RCP(s):

RCP 87 RETS 1.7.2 Errata Document
Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+110+-++Deprecate+and+Replace+GetPayloadList
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 72 of 232

11.1.4 Metadata Format

Compliant RETS servers MUST supply metadata in both formats: COMPACT, described below and valid according to the RETS Metadata
Content XML Schema rets-metadata-compact-1_8_0.xsd, and XML, valid according to the RETS XML Metadata Schemas
rets-metadata-xmlcontent-1_7_2.xsd and rets-metadata-xmlresponse-1_7_2.xsd. See for additional information.Appendix A

The COMPACT metadata format consists of a sequence of segments with identical structure, except for System-level metadata, which has its
own structure. The general structure for non-System metadata is a tab-delimited table, XML-encapsulated with the header record contained within
a element, and each successive row contained within a element.:<COLUMNS> <DATA>

 < >METADATA-HEADER header-attributes
 <COLUMNS>fieldname *()fieldname </COLUMNS>

 *(<DATA>fielddata *()fielddata)</DATA>
</ >METADATA-HEADER

METADATA-HEADER is the header name for the segment, given with the description of each type of metadata, as are the aheader-attributes
ssociated with each header. Each is the name of one of the metadata fields given below. Each value corresponds to thefieldname fielddata
similarly-positioned , first to first, second to second and so on.fieldname

11.1.5 Metadata StandardNames

In order to support alternate or changing standard names, the server MAY support the optional StandardNames argument for the GetMetadata
transaction. This argument declares the name space of the Standard Names shown in the RETS metadata. The server MUST not change other
metadata when supporting this parameter. Such that a client requesting ‘StandardNames=Standard-XML: RETS- 20080829.dtd’ will receive
metadata containing Standard Names from the Standard-XML RETS-20080829.dtd version of the data standard. The following table defines the
representation of the StandardNames argument in BNF form.

StandardNames ::= STANDARD-XML | payload-name “:” version

payload-name ::= RETSNAME

version ::= dtd-version | 1*64PLAINTEXT

Example cases:

If the StandardNames argument is not submitted or empty then return standard names from the default STANDRD-XML format in the
StandardName metadata.

If StandardNames=STANDARD-XML is submitted then return standard names from the default STANDRD-XML format in the StandardName
metadata.

If StandardNames=STANDARD-XML: RETS-20080829.dtd is submitted then return standard names defined by the default STANDRD-XML
format in the StandardName metadata.

If StandardNames= DataDictionary:1.0 is submitted then return standard names defined by the DataDictionary 1.0 payload format in the
StandardName metadata.

11.2 System-Level Metadata

Clients can determine the number and type of searchable and updateable entities by referencing the Resources. A server MUST advertise its
resources. It MAY advertise all of its available resources or MAY restrict the advertised list by logon or other criteria. A server's advertisement of a
resource does not require that the server be able to accommodate any arbitrary search for that user; the server MAY restrict access to resources
that it advertises. If the server supports multimedia objects then it MUST advertise the supported types.

All resources that can be searched or updated are defined in the metadata described in this section. There are three parts to the metadata. The
first part provides system information and describes the available resources, the second part describes the class specific metadata for a resource,
and the third part describes the shared metadata for a resource.

11.2.1 System

The System metadata starts with a tag with Version and Date attributes. This tag is followed by a section,<METADATA-SYSTEM> <SYSTEM>

Note: RETS1.8.0: An Approved RCP is Related to this Section
Section 11.1.5 is related to the following approved RCP(s):

RCP 100 Alternate Standard Names

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP
and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rcpcenter/RCP+100+-++Alternate+Standard+Names

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 73 of 232

which contains the system identification information and time offset. An optional section completes the System metadata. The<COMMENTS>
System metadata has the following format:

 <METADATA-SYSTEM Version="rets-version-type" Date="system-date" >
 - - <SYSTEM SystemID="code-name" SystemDescription="long-name"

 [TimeZoneOffset="time-zone-offset"][MetadataID="metadata-id"]/>
 [<COMMENTS>

 *()comment
]</COMMENTS>

</METADATA-SYSTEM>

system-date ::= retsdatetime

code-name ::= 1*128IDALPHANUM

long-name ::= 1*128PLAINTEXT

time-zone-offset ::= time-offset

metadata-id ::= 1*128IDALPHANUM

comments ::= TEXT

Table 11-1 MetadataSystem Compact Header Attributes

Attribute Content

Version This is the version of the System metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

COMPACT header tag: METADATA-SYSTEM

Table 11-2 System Compact Header Attributes

Attribute Content

SystemId An identifier for the system

SystemDescription An implementation defined description of the system

TimeZoneOffset The Time Zone Offset is the time offset of the server relative to UTC. The server MAY provide the TimeZoneOffset to
assist in correctly calculating date and time values for requests to this server. The format is defined in forSection 2.4
the atom time-offset. Any server that provides the TimeZoneOffset value in System Metadata MUST adhere to this
value when responding to requests. Client applications SHOULD use this value to calculate the correct date and time
criteria for requests.

MetadataID An optional identifier for caching role-based metadata. See Section 4.7.5

COMPACT header tag: SYSTEM

Table 11-3 Metadata: System Field

Field Name Content Type Description

COMMENTS TEXT Optional comments about the system. The context where the field contains characters may
require that those characters are escaped by other rules like entity encoding.

ResourceVersion resource-version The version of the set of Resource Metadata

ResourceDate resource-date The date of the version of the set of Resource Metadata

ForeignKeyVersion foreignkey-version The version of the set of ForeignKey Metadata

ForeignKeyDate foreignkey-date The date of the version of the set of ForeignKey Metadata

FilterVersion filter-version The version of the set of Filter Metadata

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 74 of 232

FilterDate filter-date The date of the version of the set of Filter Metadata

 resource-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

resource-date ::= RETSDATETIME

 foreignkey-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

foreignkey-date ::= RETSDATETIME

 filter-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

filter-date ::= RETSDATETIME

11.2.2 Resources

RETS does not require that any particular type of data be made available by a server. However, a server MUST use a standard well-known name
under which to make its data available if a suitable well-known name is defined in the standard. Table 11-4 contains the list of well-known
resource names.

Table 11-4 Well-Known Resource Names

Resource
Name

Purpose

ActiveAgent A resource that contains information about active agents. These are agents that are currently authorized to access the server
(paid-up, not retired, etc.)

Agent A resource that contains information about agents.

History A resource that contains information about the accumulated changes to each listing.

Office A resource that contains information about broker offices.

OpenHouse A resource that contains information about open-house activities.

Property A resource that contains information about listed properties. Information in this resource is described by Real Estate
Transaction XML DTD in addition to appropriate metadata.

Prospect A resource that contains information about sales or listing prospects.

Tax A resource that contains tax assessor information.

Tour A resource that contains information about tour activities.

Resource Metadata Content

Table 11-5 Resource Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Resource metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Note: An Approved RCP is Related to this Section
Section 11.2.1 is related to the following approved RCP(s):

RETS 1.7.2:

RCP 71 Time Zone Data

RETS 1.8.0

RCP 70 Metadata Role Support
RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data
http://members.reso.org/display/RCP/RCP+70+-+Metadata+Role+Support
http://members.reso.org/display/RCP/RCP+98+-+Additional+Information+Fields+in+METADATA-SYSTEM+and+Login

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 75 of 232

COMPACT header tag: METADATA-RESOURCE

Table 11-6 Metadata: Resource Description Fields

Field Name Content Type Description

ResourceID RETSID The name which acts as a unique ID for this resource.

StandardName 1*64ALPHANUM The name of the resource. This must be a well-known name if applicable.

VisibleName 1*64PLAINTEXT The user-visible name of the resource.

Description 1*64PLAINTEXT A user-visible description of the resource.

KeyField RETSNAME The (see) of the field that provides a unique SystemName 11.3.2 ResourceK
 for each element in this resource. All classes within a resource must useey

the same .KeyField

ClassCount POSITIVENUM The number of classes in this resource. There MUST be ClassCount
 descriptions for the resource. There MUST be at least oneMETADATA_CLASS

Class for each Resource.

ClassVersion rets-version-type The latest version of the Class metadata for this Resource. The version
number is advisory only.

ClassDate RETSDATETIME The date on which the Class metadata for this Resource was last changed.
Clients MAY rely on this date for cache management.

ObjectVersion rets-version-type The version of the Object metadata for this Resource. The version number is
advisory only. A blank version indicates no Object metadata is available for
this Resource.

ObjectDate RETSDATETIME The date on which the Object metadata for this Resource was last changed.
Clients MAY rely on this date for cache management. A blank date indicates
no Object metadata is available for this Resource.

SearchHelpVersion rets-version-type The version of the SearchHelp metadata for this Resource. The version
number is advisory only. A blank version indicates no SearchHelp is available
for this Resource.

SearchHelpDate RETSDATETIME The date on which the SearchHelp metadata for this Resource was last
changed. Clients MAY rely on this date for cache management. A blank date
indicates no SearchHelp is available for this Resource.

EditMaskVersion rets-version-type The version of the EditMask metadata for this Resource. The version number
is advisory only. A blank version indicates no EditMask is available for this
Resource.

EditMaskDate RETSDATETIME The date on which the EditMask metadata for this Resource was last changed.
Clients MAY rely on this date for cache management. A blank date indicates
no EditMask is available for this Resource.

LookupVersion rets-version-type The version of the Lookup metadata for this Resource. The version number is
advisory only. A blank version indicates no Lookup is available for this
Resource.

LookupDate RETSDATETIME The date on which the Lookup metadata for this Resource was last changed.
Clients MAY rely on this date for cache management. A blank date indicates
no Lookup is available for this Resource.

UpdateHelpVersion rets-version-type The version of the UpdateHelp metadata for this Resource. The version
number is advisory only. A blank version indicates no UpdateHelp is available
for this Resource.

UpdateHelpDate RETSDATETIME The date on which the UpdateHelp metadata for this Resource was last
changed. Clients MAY rely on this date for cache management. A blank date
indicates no UpdateHelp is available for this Resource.

ValidationExpressionVersion rets-version-type The version of the ValidationExpression metadata for this Resource. The
version number is advisory only. A blank version indicates no
ValidationExpression is available for this Resource.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 76 of 232

ValidationExpressionDate RETSDATETIME The date on which the ValidationExpression metadata for this Resource was
last changed. Clients MAY rely on this date for cache management. A blank
date indicates no ValidationExpression is available for this Resource.

ValidationLookupVersion rets-version-type The version of the ValidationLookup metadata for this Resource. The version
number is advisory only. A blank version indicates no ValidationLookup is
available for this Resource.

ValidationLookupDate RETSDATETIME The date on which the ValidationLookup metadata for this Resource was last
changed. Clients MAY rely on this date for cache management. A blank date
indicates no ValidationLookup is available for this Resource.

ValidationExternalVersion rets-version-type The version of the ValidationExternal metadata for this Resource. The version
number is advisory only. A blank version indicates no ValidationExternal is
available for this Resource.

ValidationExternalDate RETSDATETIME The date on which the ValidationExternal metadata for this Resource was last
changed. Clients MAY rely on this date for cache management. A blank date
indicates no ValidationExternal is available for this Resource.

11.2.3 Foreign Keys

The ForeignKeys metadata table allows a server to advertise relationships among its offered resources. A RETS client MAY use this information
to provide a richer display of related information. The ForeignKeys metadata consists of tuples containing a parent resource type, a child resource
type, and the foreign keys used to traverse the relation.

The nesting of foreign keys MUST be such that recursive searches are NOT REQUIRED to obtain data for well-known fields as defined in the
RETS DTD. However, nesting of foreign keys is allowed except in these cases.

ForeignKeys Metadata Content

COMPACT header tag: METADATA-FOREIGN_KEYS

Table 11-7 ForeignKeys Metadata Compact Header Attributes

Attribute Content

Version This is the version of the ForeignKeys metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Table 11-8 Metadata Content: Foreign Keys

Metadata Field Content
Type

Description

ForeignKeyID RETSID A Unique ID that represents the foreign key combination.

ParentResourceID RETSID The (Table 11-6) of the resource for which this field functions as a foreign key. TheResourceID
name given MUST appear in the table..METADATA-RESOURCE

ParentClassID RETSID The name of the resource class for which this field functions as a foreign key. This name MUST
appear in the table for the given .RESOURCE-CLASS ParentResourceID

Note: An Approved RCP is Related to this Section
Section 11.2.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 77 of 232

ParentSystemName RETSNAME The SystemName of the field in the given resource class that should be searched for the value
given in the this field. This name must appear as a in the sectioSystemName METADATA-TABLE
n of the metadata for the , and the named item must have its SearchableParentClassID
attribute set to .true

ChildResourceID RETSID The (Table 11-6) of the resource for which this field functions as a foreign key. TheResourceID
name given MUST appear in the table.METADATA-RESOURCE

ChildClassID RETSID The name of the resource class for which this field functions as a foreign key. This name MUST
appear in the table for the given .RESOURCE-CLASS ChildResourceID

ChildSystemName RETSNAME The SystemName of the field in the given resource class that should be searched for the value
given in this field. This name must appear as a SystemName in the section ofMETADATA-TABLE
the metadata for the ChildClassID, and the named item must have its Searchable attribute set to

.true

ConditionalParentField RETSNAME The SystemName of a field in the parent's that should be examined toMETADATA-TABLE
determine whether this parent-child relationship should be used. If this is blank, the relationship is
unconditional. If is present and nonblank, then ConditionalParentField ConditionalPare

 MUST be present and nonblank.ntValue

ConditionalParentValue RETSNAME The value of the field designated by indicating that this relationConditionalParentField
should be used. If the type of the field named in is numeric, thenConditionalParentField
this value is converted to numeric type before comparison. If the type of the field named in Condi

 is character, then the shorter of the two values is padded with blanks andtionalParentField
the comparison made for equal length. If is present and nonblank,ConditionalParentField
then MUST be present and nonblank.ConditionalParentValue

OneToManyFlag BOOLEAN A truth value that indicated if the foreign key will return multiple rows if queried from the source to
the destination.

11.2.4 Filter

Filters and FilterType values describe a parent-child relation between Lookups by specifying which values in the Child lookup are legal based on
the value in Parent lookup. If filtered lookups are used in the Table metadata (meaning the LookupName and FilterParentField metadata items are
not empty), the server MUST guarantee that the values in the child field will not fall outside the set specified by the filter based on the value in the
parent field. The client SHOULD use the filter information when checking values for the Update Transaction. The client MAY use the filter
information when providing values for the Search Transaction. The LookupFilter argument in GetMetadata can also be used to limit the amount of
metadata information sent by the server.

An example of using Filter and FilterType is to consider a system that has two fields called State and City that are lookup values. The field State
contains lookup rows that describe the 5 states of the United States of America that this system is deployed and the City field contains lookup
rows that describe 500 cities that are a subset of all the cities in the United States of America in these 5 states. Without filters, the City lookup will
be 500 entries long. With filters, the lookup of City can be limited based on State to shorter lists.

Table 11-8 Filter Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Filter metadata. The convention used is a "< >.< >.< >" numbering scheme. Every timemajor minor release
any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

COMPACT header tag: METADATA-FILTER

Table 11-9 Metadata: Filter Description Fields

Note: An Approved RCP is Related to this Section
Section 11.2.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 78 of 232

Field Name Content
Type

Description

FilterID RETSID The name which acts as a unique ID for this filter.

ParentResource RETSID ResourceID of the parent lookup.

ParentLookupName RETSNAME LookupName of the parent lookup.

ChildResource RETSID ResourceID of the child lookup.

ChildLookupName RETSNAME LookupName of the child lookup.

NotShownByDefault BOOLEAN If true the server will by default not include the FilterValue data of this filter in any metadata request,
unless specifically asked to using the LookupFilter argument in GetMetadata.

11.2.5 Filter Type

Table 11-10 Filter Type Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Filter Type metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Filter The FilterID of the parent entry that this child entry belongs.METADATA-FILTER

COMPACT header tag: METADATA-FILTER_TYPE

Table 11-11 Metadata: Filter Description Fields

Field Name Content Type Description

FilterTypeID RETSID The name which acts as a unique ID for this filter type.

ParentValue 1*128PLAINTEXT The LookupType Value field for the LookupType in the parent lookup.

ChildValue 1*128PLAINTEXT The LookupType Value field for the LookupType in the child lookup.

11.2.6 Payloads

Table 11-63 Payload Type Metadata Compact Header Attributes

Attribute Content

Note: An Approved RCP is Related to this Section
Section 11.2.4 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 11.2.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 79 of 232

Version This is the version of the Payloads metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

COMPACT header tag: METADATA-PAYLOAD

Table 11-64 Metadata: Payload Description Fields

Field Name Content Type Description

ResourceID RETSID The Resource ID of the resource for this payload.

ClassName RETSNAME The Class ID of the class for this payload.

PayloadID RETSID Payload.A Unique ID that represents the

PayloadName RETSNAME Name of the payload.

Version dtd-version |
1*64PLAINTEXT

A string representing the version of the data in the payload. If the payload name is "STANDARD-XML"
the version MUST be in std-version format described in Section 7.5 - Search Response Body Format.

URI URI A valid location for an XML-Schema defining the payload format.

Description 1*256PLAINTEXT The LookupType Value field for the LookupType in the child lookup.

11.3 Metadata Format for Class Elements

Resources and Classes that can be searched have metadata that describes fields for specific combinations of Resource and Class and are
defined in this section.

11.3.1 Class
11.3.2 Table
11.3.3 Update
11.3.4 Update Type
11.3.5 Child Action

11.3.1 Class

A given data resource may contain multiple classes of entries that can be searched or updated separately. The metadata for a resource
supporting searchable classes MUST contain a class description for each class supported.

Table 11-12a Well-Known Class Names

Resource Name Purpose

ActiveAgent A class that contains information about active agents. These are agents that are currently authorized to access the
server (paid-up, not retired, etc.)

Agent A class that contains information about agents.

History A class that contains information about the accumulated changes to each listing.

Office A class that contains information about broker offices.

OpenHouse A class that contains information about open-house activities.

Note: An Approved RCP is Related to this Section
Section 11.2.6 is related to the following approved RCP(s):

RETS 1.9.0

RCP 110 - Deprecate and Replace GetPayloadList

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+110+-++Deprecate+and+Replace+GetPayloadList

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 80 of 232

Prospect A class that contains information about sales or listing prospects.

Tax A class that contains tax assessor information.

Tour A class that contains information about tour activities.

ResidentialProperty A Class that contains information about single family properties. Information in this Class is described by Real
Estate Transaction XML Schema in addition to appropriate metadata.

LotsAndLand A Class that contains information about lots and land properties. Information in this Class is described by Real
Estate Transaction XML Schema in addition to appropriate metadata.

MultiFamily A Class that contains information about multi-family properties. Information in this Class is described by Real
Estate Transaction XML Schema in addition to appropriate metadata.

COMPACT header tag: METADATA-CLASS

Table 11-12 Class Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Class metadata. The convention used is a "< >.< >.< >" numbering scheme. Every timemajor minor release
any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource in which this class resides.

Table 11-13 Metadata Content: Resource Class

Metadata Field Content Type Description

ClassName RETSNAME The name which acts as a unique ID for the class.

StandardName 1*64PLAINTEXT The Well-Known Class names from Table 11-12a

VisibleName 1*64PLAINTEXT The user-visible name of the class.

Description 1*128PLAINTEXT A user-visible description of the class.

TableVersion rets-version-type The version of the Table metadata that describes this Class. The version number is advisory
only.

TableDate RETSDATETIME The date on which the Table metadata for this Class was last changed. Clients MAY rely on
this date for cache management.

UpdateVersion rets-version-type The latest version of any of the Update metadata for this Class. A blank version indicates no
Update is available for this Class. The version number is advisory only.

UpdateDate RETSDATETIME The date on which any of the Update metadata for this Class was last changed. Clients MAY
rely on this data for cache management. A blank date indicates no Update is available for this
Class.

ClassTimeStamp RETSNAME The that acts as theSystemName of the field in the METADATA-TABLE
last-change timestamp for this class.

DeletedFlagField RETSNAME The that indicates that theSystemName of the field in the METADATA-TABLE
record is logically deleted. If this element is specified, then MUST beDeletedFlagValue
specified as well.

DeletedFlagValue 1*32ALPHANUM The value of the field designated by indicating that a record has beenDeletedFlagField
logically deleted. If the type of the field named by is numeric, then thisDeletedFlagField
value is converted to a number before comparison. If the type of the field named by Deleted

 is character, then the shorter of the two values is padded with blanks and theFlagField
comparison made for equal length.

HasKeyIndex BOOLEAN When true, indicates that the Class supports the retrieval of key data for fields advertised in
the Table Metadata as InKeyIndex.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 81 of 232

OffsetSupport BOOLEAN When true, indicates that the server honor the Offset parameter when searching thisMUST
class. When false, indicates that the server does not support the Offset functionality for this
class.

11.3.2 Table

The following table lists the minimum acceptable content for server-supplied metadata used in describing a table.

COMPACT header tag: METADATA-TABLE

Table 11-14 Table Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Table metadata. The convention used is a "< >.< >.< >" numbering scheme. Every timemajor minor release
any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.

Class The ClassName for the class in which this table resides.

Table 11-15 Metadata Content - Tables

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this field remains
unchanged. In particular, it should be managed so as to allow the client to detect
changes to the .SystemName

SystemName RETSNAME The name of the field as it is known to the native server. The system name MUST be
unique within the Table.

StandardName RETSNAME The name of the field as it is known in the Real Estate Transaction XML DTD or XML
Schema designated by the StandardNames argument or the name of the field as it is
known in the RETS Standard-XML DTD.

LongName 1*256TEXT The name of the field as it is known to the user. This is a localizable, human-readable
string. Use of this field is implementation-defined; it is expected that clients will use this
value as a title for this datum when it appears on a report.

DBName 1*10ALPHANUM A short name that can be used as a database field name. This name may not start with
a number nor can it be an ANSI-SQL92 reserved word. This value can be used by a
client as the name of an internal database field, so servers should attempt to provide a
value for this field that is unique within the table.

ShortName 1*64TEXT An abbreviated field name that is also localizable and human-readable. Use of this
field is implementation-defined. It is expected that clients will use this field in
human-interface elements such as pick lists.

Note: Approved RCP are Related to this Section
Section 11.3.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 68 Search Has Key Index Support
RCP 75 Offset Availability in the Metadata
RCP 90 Deprecate CommonInterest Class Well-Known Name

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+68+-+Search+Has+Key+Index+Support
http://members.reso.org/display/RCP/RCP+75+-+Offset+Availability+in+the+Metadata
http://members.reso.org/display/RCP/RCP+90+-+Deprecate+CommonInterest+Class+Well-Known+Name

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 82 of 232

MaximumLength POSITIVENUM The maximum possible character length after all Transport layer encoding. Transport
layer encoding includes both HTTP and XML based encoding, but does not include
RETS Lookup Value to Lookup Long Value encoding.
See for a definition and examples of how a RETS server should calculateAppendix D
the MaximumLength.

DataType Boolean A truth-value, stored using and . That is 1 for true and 0 for false. TRUE FALSE

 Character An arbitrary sequence of printable characters.

 Date A date in format.full-date

 DateTime A date and time in format. RETSDATETIME

 Time A time in format. RETSTIME

 Tiny A signed numeric value that can be stored in no more than 8 bits.

 Small A signed numeric value that can be stored in no more than 16 bits.

 Int A signed numeric value that can be stored in no more than 32 bits.

 Long A signed numeric value that can be stored in no more than 64 bits.

 Decimal A decimal value that contains a decimal point (see Precision).

 Point Geospatial coordinates represented as a space-delimited pair of decimal numbers,
showing first the longitude then the latitude of a point on the Earth’s surface.

Precision OPTNONNEGATIVENUM The number of digits to the right of the decimal point when formatted. Applies to
Decimal fields only.

Searchable BOOLEAN When true, indicates that the field is searchable.

Interpretation Number An arbitrary number.

 Currency A number representing a currency value.

 Lookup A value that should be looked up in the Lookup Table. This is a single selection type
lookup (e.g.). STATUS
This interpretation is also valid for Boolean data types, in which case the LookupType
specified by the entry MUST contain exactly two elements, one with a LookupName V

 of 0, and the other with a of 1.alue Value

 LookupMulti A value that should be looked up in the Lookup Table. This is a multiple-selection type
lookup (e.g.) where the character strings representing each selection areFEATURES
separated by commas.The character strings MAY be quoted text following the rules for
Value of section 11.4.3 Lookup Type.

 Location A Point value representing the longitude and latitude of a point on the Earth’s surface.

 URI An arbitrary URI or URL that is fully qualified and that an application will be able to
successfully link to.

Alignment Left The value MAY be displayed left aligned.

 Right The value MAY be displayed right aligned.

 Center The value MAY be centered in its field when displayed.

http://members.reso.org/display/rets18/Appendix+D+-+Maximum+Field+Length+and+Display+Information
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.3LookupType

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 83 of 232

 Justify The value MAY be justified within its field when displayed.

UseSeparator BOOLEAN When true, indicates that the numeric value MAY be displayed with a thousands
separator.

EditMaskID RETSNAME *(","
RETSNAME)

For each the name of the EditMaskID containingRETSNAME, METADATA-EDITMASK
the edit mask expression for this field (see). Multiple masks areSection 11.4.5
permitted and are separated by commas.

LookupName RETSNAME The name of the containing the lookup data for this field (see METADATA-LOOKUP Sect
). Required if Interpretation is Lookup, LookupMulti, LookupBitstring orion 11.4.2

LookupBitmask.

MaxSelect Numeric This field is required if Interpretation is or LookupMulti, LookupBitstring Looku
. This value indicates the maximum number of entries that may be selectedpBitmask

in the lookup.

Units (Feet | Meters
|

SqFt | SqMeters
|

Acres | Hectares
)

Unit of measure.

Index BOOLEAN When true, indicates that this field is part of an index. The client MAY use this
information to help the user create faster queries.

Minimum Numeric The minimum value that may be stored in a field (applies to numeric fields only).

Maximum Numeric The maximum value that may be stored in a field (applies to numeric fields only).

Default serial The order that fields should appear in a default one-line search result. Fields that
should not appear in the default one-line format should have a value of 0, Fields that
should never be visible to the user should have a value of --1.

Required Numeric A non-zero value indicates the field is required when searching. This value should be
sequential starting with one. If multiple fields share the same value, then one of the
fields with the same value is required. (e.g. City = 1 & ZipCode = 1 implies that the
user is required to include either City or ZipCode in their query).

SearchHelpID RETSNAME The name of the entry in the table (see).METADATA-SEARCH_HELP Section 11.4.4

Unique BOOLEAN When true, indicates that this field is a unique identifier for the record that it is part of.

ModTimeStamp BOOLEAN When true, indicates that changes to this field update the class's fieClassTimeStamp
ld.

ForeignKeyName RETSID When nonblank, indicates that this field is normally populated via a foreign key. The
value is the from the table.ForeignKeyID METADATA-FOREIGN_KEYS

ForeignField RETSNAME The from the child record accessed via the specified foreign key.SystemName

KeyQuery[deprecated] BOOLEAN When true, indicates that this field may be included in a query that uses the optionKey
al argument.[deprecated]

KeySelect[deprecated] BOOLEAN When true, indicates that this field may be included in the list of a query thatSelect
uses the optional argument.[deprecated]Key

InKeyIndex BOOLEAN When true, indicates that this field may be included in the Select argument of a Search
to suppress normal Limit behavior following the rule described in Section 7.4.5

FilterParentField RETSNAME Specifies that values allowed in this field are limited by a Lookup filter, using the
contents of the field named here as ParentValue. FilterParentField may only be
specified with fields that have a LookupName, where the named Lookup has a
non-empty FilterID.

http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.5EditMask
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.2Lookup
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.2Lookup
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.4SearchHelp
http://members.reso.org/display/rets18/7.4+Optional+Request+Arguments#id-7.4OptionalRequestArguments-7.4.5Select

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 84 of 232

DefaultSearchOrder Numeric The order that fields should appear in a default search screen that is excuted in order
to give the user a list of existing records to select from. Fields that should not appear in
the default search screen should have a value of '0'. Fields that should never be visible
to the user should have a value of . '-1'

Case Applicable when the field has a data type of Character. A value that indicates that the
server will store the data with the specified case. This allows a client to automatically
convert data in these fields to the correct case.

 UPPER The data is stored on the server as upper case. A client should convert values in this
field to upper case for both searches and updates. Servers MUST perform a case
insensitive search.

 LOWER The data is stored on the server as lower case. A client should convert values in this
field to lower case for both searches and updates. Servers MUST perform a case
insensitive search.

 EXACT The data is stored on the server as entered by the user. The server MUST perform a
case sensitive search.

 MIXED The data is stored on the server as entered by the user. The server MUST perform a
case insensitive search.

11.3.3 Update

A given data resource may contain multiple classes of entries that can be updated separately. The metadata for a resource supporting updateable
classes MUST contain a Class Table description for each class supported.

COMPACT header tag: METADATA-UPDATE

Table 11-16 Update Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Update metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource to which this metadata table applies.

Class The ClassName for the class to which this metadata table applies.

Table 11-17 Metadata Content - Update

Metadata Field Content Type Description

Note: Approved change proposals are related to this Section
Section 11.3.2 is related to the following approved RCP(s):

RETS 1.7.2

RCP 71 Time Zone Data

RETS 1.8.0

RCP 60 Metadata Changes for Update
RCP 68 Search Has Key Index Support
RCP 77 Maximum Field Length
RCP 78 Specification Errata Changes
RCP 87 RETS 1.7.2 Errata Document
RCP 100 Alternate Standard Names

RETS1.9.0
RCP 103 - Geospatial Search

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+103+-+Geospatial+Search

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 85 of 232

MetadataEntryID RETSID A value that never changes so long as the semantic definition of this entry remains unchanged.

UpdateAction 1*24ALPHANUM This identifies the nature of the update, such as "add" or "modify". Some update types, such as
changes to a property record (e.g. "Sell", "Back on Market"), will imply a set of business rules
specific to the server. However, where possible, the following standard type names should be
used:

 Add Add a new record

 Clone Create a new record by copying an old record

 Change Change an existing record

 Delete Delete an existing record

 BeginUpdate MAY be requested before any other Update request to get the specified record's actual data and
to put a lock on the record. The server MAY lock the requested record until another Update for
that record is requested.

 CancelUpdate MUST be used after if no other update is requested on the locked record. It is notBeginUpdate
on a record that is not lockedan error to request CancelUpdate

 ShowLocks Request to show which records are currently locked by this user. The server MUST respond with
a column-tag showing the and in the format containing one lineKeyField Lock COMPACT-DATA
for each locked record. The indicates that number of seconds before the record lock willLock
expire.

Description 1*64PLAINTEXT A user visible description of the Update Type.

KeyField RETSNAME The SystemName (see) of the field that must be used to retrieve an existingSection 11.3.2
record for the update.

UpdateTypeVersion 1*2DIGITS .
 1*2DIGITS . 1

*5DIGITS

The latest version of this Update Type metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. The version number is advisory only.

UpdateTypeDate RETSDATETIME The date on which any of the content of this Update Type was last changed. Clients MAY rely on
this date for cache management.

RequiresBegin BOOLEAN If this value is (1), the action MUST be called before this update action.TRUE BeginUpdate

IsChildActionOnly BOOLEAN If this value is TRUE (1), the MUST be performed as a child (ChildRecord) of aUpdateAction
parent's .UpdateAction

The optional flag is used to indicate that this MUST be performed as a child of a parent's . If notIsChildActionOnly UpdateAction UpdateAction
specified or omitted, the default value of (0) is used. If then rows must exist in Child_Action metadata describing valid child actionsFALSE TRUE
and the client MUST submit this data in a ChildRecord parameter of a parent's .UpdateAction

11.3.4 Update Type

11.3.4 Update Type

A given Resource may contain multiple classes of entries that can be updated separately. Each of these classes may have different types of
updates that can be performed. There might be different test expressions or sequences. This section describes how each of those are specified.

COMPACT header tag: METDATA-UPDATE_TYPE

Note: An Approved RCP is Related to this Section
Section 11.3.3 is related to the following approved RCP(s):

RETS 1.8.0

RCP 101 - Child Rows Support

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/RCP/RCP+101+-++Child+Rows+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 86 of 232

Table 11-18 UpdateType Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Update Type metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the Resource that this metadata table applies.

Class The ClassName for the Class to which this metadata table applies.

Update The UpdateAction for the Update that this metadata table applies.

Table 11-19 Metadata Content - Update Type

Metadata Field Content
Type

Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged.

SystemName RETSNAME This is the SystemName of the field as defined in .Section 11.3.2

Sequence 1*5DIGIT Sequence number of the field, representing the order of entry

Attributes 1*(| | | 1 2 3 4
| | | [])5 6 7 ,

Multiple entries are separated by commas.

 1 Display Only - Field may not be changed.

 2 Required - Field may not be left blank.

 3 Autopop - Field is populated by the server.

 4 Interactive-Validate - When changed, the client can validate the field only by contacting the
server. All fields listed as "AdditionalField" MUST also be passed.

 5 Clear On Cloning - Field SHOULD be cleared when the containing record is cloned.

 6 Autopop Required - Field is mandatory when calling the Update transaction for Auto-population
(validate-flag=1).

 7 Hidden - Field may be used in ValidationExpression, but is to remain hidden from the user.

Default <PLAINTEXT
>

Default value of field (i.e. value if not specified by user)

ValidationExpressionID (RETSNAME
*(","
RETSNAME)

<multiple entries are separated by commas>
The names of the ValidationExpressions to use. See section 11.4.9

UpdateHelpID RETSNAME The name of the entry in the table (see).METADATA-UPDATE_HELP Section 11.4.6

ValidationLookupName d
eprecated

RETSNAME deprecated - The name of the ValidationLookup to use. See section 11.4.7

ValidationExternalName RETSNAME The name of the ValidationExternal to use. See section 11.4.10

MaxUpdate 1*5DIGIT For LookupMulti fields, the maximum number of values that may be specified for the field. This
value has no meaning for fields with any other interpretation.

SearchResultOrder Numeric The order that fields should appear in a default one-liner search result that is executed in order
to give the user a list of existing records to select from for updating. Fields that should not
appear in the default one-line format should have a value of "0". Fields that should never be
visible to the user should have a value of "-1".

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.9ValidationExpression
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.6UpdateHelp
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.7ValidationLookup
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.10ValidationExternal

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 87 of 232

SearchQueryOrder Numeric The order that fields should appear in a default search screen that is executed in order to give
the user a list of existing records to select from for updating. Fields that should not appear in
the default search screen should have a value of "0". Fields that should never be visible to the
user should have a value of "-1".

11.3.5 Child Action

11.3.5 Child Action

A given update action may have multiple permitted child actions. Child Actions describe actions that can be performed on related classes during
an update. The child class is designated by specifying the RETSID of the Foreign Key in the ForeignKeyID column and the child’s update action in
the Update column. All fields in this metadata table MUST contain values.

COMPACT header tag: METDATA-CHILD_ACTION

Table 11-63 Child Action Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Child Action metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the Resource that this metadata table applies.

Class The ClassName for the Class to which this metadata table applies.

Update The UpdateAction for the Update that this metadata table applies.

Table 11-64 Metadata Content - Child Action

Metadata Field Content Type Description

ChildActionID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged. It
identifies this child action for the containing parent record update action.

ForeignKeyID RETSNAME The ForeignKeyID (Table 11-8) that describes the relationship between the parent and child. The
ForeignKey metadata MUST have ParentResourceID and ParentClassID that match the Resource and
Class header attributes of this Child Action. The ChildResourceID and ChildClassID match the child's
resource and class of the child. The OneToManyFlag MUST be true.

Update 1*24ALPHANUM The UpdateAction of the child class.

Note: An Approved RCP is Related to this Section
Section 11.3.4 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction
RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 11.3.5 is related to the following approved RCP(s):

RETS 1.8.0

RCP 101 Child Rows Support

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction
http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/display/rcpcenter/RCP+101+-++Child+Rows+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 88 of 232

11.4 Metadata Format for Shared Elements

Shared elements are metadata items that can apply to one or more Resource or Resource/Class types. They include Lookup values and help
files.

11.4.1 Object
11.4.2 Lookup
11.4.3 Lookup Type
11.4.4 Search Help
11.4.5 Edit Mask
11.4.6 Update Help
11.4.7 Validation Expression

11.4.7.1 Validation Expression Types and Data Types
11.4.7.2 Validation Expression BNF Representation
11.4.7.3 Validation Expression Special Operand Tokens
11.4.7.4 Validation Expression Functions and Operators

11.4.8 Validation External
11.4.9 Validation External Type

11.4.1 Object

Object type names allow the operator of a particular server to advertise its supported multimedia types. These types are standard MIME types as
registered with IANA. RETS does not require that a server make available any particular type of multimedia object. However, a server MUST use
a standard well-known name under which to make its multimedia objects available, if a suitable well-known name is defined in the standard.
Multimedia names are defined in Table 11-17.

COMPACT header tag: METDATA-OBJECT

Table 11-20 Well-known Object Types

Object Name Purpose

Photo A representation image related to the element defined by the Resource KeyField.

Plat An image of the property boundaries related to the element defined by the Resource KeyField

Video A moving image with or without sound related to the element defined by the Resource KeyField.

Audio A sound clip related to the element defined by the Resource KeyField.

Thumbnail A lower-resolution image related to the element defined by the Resource KeyField.

Map A location image related to the element defined by the Resource KeyField.

VRImage A multiple-view, possibly-interactive image related to the element defined by the Resource KeyField.

Table 11-21 Object Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Object metadata. The convention used is a "< >.< >.< >" numbering scheme. Every timemajor minor release
any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata.This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the Resource to which this metadata table applies.

Table 11-22 Metadata Content: Resource Object

Metadata Field Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this field remains
unchanged.

ObjectType 1*24ALPHANUM The classification of the Object. If one of the well-known Object types in Table 11-20
applies, then it MUST be used.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 89 of 232

MIMEType A comma
separated list of
MIME
type/subtype per
RFC 2045

The mime-type/subtypes of the Object type. This is the collection of Object media encodings
available for the Objects on this system. Objects may have one or more mime-type of those
listed in this field. This list is the mime-types that can be passed by the client in the "Accept"
parameter in the GetObject transaction. All Objects can return a mime-type of text/xml as an
error code/error reply when a fault occurs in the GetObject transaction. See .Section 5.1

VisibleName 1*64PLAINTEXT The user-visible name of the Object type.

Description 1*128PLAINTEXT A user-visible description of the Object type.

ObjectTimeStamp RETSNAME The that acts as the timestampSystemName of the field in a METADATA-TABLE
for Objects of this type. This MUST be one that appears in every class thatSystemName
has Objects of this type.

ObjectCount RETSNAME The of the field in a that acts as the count for Objects ofSystemName METADATA-TABLE
this type. This MUST be one that appears in every class that has Objects ofSystemName
this type.

LocationAvailability BOOLEAN When true, indicates that the server honor the Location=1 parameter for Objects MUST all o
. When false, indicates that the server does not support the Location=1f this type

functionality.

PostSupport BOOLEAN When true, indicates that the server will honor the PostObject Transaction for this Object.
When false, indicates that the server does not support the PostObject Transaction
functionality for this Object.

ObjectData RETSID : RETSNA
ME

The and identifying a that provides additionalResourceID ClassName METADATA-TABLE
data about Objects described by this metadata. If an Object contains no additional data, this
field MUST be empty.

MaxFileSize POSITIVENUM Indicates the maximum file size, in bytes, that is accepted by the server for Objects. The
server MAY refuse any Object files in the PostObject Transaction that are larger than this
size. A server MUST return an error when the file is rejected because it is too large. A server
MAY return an http error code if an Object file bigger than this size is received. A server
MAY return a RETS ReplyCode if an Object file bigger than this size is received. If a server
does not have a maximum file size, this field MUST be empty.

11.4.2 Lookup

This section describes the lookup tables that are referenced by the LookupName in the Table section. There MUST be a corresponding lookup
table for every "LookupName".

COMPACT header tag: METADATA-LOOKUP

Table 11-24 Lookup Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Lookup metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource in which this table resides.

Table 11-25 Metadata Content: Lookup

Note: An Approved RCP is Related to this Section
Section 11.4.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 63 Object Data and Upload
RCP 74 Location Availability in Object Metadata
RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/5.1+Required+Client+Request+Header+Fields
http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload
http://members.reso.org/display/RCP/RCP+74+-+Location+Availability+in+Object+Metadata
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 90 of 232

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged.

LookupName RETSNAME The name of Lookup Table. There MUST be an entry for each LookupName value used in the
Table metadata.

VisibleName 1*64PLAINTEXT A description of the table that is human-readable.

LookupTypeVersion 1*2DIGITS .
 1*2DIGITS .

1*5DIGITS

The latest version of this Lookup Table metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. The version number is advisory only.

LookupTypeDate RETSDATETIME The date on which any of the content of this Lookup was last changed. Clients MAY rely on this
date for cache management.

FilterID RETSID The FilterID of an existing filter. If present, the range of valid LookupType values n this lookup is
limited by the value of a parent lookup.

NotShownByDefault BOOLEAN If true, the server will, by default, not include the LookupType data of this lookup in any metadata
request unless specifically asked to, using the LookupFilter argument in the GetMetadata
Transaction. This field MUST be set to false (or empty) unless a FilterID is non-empty.

11.4.3 Lookup Type

This section describes the content of a lookup table that is referenced by the LookupName in the Table section. There MUST be a corresponding
lookup table for every "Lookup" and "LookupMulti".

COMPACT header tag: METADATA-LOOKUP_TYPE

Table 11-26 Lookup Type Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Lookup Type metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The for the resource in which this table resides.ResourceID

Lookup The for the class in which this table resides.LookupName

Table 11-27 Metadata Content: Lookup Type

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes so long as the semantic definition of this entry remains unchanged. In
particular, it should be managed so as to allow the client to detect changes to the .Value

LongValue 1*128PLAINTEXT The value of the field as it is known to the user. This is a localizable, human-readable string. Use of
this field is implementation-defined; expected uses include displays on reports and other
presentation contexts. This is the value that is returned for a COMPACT-DECODED or
STANDARD-XML format request.

ShortValue 1*128PLAINTEXT An abbreviated field value that is also localizable and human-readable. Use of this field is
implementation-defined; expected uses include picklist values and other human interface elements.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update
RCP 78 Specification Errata Changes
RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/display/RCP/RCP+78+Specification+Errata+Changes
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 91 of 232

Value 1*128PLAINTEXT The value to be sent to the server when performing a search. This is the value that is returned for a
COMPACT format request.

StandardValue 1*128PLAINTEXT The value of the field as it is known in the RESO Data Dictionary.

This value SHOULD be used for a COMPACT-DECODED or STANDARD-XML format
response when StandardName=1 is used in the RETS Query. If this value is empty, then the
LongValue MAY be used in the response.

 If the system does not support the Data Dictionary, the StandardValue will be the empty string.

The following paragraphs describe the behaviour where the system supports the Data Dictionary.

If the LOOKUP is not in the Data Dictionary, the StandardValue will be the empty string.

If the LOOKUP is in the Data Dictionary, if the LOOKUP_TYPE is not in the Data Dictionary,
the StandardValue will be the empty string.

If the LOOKUP and the LOOKUP_TYPE are in the Data Dictionary, the StandardValue will match
that of the Data Dictionary.

A special case exists where the LOOKUP as defined in the Data Dictionary has a 'closed'
enumeration. That is, all values of the enumeration are defined in the Data Dictionary and no
additional values are permitted. In this case, if the LOOKUP is in the RESO Data Dictionary,
the StandardValue MUST match a value in the Data Dictionary and CANNOT be empty. Please
consult the appropriate Data Dictionary version to determine the set of 'closed' enumerations.

In a search response, the values of a LookupMulti field may include comma and other special characters. Values of a LookupMulti MAY be
quoted as string-literal, as defined in Section 7.7.1. Values of a LookupMulti MUST be quoted as string-literal when they contain commas or other
special characters.

11.4.4 Search Help

This section describes the Search Help text tables that are referenced in the Table section. There MUST be a corresponding table entry for each
Search HelpTextID referenced in the .METADATA-TABLE

COMPACT header tag: METADATA-SEARCH_HELP

Table 11-28 Search Help Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Search Help metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The for the resource to which this metadata table applies.ResourceID

Note: An Approved RCP is related to this section

Section 11.4.3 is related to the following approved RCP(s):

RETS 1.7.2

RCP 66 Deprecate Lookup Types LookupBitmask and LookupBitstring
RCP 72 LookupType String Length

RETS 1.8.0

RCP 69 LookupType Value
RCP 72 LookupType String Length
RCP 82 LookupMulti Quoting Rule

RETS 1.9.0

RCP 104 StandardValue for Enumerations

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rcpcenter/RCP+66+Deprecate+Lookup+Bitmask%2C+LookupBitstring
http://members.reso.org/display/RCP/RCP+72+LookupType+String+Length
http://members.reso.org/display/RCP/RCP+69+-+LookupType+Value
http://members.reso.org/display/RCP/RCP+72+LookupType+String+Length
http://members.reso.org/display/RCP/RCP+82+-+LookupMulti+Quoting+Rule
http://members.reso.org/display/RCP/RCP+104+-++StandardValue+for+Enumerations

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 92 of 232

Table 11-29 Metadata Content: Search Help

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes so long as the semantic definition of this entry remains unchanged.

SearchHelpID RETSNAME A unique ID for the help text. This ID is referenced as the SearchHelpID in section 11.3.2

Value 1*1024TEXT The value to be displayed to the user.

11.4.5 Edit Mask

This section describes the Edit Mask table that is referenced in the Table section. There MUST be a corresponding table entry for each Search Ed
 referenced in the .itMaskID METADATA-TABLE

A Regular Expression is used to define the edit mask. Table 11-28 describes te structures that make up RETS regular expressions.

COMPACT header tag: METADATA-EDITMASK

Table 11-33 EditMask Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Edit Mask metadata. The convention used is a "< >.< >.< >" numbering scheme. Everymajor minor release
time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The for the resource to which this metadata table applies.ResourceID

Table 11-34 Metadata Content: Edit Mask

Field Name Content Type Description

MetadataEntryID RETSID A value that remains unchanged so long as the semantic definition of this field remains unchanged.

EditMaskID RETSNAME A unique ID for the Edit Mask. This ID is referenced as the EditMaskID in section 11.3.2

Value 1*256TEXT The Regular Expression to be used.

RETS Regular Expression Specification

RETS regular expressions are a subset of POSIX 1003.2 extended regular expressions [12], supporting the metacharacters in Table 11-28.
Table 11-35 RETS Regular Expression Metacharacters

Metacharacter Function

 (period). Matches any single character

* Matches zero or more of the preceding pattern

+ Matches one or more of the preceding pattern

? Matches zero or one of the preceding pattern

| Alternation: used between two subpatterns, matches either the one to its left or the one to its right.

 parentheses() Grouping: causes the enclosed pattern to be treated as atomic. Parentheses may not be nested; that is, only one level of
grouping is required.

[] (br{min ,max }
aces)

Quantifier: matches at least and at most of the preceding pattern, where and are both nonnegative integermin max min max
values. If is omitted, matches exactly of the preceding pattern.max min

 brackets[] Character class: matches any of the characters contained in the brackets. Except for the circumflex, described below, and
the closing bracket, characters within a character class are never treated as metacharacters.

 (circumflex)^ Used as the first character of a character class, reverses the sense of the character class; for example, [^0] matches any
character except a "0".

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 93 of 232

- Operates only within brackets. Except as the first or last character, denotes a range of characters on the default host
collating sequence. For example, [0-9] matches any digit. When - is the first or the last character, it is treated as a member of
the character class.

\
Escape: treats the following character as an ordinary character rather than a metacharacter. For example, * matches a single
asterisk. The \ character itself must be escaped. The escape character is not needed within character classes.

The following is a simple example:

[0-9]+[a-fA-F][1-8][A]?[0-9]{2}[A-C]{1,3}

One or more digits, followed by an upper or lower case letter A - F, followed by a digit 1 – 8, optionally followed by one letter A, followed by two
digits 0 – 9, followed by between one and three of the letters A – C.
A phone number example:

[0-9]{3}[0-9]{4}

11.4.6 Update Help

This section describes the Update Help Text tables that are referenced in the Update Type section of the document. There MUST be a
corresponding table entry for each Update Help Text ID referenced in any of the .METADATA-UPDATE_TYPEs

COMPACT header tag: METADATA-UPDATE_HELP

Table 11-36 Update Help Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Update Help metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource to which this metadata segment belongs.

Table 11-37 Metadata Content: Update Help

Field Name Content Type Description

MetadataEntryID RETSID A value that remains unchanged so long as the semantic definition of this entry remains unchanged.

UpdateHelpID RETSNAME A unique ID for the help text. This ID is referenced as the UpdateHelpID in .section 11.4.6

Value 1*1024TEXT The value to be displayed to the user.

11.4.7 Validation Expression

This section describes the ValidationExpression table that is referenced in . There MUST be a corresponding table entry for eachSection 11.3.4
ValidationExpressionID referenced in the set of for a Resource.METADATA-UPDATE_TYPE

The table contains expressions that are to be evaluated when a field value is entered by the user. Expressions in the list MUST be evaluated in
the order in which they appear in the list.

Note that the for an update (see table 11-17) has a specific purpose. If there is a validation expressions associated with that field, itKeyField
must be evaluated even if the field itself is not part of the update request (in ADD update). If the expression for this field evaluates as REJECT,
the whole record is rejected and the client SHOULD NOT send the Update request.

COMPACT header tag: METADATA-VALIDATION_EXPRESSION

Table 11-42 Validation Expression Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Validation Expression metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.6UpdateHelp
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.4UpdateType

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 94 of 232

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-43 Metadata Content: Validation Expression

Field Name Content Type Description

MetadataEntryID RETSID A value that remains unchanged so long as the semantic definition of this entry remains
unchanged.

ValidationExpressionID RETSNAME A unique ID for the ValidationExpression. This ID is referenced as the
ValidationExpression in .Section 11.3.4

ValidationExpressionType 1*32ALPHANUM A validation expression type from Table 11-44.

Value 1*512TEXT The test expression to be evaluated.

Message *1024TEXT Message to be shown to the user if a field is rejected, or a warning is issued as a result of
this validation expression.

IsCaseSensitive BOOLEAN If true, the string comparisons in the expressions are case sensitive.

11.4.7.1 Validation Expression Types and Data Types

There are several types of validation expressions, each introduced by a keyword preceding the expression:
Table 11-44 Validation Expression Types

Keyword Type Purpose

ACCEPT BOOLEAN If the expression is true, the field value is considered accepted without further testing. Immediately
following SET expressions MUST be executed. If the expression is false, following validation
expressions MUST be executed. If the expression is ERROR (evaluation failed) in client, the client
SHOULD act as if the field was accepted, allowing the server to make the final decision.

REJECT BOOLEAN If the expression is true, the field value is considered rejected without further testing. Subsequent SET
expressions MUST NOT be evaluated. If the expression is false, following validation expressions MUST
be executed. If the expression is ERROR, evaluation failed in client, the client SHOULD act as if the
field was accepted, allowing the server to make the final decision.

WARNING BOOLEAN If the expression is true, the client should show a warning message to the user, and if the warning is
okayed by the user, include a Warning-Response in the UPDATE request. If the user does not okay the
warning, the field is considered rejected and following SET validation expressions MUST NOT be
evaluated.
If the expression is false, the following validation expressions MUST be evaluated.

SET Assignment The expression MUST begin with a field name and an equal sign ("="). The following expression is
evaluated and the result stored in the designated field.

SET_DEFAULT The
appropriate
data type
of the
assigned
field

This expression MUST be executed ONLY when a NEW record is created. Supersedes the default
value as indicated in the Update Metadata.

SET_REQUIRED BOOLEAN Expressions of this type are designed to evaluate an expression and set the field that the rule is applied
on to Required if the expression returns true and to Non Required if the expression returns false.

SET_READ_ONLY BOOLEAN Expressions of this type are designed to evaluate an expression and set the field that the rule is being
applied on to Read Only if the expression returns true and to Updateable if the expression returns false.
The client application is expected to lock the value of the field the rule is being executed on to the value
at the time the expression is evaluated.SET_REQUIRED

RESTRICT_PICKLIST List ofCHAR Expressions of this type are designed to return one or more LOOKUP values that are to be removed
from the LOOKUP list that is defined for the field the rule is being executed on. This is always the entire
set of values to remove from the lookup. In other words, if this returns a blank list or .EMPTY., the
entire set of LOOKUP values is to be displayed. The value of this expression MUST be a <List>, rather
than <Exp>, as defined in 11.4.9.1. All members of the list MUST be of the same type as the type of the
field the rule is being executed on.

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.4UpdateType

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 95 of 232

SET_PICKLIST List ofCHAR Expressions of this type are designed to return one or more LOOKUP values that are to be used in the
LOOKUP list that is defined for the field the rule is being executed on. The value of this expression
MUST be a <List>, rather than <Exp>, as defined in 11.4.9.1. Every member of the list MUST exist in
the Lookup list as defined in the metadata for the field the rule is being executed on.

SET_DISPLAY BOOLEAN Expressions of this type are designed to allow a client to make fields visible or invisible based on the
evaluation of an expression. The result of this expression has no effect on whether a field is READ
ONLY or not.

Table 11-45 Validation Expression Data Types

Each validation expression has one of these data types:

CHAR Any String of ASCII characters

INT Any integer (tiny, small, int, long)

FLOAT decimal number with fraction part

TIME time, date, datetime.

BOOLEAN true or false, as defined in Section 2.4

LIST list of several values of the same type. The type of the values may be any of those above

EMPTY missing data (similar to NULL in database systems)

ERROR this is the type of an expression which cannot be parsed

11.4.7.2 Validation Expression BNF Representation

Literal entry is denoted by quotations around the term and the term and quotations will be in blue. The quotations are not part of the literal.

Exp ::= OrExp

OrExp :: = ()AndExp * ".OR." AndExp

AndExp :: = ()NotExp * ".AND." NotExp

NotExp :: = ".NOT." NotExp
| EqExp

EqExp :: = CmpExp
| CmpExp "=" CmpExp
| CmpExp "!=" CmpExp

CmpExp :: = CntExp
| CntExp "<=" CntExp
| CntExp "=>" CntExp
| CntExp "<" CntExp
| CntExp ">" CntExp

CntExp :: = SumExp
| SumExp ".CONTAINS." SumExp
| SumExp ".IN." List

SumExp :: = | ProdExp *(("+" "-" | Concat) ProdExp)

Note: An Approved RCP is Related to this Section
Section 11.4.9 is related to the following approved RCP(s):

RETS 1.8.0

RCP 65 Session information tokens
RCP 61 Validation Expression Replacement

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens
http://members.reso.org/display/RCP/RCP+61+-+Validation+Expression+Replacement

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 96 of 232

ProdExp :: = | AtomExp *(("*" "/" | ".MOD.") AtomExp)

AtomExp :: = LPAREN Exp RPAREN
| Value
| FuncExp

FuncExp :: = Func LPAREN Param *(Param) RPAREN

Func :: = ALPHA *(ALPHANUM)

Param :: = Exp

Value :: = SpecValue
| CharValue
| IntValue
| FloatValue
| TimeValue
| FieldName

Concat ::= "||"

FieldName ::= "["0*1 "LAST" RETSNAME "]"

SpecValue ::= DOT RETSNAME DOT
; spec value is further constrained - see table 11-46

CharValue ::= SQUOTE *PLAINTEXT SQUOTE
| QUOTE *PLAINTEXT QUOTE

TimeValue ::= "#" RETSDATETIME "#"

IntValue ::= |) 0*1("+" "-" 1*(DIGIT)

FloatValue ::= ()IntValue "." * DIGIT

LPAREN ::= ; ASCII left parenthesis character (%x28

RPAREN ::= ; ASCII right parenthesis character)%x29

SQUOTE ::= ; ASCII single quote character '%x27

QUOTE ::= ; ASCII double quote character "%x22

DOT ::= ; ASCII period character .%x2e

List ::= LPAREN Exp *(",")Exp RPAREN
| LPAREN RPAREN

The value of a Validation Expression MUST conform to the syntax in the grammar above, except for RESTRICT_PICKLIST andExp
SET_PICKLIST expressions, whose value MUST conform to the syntax. Any expression with keyword starting with “X-” MAY have a vList List
alue as well.

The text in must not include the (single or double) quote used to delimit the value.CharValue

TimeValue must be expressed in the form described in section 2.4, Atoms and Primitives. This is the ISO8601 format constrained for use by
RETS and is enclosed in hashmarks(#) (ex. #2007-09-11T14:30:00#).

A is a bracketed name of a field belonging to the same class as the field to which this expression is attached, and has a type of thatFieldName
field specified by the metadata. If used with the LAST keyword, its value is the value of the field as it was in the database before the current
updates took place. If used without LAST, the updated value of the field MUST be used."

A has TIME type.TimeValue
A has CHAR type.CharValue
A has INT type.IntValue
A has FLOAT type.FloatValue

The uses well-known names defined in the table Validation Expression Special Operand Tokens (table 11-39. See the table for validSpecValue
values. These values may change between versions of the standard.

11.4.7.3 Validation Expression Special Operand Tokens
Table 11-46 Validation Expression Special Operand Tokens (SpecValue)

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 97 of 232

Token Data Type Description

.EMPTY. EMPTY A value that matches an empty or all-blank field. Supplies an empty (zero-length) field when used in a SET
expression.

.TRUE. BOOLEAN Boolean value of TRUE (1)

.FALSE. BOOLEAN Boolean value of FALSE (0)

.TODAY. TIME The current date.

.NOW. TIME The current time.

.ENTRY. type of the
current
field

The current field text.

.OLDVALUE. type of the
current
field

The value that was in the field as returned from the host in the search operation. If the field is new, .OLDVA
 is LUE. .EMPTY.

.USERID. CHAR The value of the user-id field returned in the Login transaction ().Section 4.9

.USERCLASS. CHAR The value of the user-class field returned in the Login transaction ().Section 4.9

.USERLEVEL. CHAR The value of the user-level field returned in the Login transaction ().Section 4.9

.AGENTCODE. CHAR The value of the agent-code field returned in the Login transaction ().Section 4.9

.BROKERCODE. CHAR The value of the broker-code field returned in the Login transaction ().Section 4.9

.BROKERBRANCH. CHAR The value of the broker-branch field returned in the Login transaction ().Section 4.9

.UPDATEACTION. CHAR Name of the UpdateAction for which this validation is performed.

.any. (see
description)

If the name of the SpecValue (stripped of the first and last dot) is equal to a name of one of the
info-token-keys returned as part of the Login response, then the type and value of this SpecValue is defined
by that info-token-key. If no such info-token-key exists, the value is ERROR.

11.4.7.4 Validation Expression Functions and Operators

A Validation Expression may use Functions. We define <FuncExp> as a function with parameters. The following functions are defined:
Table 11-47 Validation Expression Functions

Function Parameter Types Type

BOOL BOOLEAN or CHAR BOOLEAN

CHAR Any, except for FLOAT CHAR

CHARF FLOAT, INT CHAR

TIME TIME or CHAR TIME

DATE TIME or CHAR TIME

INT INT or FLOAT or BOOL or CHAR INT

FLOAT INT or FLOAT or BOOL or CHAR FLOAT

Note: An Approved RCP is Related to this Section
Section 11.4.9 is related to the following approved RCP(s):

RETS 1.8.0

RCP 65 Session information tokens

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/rets18/4.9+Well-Known+Names
http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 98 of 232

SUBSTR CHAR,INT,INT CHAR

STRLEN CHAR INT

LOWER CHAR CHAR

UPPER CHAR CHAR

IIF BOOLEAN,any,any any

YEAR TIME INT

MONTH TIME INT

DAY TIME INT

WEEKDAY TIME INT

The BOOL, CHAR, TIME, DATE, INT and FLOAT functions are used just to change a type of expression. The DATE and TIME functions are
synonyms. Note that any of these functions may fail (return an ERROR value) if the parameter can not be transformed to the appropriate type.

In conversion from BOOLEAN to INT or FLOAT, .TRUE. is converted to 1 and .FALSE. is converted to 0. Casting FLOAT to INTEGER discards
the fractional part.

When converting to CHAR, BOOL values are represented as “0” and “1”, TIME values are represented using format defined in RFC 1123 with
digital timezone, INT values are represented with no leading zeroes.

When converting from CHAR to BOOL, values “0”,”1”,”YES”,”NO”,”TRUE” and “FALSE” (no matter what the case) MUST be understood.

When converting from CHAR to TIME, any RFC 1123 –compliant format MUST be understood. A leading and/or trailing # MUST be removed
before conversion.

When converting from CHAR to INT or FLOAT, usual formats MUST be understood. Scientific format (with exponent) MUST NOT be understood.
FLOAT numbers with empty integral part (.5, -.4) MUST be understood as long as there is at least one digit after the decimal point.

The CHARF function converts a Float number, and in the second parameter specifies how many decimal digits MUST appear after the point.

The SUBSTR function returns a substring of its first parameter. Second parameter is a starting position of the substring, third parameter is the
ending position of the substring. Positions are 1-based.

The STRLEN function returns the length if its parameter.

The UPPER function returns its parameter upper-cased.

The LOWER function returns its parameter lower-cased.

The IIF function return the value of its second parameter if the first parameter evaluates to true, or the value of its third parameter otherwise.
Types of second and third parameter must be same, and it is the type of the result.

The YEAR,MONTH,DAY and WEEKDAY parse the date part of TIME value. They return values ranging from 1 to the appropriate maximum.
WEEKDAY returns 1 for Sunday, 2 for Monday etc.

Other functions may be defined later (HOUR and MINUTE are first candidates). If a server uses a function the client does not recognize, the client
MUST evaluate it as ERROR.

A Validation Expression may have Operations applied to the parameters. The Operators may be applied on certain types that determine the result
type. The input types and resulting output type is defined in the Validation Expression Operators Table below.
Table 11-48 Validation Expression Operators

Operator Left
Operand

Right Operand Result Meaning

.MOD. INT INT INT Arithmetic MODULO operation

, */ INT INT INT Integer division and multiplication

, */ INT FLOAT FLOAT Division and multiplication

, */ FLOAT INT FLOAT Division and multiplication

, */ FLOAT FLOAT FLOAT Division and multiplication

,+ - INT INT INT Integer addition and subtraction.

,+ - INT FLOAT FLOAT Addition and subtraction.

,+ - FLOAT INT FLOAT Addition and subtraction.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 99 of 232

,+ - FLOAT FLOAT FLOAT Addition and subtraction.

+ FLOAT TIME TIME Time shift.

+ TIME FLOAT TIME Time shift.

- TIME FLOAT TIME Time shift.

- TIME TIME FLOAT Time shift.

|| CHAR CHAR CHAR String concatenation.

.CONTAINS. CHAR CHAR BOOLEAN String containment. The operation is TRUE if the left operand contains the
right operand as a substring anywhere within it.

.IN. Any List of operands, all of the same
type as the left operand

BOOLEAN List inclusion. The operation is TRUE if the left operand is equal to any
member of the list.

.AND. BOOLEAN BOOLEAN BOOLEAN A Boolean operator that takes two Boolean operands, and whose value is
TRUE if and only if both of its operands are TRUE.

.OR. BOOLEAN BOOLEAN BOOLEAN A Boolean operator that takes two Boolean operands, and whose value is
TRUE if either of its operands is TRUE.

.NOT. BOOLEAN BOOLEAN BOOLEAN A Boolean operator that takes a single Boolean operand and returns its
inverse.

, = != Any Same as left BOOLEAN Equality.

<,>,<=,>= INT,FLOAT INT,FLOAT BOOLEAN Numeric comparison.

 <,>,<=,>= TIME TIME BOOLEAN Date and time comparison

 <,>,<=,>= BOOLEAN BOOLEAN BOOLEAN Boolean comparison (TRUE > FALSE).

Arithmetic operations between dates use number of days as the FLOAT parameter (or result); e.g. 0.25 represents a time span of 6 hours.

String operations are case sensitive or not, based on the IsCaseSensitive field in the expression's metadata.

Any operation with an ERROR argument MUST evaluate to ERROR. An EMPTY value may be compared (=,!=) against any value.

Appropriate casting functions (BOOL, CHAR, TIME, INT, FLOAT) MUST be applied to the parameters. If a function or an operator is applied to a
datatype different than shown in the above tables, the expression MUST evaluate to ERROR.

11.4.8 Validation External

This section describes the Validation External tables that are referenced in the Update Type section of the document. There MUST be a
corresponding Validation External table for each one referenced in any of the for the Resource.METADATA-UPDATE_TYPEs

COMPACT header tag: METADATA-VALIDATION_EXTERNAL

Table 11-49 Validation External Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Validation External metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-50 Metadata Content: Validation External

Field Name Content Type Description

MetadataEntryID RETSID A value that remains unchanged so long as the semantic definition of this entry
remains unchanged.

ValidationExternalName RETSNAME The unique name of this Validation External. Each Name in the Update Type
ValidationExternalName field MUST have a definition.

SearchResource RETSNAME The of the Resource to be searched from .ResourceID 11.2.2

SearchClass RETSNAME The within the Resource to be searched from .ClassName 11.3.1

http://members.reso.org/display/rets18/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-11.2.2Resources
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.1Class

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 100 of 232

Version "."1*2DIGITS 1*2D
"."IGITS 1*5DIGIT

S

The latest version of this Validation External metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. The version number is advisory
only.

Date RETSDATETIME The date on which any of the content of this Validation External was last changed.
Clients MAY rely on this date for cache management.

11.4.9 Validation External Type

This section describes the content of the Validation External Type tables that are referenced in the Table section of the document. There MUST
be a corresponding Validation External Type table for each one referenced in the for the Resource.METADATA-UPDATE_TYPEs

The Validation External Type provides lists of search, display, and results fields. The Validation External may be used for several cases: 1) The
database involved is too large or dynamic to be provided as a standard lookup (e.g. Tax). 2) There are business rules that can only be enforced
on the server (e.g. expiration dates). 3) The content of a field populates fields from another database (e.g. , Sale_agent_name Sale_office_

 , from).name Sale_office_id Sale_agent_id

COMPACT header tag: METADATA-VALIDATION_EXTERNAL_TYPE

Table 11-51 Validation External Type Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Validation External Type metadata. The convention used is a "< >.< >.<major minor rele
>" numbering scheme. Every time any contained metadata element changes the version number MUST bease

increased.

Date The latest change date of any contained metadata. This MUST be in the format described in forchapter 2
RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

ValidationExternalName The to which this entry type applies.ValidationExternalName

Table 11-52 Metadata Content: Validation External Type

Field Name Content Type Description

MetadataEntryID RETSID A value that remains unchanged so long as the semantic definition of this entry remains
unchanged.

SearchField 1*512PLAINTEXT A comma separated list of valid fields using from .SystemName Section 11.3.2

DisplayField 1*512PLAINTEXT A comma separated list of valid fields using from .SystemName Section 11.3.2

ResultFields 1*1024PLAINTEXT A comma separated list of valid field pairs joined by = (equal) the first is a target field in the table
being updated and the second is a source field in the table being searched. The fields use a Syst

 from .emName Section 11.3.2

11.5 Metadata Format for Presentation Elements

Metadata Presentation elements may be used to build applications that use hints provided by the Server to display, group and organize the data.
11.5.1 Column Group Set
11.5.2 Column Group
11.5.3 Column Group Control
11.5.4 Column Group Table
11.5.5 Column Group Normalization

11.5.1 Column Group Set

This metadata defines a tree structure which should be used to render the data in any GUI system that is designed in order to satisfy the display
requirements of an MLS.

Table 11-53 Column Group Set Metadata Compact Header Attributes

Attribute Content

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 101 of 232

Version This is the version of the Column Group Set metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for .chapter 2 RETSDATETIME

Resource The ResourceID for the resource that this column group set belongs. The content is RETSID

Class The ClassID for the class that this column group set belongs. The content is RETSID

COMPACT header tag: METADATA-COLUMN_GROUP_SET

Table 11-54 Metadata Content: Column Group Set

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains
unchanged. In particular, it should be managed so as to allow the client to detect changes to
the ColumnGroupSetName.

ColumnGroupSetName RETSID The name that uniquely identifies this Column Group Set within the Class.

ColumnGroupSetParent RETSID The ColumnGroupSetName of the Parent Column Group Set. If not specified, this Column
Group Set is the top node in the tree.

Sequence 1*5DIGIT The sequence that this Column Group Set is to be displayed in within its parent group.

LongName RETSNAME The name of the Column Group Set as it is known to the user. This is a localizable,
human-readable string. Use of this field is implementation-defined; it is expected that clients
will use this value as a title for this Column Group Set when it appears on a report.

ShortName RETSNAME An abbreviated field name that is also localizable and human-readable. Use of this field is
implementation-defined; it is expected that clients will use this field in human-interface
elements such as lookups.

Description 1*256PLAINTEXT A brief description of the purpose for this Column Group Set.

ColumnGroupName RETSID The name of the Column Group that is to be displayed in this Column Group Set. If not
specified, this Column Group Set is to be treated as a node in the tree that displays no data.
The ColumnGroupName must exist in the Column Group metadata for this Class.

PresentationStyle 1*32PLAINTEXT One of the following values:

 Edit Basic Edit Block displayed in PresentationColumns number of columns.

 Matrix Expected to be displayed using Normalization Grid.

 List Show one record per row.

 Edit List Show one record per row and allow the records to be added, edited and deleted.

 GIS Map
Search

Special Case: Can only have 2 columns in Column Group. First column is Latitude and
Second column is Longitude. These columns are expected to be filled in with results from
GIS Map Search.

 URL Indicates that this is to simply go to the specified URL, a ColumnGroup name MUST not be
specified and a URL MUST be specified for this PresentationStyle.

URL 1*256TEXT Indicates a URL that is to be accessed using this entry instead of a standard Column Group.
You may not specify a ColumnGroupName and a URL. The URL may be formed with
place-holders surrounded by the '[' and ']' characters so that a substitution for any valid
SystemName within the class being displayed, Info Tokens from the Login Response or
Validation Expression Special Operand Tokens as specified in Table 11-20. To differentiate
between SystemNames and tokens, an additional character '.' is used to surround the
tokens. Example: [http://www.example.com/agent?Agent=[.AGENTCODE.]]
&Listing=[ListingID]

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 102 of 232

ForeignKeyID RETSID The identifier of the Foreign Key that is to be displayed in this ColumnGroupSet. If specified,
the ForeignKeyID MUST exist in the METADATA-FOREIGNKEY metadata and the Parent
MUST be the Property and Class of this ColumnGroupSet.
When this is specified, it means that a multi-row block is expected to be displayed to the
user within which he can Add, Edit or Delete records of the Child Resource and Class that is
specified. Furthermore, the ChildSystemName field should always be filled from data found
in the ParentSystemName field to provide for a proper Master/Detail relationship.

Notes: It is important to note that only one of ColumnGroupName, ForeignKeyId or URL may contain data. These three fields are mutually
exclusive.

11.5.2 Column Group

This metadata defines grouping element which should be used to group columns together in any GUI system that is designed in order to satisfy
the display requirements of an MLS.

Table 11-55 Column Group Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Column Group metadata. The convention used is a "< >.< >.< >" numbering scheme.major minor release
Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource that this column group belongs. The content is RETSID

Class The ClassID for the class that this column group belongs. The content is RETSID

COMPACT header tag: METADATA-COLUMN_GROUP

Table 11-56 Metadata Content: Column Group

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged.
In particular, it should be managed so as to allow the client to detect changes to the
ColumnGroupName.

ColumnGroupName RETSID The name that uniquely identifies this Column Group within the Class.

ControlSystemName RETSID The SystemName of the Table Metadata that identifies the data element that is used to control
the display of this Column Group.

LongName RETSNAME The name of the Column Group as it is known to the user. This is a localizable, human-readable
string. Use of this field is implementation-defined; it is expected that clients will use this value as
a title for this Column Group when it appears on a report.

ShortName RETSNAME An abbreviated field name that is also localizable and human-readable. Use of this field is
implementation-defined; it is expected that clients will use this field in human-interface elements
such as lookups.

Description 1*256PLAINTEXT A brief description of the purpose for this Column Group.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 103 of 232

11.5.3 Column Group Control

This metadata defines the valid ranges of values that the specified SystemName may have that control the display of the Column Group. If the
SystemName contains any of the values that fall within the ranges specified in this table, the Column Group may be displayed. If it does not, the
Column Group should not be displayed. The data is returned as a list of high and low values that determine whether the Column Group should be
displayed.

Table 11-57 Column Group Control Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Column Group Control metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource that this column group control belongs. The content is RETSID

Class The ClassID for the class that this column group control belongs. The content is RETSID

ColumnGroup The ColumnGroup MetadataEntryID for the class that this column group control belongs. The content is RETSID

COMPACT header tag: METADATA-COLUMN_GROUP_CONTROL

Table 11-58 Metadata Content: Column Group Control

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged. In
particular, it should be managed so as to allow the client to detect changes to an individual pair of
High/Low values.

LowValue 1*64ALPHANUM The minimum value that the ControlSystemName field of the ColumnGroup is allowed to have in
order to display the ColumnGroup. It is expected that the actual data type returned is interpreted as
per the data type of the ControlSystemName of the ColumnGroup.

HighValue 1*64ALPHANUM The maximum value that the ControlSystemName field of the ColumnGroup is allowed to have in
order to display the ColumnGroup. It is expected that the actual data type returned is interpreted as
per the data type of the ControlSystemName of the ColumnGroup. If the restricting data is not a
range, then HighValue may be left blank.

11.5.4 Column Group Table

This metadata defines the set of SystemNames that are to be displayed within a Column and the order in which they are to be displayed.

Table 11-59 Column Group Table Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Column Group metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 104 of 232

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource that this column group belongs. The content is RETSID

Class The ClassID for the class that this column group belongs. The content is RETSID

ColumnGroup The ColumnGroup MetadataEntryID for the column group that this column group table belongs. The content is RETSID

COMPACT header tag: METADATA-COLUMN_GROUP_TABLE

Table 11-60 Metadata Content: Column Group Table

Field Name Content Type Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged.

SystemName RETSID The SystemName of the field that is to be displayed in the ColumnGroup. This MUST be a
valid SystemName for this Class. A SystemName MUST be unique within the ColumnGroup.
This MUST not be specified if a ColumnGroupSetName is specified. Both and SystemName C

 may be blank. In this case, the Client may use this as a spacer.olumnGroupSetName

ColumnGroupSetName RETSID The name of a ColumnGroupSet to display in place of a single field. It is expected that this is a
ColumnGroupSet that does not display a large number of columns. This MUST not be
specified if a SystemName is specified. The ColumnGroupSet MUST not contain a
ColumGroup that also specifies a ColumnGroupSetName in the COLUMN_GROUP_TABLE
metadata. Both and may be blank. In this case, theSystemName ColumnGroupSetName
Client may use this as a spacer.

LongName 1*128PLAINTEXT The name of the Column Group Table (data field) as it is known to the user. This is a
localizable, human-readable string. Use of this field is implementation-defined; it is expected
that clients will use this value as a title for this Column Group when it appears on a report.

ShortName 1*128PLAINTEXT An abbreviated field name that is also localizable and human-readable. Use of this field is
implementation-defined; it is expected that clients will use this field in human-interface
elements such as lookups.

DisplayOrder 1*5DIGIT The order within the ColumnGroup that this SystemName is to be displayed in. DisplayOrder
values MAY contain gaps and may have the same value as other columns. If multiple columns
have the same value, the client SHOULD display the columns in Alphabetical order.

DisplayLength 1*5DIGIT The number of characters to allow when displaying data for this column.

DisplayHeight 1*5DIGIT The number of rows to display the data in. A value greater than one in this column implies a
multi-line data entry field of DisplayLength width. If users enter data into this field that is longer
than will fit within this text box, it is expected that the field will scroll to allow further data entry.

ImmediateRefresh BOOLEAN A truth value which indicates whether a change to this field by the user should cause an
automatic GUI refresh. This is primarily intended for use

11.5.5 Column Group Normalization

This metadata defines a grid that can be used by a client to display related fields in a manner more appropriate for data entry.

Table 11-61 Column Group Normalization Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Column Group metadata. The convention used is a "< >.< >.< >" numberingmajor minor release
scheme. Every time any contained metadata element changes the version number MUST be increased.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 105 of 232

Date The latest change date of any contained metadata. This MUST be in the format described in for RETSDATETIME.chapter 2

Resource The ResourceID for the resource that this column group belongs. The content is RETSID

Class The ClassID for the class that this column group normalization belongs. The content is RETSID

ColumnGroup This value MUST be a ColumnGroupName found in the ColumnGroup metadata for this Class. It is the ColumnGroup for
which the grid applies. The content is RETSID

COMPACT header tag: METADATA-COLUMN_GROUP_NORMALIZATION

Table 11-62 Metadata Content: Column Group Normalization

Field Name Content
Type

Description

MetadataEntryID RETSID A value that never changes as long as the semantic definition of this entry remains unchanged.

TypeIdentifier RETSID Y Axis – Row Label – The Label that is to be displayed on the left side of the screen that identifies the Type
of data that the user is entering.

Sequence 1*5DIGIT Y Axis – Row Sequence – The Sequence number that is to be displayed on the left side of the screen after
the TypeIdentifier. This itemizes the Type of data that the user is entering.

ColumnLabel RETSID X Axis – Column Label – This is the label that is to appear at the top of the screen for data within this
column. It is expected that all data in this grid with the same ColumnLabel be displayed in the same column
on the screen.

SystemName RETSID The SystemName of the field that is to be displayed in this position in the Grid for the ColumnGroup. This
MUST be a valid SystemName for this Class and MUST be within the ColumnGroupTable of the
ColumnGroup. Fields that appear within a ColumnGroup, but not within the Normalization for the
ColumnGroup, are to be treated as separate data entry fields that are not part of the grid. The
SystemName MUST be unique within the ColumnGroup.

Note: An Approved RCP is Related to this Section
Section 11.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 106 of 232

Section 12 - GetMetadata Transaction

The GetMetadata transaction is used to retrieve structured information known as metadata related to the system entities. Metadata requested and
returned from this transaction are requested and returned as MIME media types.

12.1 Required Request Header Fields
12.2 Required Request Arguments
12.3 Optional Request Arguments
12.4 Required Response Header Fields
12.5 Required Response Arguments
12.6 Optional Response Arguments
12.7 Metadata Response Body Format
12.8 Reply Codes

12.1 Required Request Header Fields

There are no additional required client header fields.

12.2 Required Request Arguments

Type ::= <A grouping of related metadata elements (see)>Section 11

The type of metadata being requested. The Type MUST begin with METADATA and MAY be one of the defined metadata types (see Section 11).

ID ::= metadata-id]metadata-id[:

metadata-id ::= 1*ALPHANUM | *

Metadata is organized hierarchically. Each level specifies in its first field an identifier for the metadata contained within that level (e.g. for the
Resource level: ResourceID-Agent, Property, etc. for the Lookup level: LookupName-Status, Area, etc.). This identifier can be used to restrict
requests to the Type metadata contained within specific instances of higher levels. If the last metadata-id is 0 (zero), then the request is for all
Type metadata contained within that level; if the last metadata-id is "*", then the request is for all Type metadata contained within that level and all
metadata Types contained within the requested Type. This means that for a metadata-id of , for example, the server isMETADATA-SYSTEM
expected to return metadata.all

NOTE: The metadata-id for and must be 0 or *.METADATA-SYSTEM METADATA-RESOURCE

12.3 Optional Request Arguments

12.3.1 Format

Format = | | COMPACT STANDARD-XML STANDARD-XML:version

version ::= <RETS metadata public identifier>

"COMPACT" means a table descriptor, field list followed by a delimited set of the data fields. See for more information on<COLUMNS> Section 11
the COMPACT formats. "STANDARD-XML" means an XML presentation of the data in the format defined by the RETS Metadata XML DTD.
Servers MUST support all formats. If the format is not specified, the STANDARD-XML presentation will be returned.

When the client requests the STANDARD-XML representation, it MAY also specify the public identifier of the DTD that it expects. The server
MUST support the current version and SHOULD support the prior version.

12.3.2 LookupFilter

Some servers may use lookups that list hundreds of values (like community names or street names). Such lookups will make the full metadata
very large. Therefore clients may opt to get metadata with limited sets of values.

LookupFilterArgument ::= *()LookupFilter = Filter , Filter
| LookupFilter = -1
| LookupFilter = *

Filter ::= FilterID = ParentValue

FilterID ::= <A filter value from Table 11-9>

ParentValue ::= 1*128 | |* -1 ALPHANUM

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 107 of 232

If the LookupFilterArgument is present, the server that implements this extension MUST limit lookup data in the response. Specifically,
LookupType data for a Lookup whose ParentValue FilterID is included in the LookupFilterArgument MUST be limited to the child values for the
requested . Also, FilterType data for a filter included in the LookupFilterArgument MUST be limited to those with requested ParentValue ParentVal

.ue

The asterisk in place of specifies that all values should be listed. The value indicates that no values should be listed.* Filter -1

If the LookupFilter argument is specified as , the server MUST NOT send any LookupType data for lookups that have non-empty FilterID, nor -1
any FilterType data at all.

If the LookupFilter argument is specified as , the server MUST send all requested LookupTypes without limitations.*

The LookupFilterArgument is meant to be used with requests for LookupType metadata, Filter metadata, or any metadata with ID ending with
asterisk .*

Some examples will assist in understanding the use of this feature.

A request for all the counties in the State of California:
CountyByState=CALookupFilter=

A request for all the counties in the States of California and Tennessee:
CountyByState=CA,CountyByState=TNLookupFilter=

A request for all the lookups without filtration (Equivalent to omitting the argument):LookupFilter
LookupFilter=*

A request to omit any lookup that can be filtered
LookupFilter=-1

A request for all counties, cities in Marine County, and omit the streets by city lookup
CountyByState=,CityByCounty=Marine,StreetByCity=LookupFilter= -1

12.4 Required Response Header Fields

In addition to the other Required Server Header Fields specified in the following response header fields are required.Section 3.3

Content-Type The media type of the underlying data. The server MUST return this field in all
replies. This field MUST be set to the type of media returned.

Content-Type ::= Content-Type : type / subtype

Example: Content-Type: text/xml

12.5 Required Response Arguments

There are no required response arguments.

12.6 Optional Response Arguments

There are no optional response arguments.

12.7 Metadata Response Body Format

The body of the metadata response has the following format when replying to a request with the format set to "COMPACT":

Note: An Approved RCP is Related to this Section
Section 7.4.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 60 Metadata Changes for Update

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/3.3+Required+Client+Request+Header+Fields
http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 108 of 232

 <RETS 1*SP ReplyCode=quoted-reply-code 1*SP
 q ReplyText= uoted-string SP > CRLF

][metadata-segment
 []rets-status-tag

 </RETS> CRLF

 ::=metadata-segment <A metadata segment as defined in .>Section 11

The body of the metadata response has the following format when replying to a format request of "STANDARD-XML" data:

 <?xml version="1.0" ?>
 [doctype]

 <RETS 1*SP ReplyCode=quoted-reply-code 1*SP ReplyText=quoted-string SP >
][XML-metadata-segment

 []rets-status-tag
 </RETS> CRLF

doctype ::= <!DOCTYPE RETS PUBLIC "-//RETS//DTD Metadata Content 1.8.1//EN">

XML-metadata-segment ::= A metadata segment as defined by the RETS Metadata XML DTD.

NOTE:

RETS 1.8.1 requires all server responses to be well-formed XML, and additionally requires GetMetadata responses to be valid XML.
In addition, RETS requires that clients parse server responses as XML, not as simple text streams. The response formats shown
here are normative with respect to content, but not normative with respect to form. That is, servers are free to produce response
XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML Recommendation 1.0,

 for full information on XML.Third Edition,

12.8 Reply Codes

Table 12-1 GetMetadata Reply Codes

Reply
Code

Meaning

20500 Invalid Resource
The request could not be understood due to an unknown resource.

20501 Invalid Type
The request could not be understood due to an unknown metadata type.

20502 Invalid Identifier
The identifier is not known inside the specified resource.

20503 No Metadata Found
No matching metadata of the type requested was found.

20506 Unsupported Mimetype
The server cannot return the metadata in any of the requested MIME types.

20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which the supplied login does not grant access (e.g.
Update Type data).

20508 Resource Unavailable
The requested resource is currently unavailable.

20509 Metadata Unavailable
The requested metadata is currently unavailable.

20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.

20511 Timeout
The request timed out while executing.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 109 of 232

20512 Too many outstanding requests
The user has too many outstanding requests and new requests will not be accepted at this time.

20513 Miscellaneous error
The server encountered an internal error.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using a DTD version that the server cannot provide.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 110 of 232

Section 13 - PostObject Transaction

The PostObject transaction is used to upload structured information related to known system entities. This transaction allows the client to send
one file as a MIME type along with more information. The server's response is similar to that of the Update transaction.

If the server supports the PostObject transaction, it sets the PostSupport field in the Object metadata to 1.

Before a client tries to upload an object, it SHOULD check for the presence of the ObjectData class in the metadata. If such a class exists, the
client SHOULD check all its validation expressions, supplying the characteristics of the uploaded file as values of the known fields of the
ObjectData table. See .Table 5-1 ObjectData Content

The PostObject request MUST be sent using POST method. The request arguments for the transaction are sent using HTTP headers.

13.1 Required Request Header Fields
13.2 Optional Request Header Fields
13.3 Request Body
13.4 PostObject Response Body Format
13.5 Reply Codes

13.1 Required Request Header Fields

In addition to the Required client request header fields specified in section 3.4, the header of any single-file message MUST contain the following
fields:

Field Content Type Description

X-UpdateAction ::= 1*24ALPHANUM

 Add Add a new Object

 Replace Change an existing Object

 Delete Delete an existing Object

Content-type <mime-type as defined in Section 5.1> The mime-type of an Object

Content-length ::= *DIGIT The length of the posted Object in bytes.

Type <Object type as defined in Table 11-20
>Well-known Object Types

X-Resource ::= RETSID The ResourceID for the Resource that this Object belongs as defined in Table
11-6 Metadata: Resource Description Fields

In addition to the header fields above, additional headers will be added based on the that is provided. These headers are definedUpdateAction
below and the rules for including these headers is described following the definition.

Field Content Type Description

X-ResourceID <value from the KeyField> A value from the KeyField of the Resource for which the Object is to be uploaded.

X-ObjectID ::= 1*5DIGIT

X-OrderHint ::= 1*5DIGIT See Section 13.2 for further information.

X-UID ::= TOKEN A string identifying the single Object being posted

The is the unique identifier of an existing Object, as reported by the server in a previous GetObject, PostObject, or in the relatedX-UID
ObjectData class.

Note: An Approved RCP is Related to this Section
Section 13 was added by the following approved RCP(s):

RETS 1.8.0

RCP 63 Object Data and Upload

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/5.12+ObjectData+Classes#id-5.12ObjectDataClasses-Table5-1ObjectDataContent
http://members.reso.org/display/rets18/11.4.1+Object#id-11.4.1Object-Table11-20Well-knownObjectTypes
http://members.reso.org/display/rets18/11.4.1+Object#id-11.4.1Object-Table11-20Well-knownObjectTypes
http://members.reso.org/display/rets18/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-Table11-6Metadata:ResourceDescriptionFields
http://members.reso.org/display/rets18/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-Table11-6Metadata:ResourceDescriptionFields
http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 111 of 232

If the server does not support for the requested type of Objects and the client submits an instead of the , the server MUSTX-UID X-UID ID
respond with an error. The preferred error code is 20403: No Object Found. Servers that do not implement the PostObject Transaction MAY
respond with a 20402: Invalid Identifier. If the requested type of Object has an ObjectData class linked in the metadata, the server MUST support
this argument.

For Objects, the is a value (e.g., MLS number, AgentID) from the of the Resource for which the Object is to beX-ResourceID KeyField
retrieved.

The is the particular Object to be posted. Objects are assumed to be stored sequentially on the host beginning with an X-ObjectID X-ObjectI
 of "1". This parameter can be used to specify the photo number, e.g. a value of "3" would indicate photo number 3.D

Depending on the UpdateAction value, the , , or should be omitted from the request basedX-ResourceID X-ObjectID X-UID X-OrderHint
on the rules described below.

If any of , or are used along with , the server MUST return the error 20804, Invalid orX-ResourceID X-ObjectID X-OrderHint X-UID
inconsistent request parameters.

If X-UpdateAction= and the and either or optional header number is used, the uploaded file willAdd X-ResourceID X-ObjectID X-OrderHint
be added to the list of objects. The server will adjust to ensure that the uploaded object assumes appropriate position in the list ofX-ObjectID
existing objects. If is used, the server MUST increase the by one for existing objects that have an thatX-ObjectID X-ObjectID X-ObjectID
is of the same value or greater than the of the inserted object. If the number of existing objects is less then the , theX-ObjectID X-ObjectID
uploaded object becomes the last one in the list. If is used, the server recalculates the of all objects so that they stayX-OrderHint X-ObjectID
in sync with the order of the values. If a client sends values for both and , the server MUST returnX-OrderHint X-ObjectID X-OrderHint
error, preferably 20804 (Inconsistent parameters).

Required Header Field

X-ResourceID

X-ObjectID | X-OrderHint

If the X-UpdateAction= and the is provided, the server may return an error.Add X-UID

If X-UpdateAction= and none of , or is provided, the uploaded file becomes the last in the list of existingAdd X-ObjectID X-OrderHint X-UID
objects. is required in this case. The server may set its to any number higher that all existing forX-ResourceID X-OrderHint X-OrderHint
this .X-ResourceID

Required Header Field

X-ResourceID

If X-UpdateAction= , either the and , or the MUST be used. The uploaded file replaces the originalReplace X-ResourceID X-ObjectID X-UID
Object. Any ObjectData fields not sent with the PostObject request (and not affected by the uploaded file) keep their previous values. If a client
sends values for both and , the server must return error, preferably 20804 (Inconsistent parameters).X-ObjectID X-UID

Required Header Field

X-ResourceID

X-ObjectID

OR

Required Header Field

X-UID

If X-UpdateAction= , either the and , or the MUST be used, and they MUST identify an existingDelete X-ResourceID X-ObjectID X-UID
Object. The body of the request SHOULD be empty and MUST be ignored by the server. It is expected that the server will re-adjust the X-Objec

 values such that there is no gap introduced by a Delete. If a client sends values for both and , the server must returntID X-ObjectID X-UID
error, preferably 20804 (Inconsistent parameters).

Required Header Field

X-ResourceID

X-ObjectID

OR

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 112 of 232

Required Header Field

X-UID

The Delete request may also be sent with without , in which case all objects for the given are to beX-ResourceID X-ObjectID X-ResourceID
deleted.

Required Header Field

X-ResourceID

13.2 Optional Request Header Fields

The client MAY specify additional headers. If a header name is identical to the System Name of a field in a corresponding ObjectData class (see
5.12), the server MAY use the header value to update that field. It is the server's decision whether such a field will be set to the client provided
value, or calculated based on the uploaded file or other data. However, the server SHOULD calculate the values (rather than using the
client-provided values) whenever it’s able to do so. Specifically, the field with standard name FileSize SHOULD always reflect the length of the file
as it is stored with the server.

The client SHOULD check the ObjectData class to see what headers may be needed for the server.

13.2.1 OrderHint

X-OrderHint ::= 1*5DIGIT

X-OrderHint is a number suggesting where in the sequence of all objects belonging to the same an uploaded object should beX-ResourceID
placed. Unlike numbers, which must be an uninterrupted sequence of integral numbers starting with 1, the may beX-ObjectID X-OrderHint
any number. After an update, the server must modify values for a given , to ensure that the order is theX-ObjectID X-ResourceID ObjectID
same as the order. numbers MUST follow the ordering of numbers in the sense that if the X-OrderHint X-ObjectID X-OrderHint X-OrderH

 for object A is lower than the for object B, then the for object A MUST be lower that for object B.int X-OrderHint X-ObjectID X-ObjectID
In the case where multiple objects are set to share the same value, the resulting ordering is non-predictive.X-OrderHint X-ObjectID

The MUST NOT be used in the PostObject request if it is not exposed in the ObjectData class linked to this object metadata (seeX-OrderHint
5.12 and Table 5-1). If it is used, the server should ignore the parameter.

13.2.2 WarningResponse

See Section 21.1 WarningResponse for details.

13.3 Request Body

The body of the request is the file being uploaded. If X-UpdateAction=Delete, the body MAY be empty, and SHOULD be ignored by the server.

13.4 PostObject Response Body Format

The response from the server is similar to that of the Update transaction (10.5):

Note: RETS 1.9.0: An approved RCP is related to this section
Section 13.1 is related to the following approved RCP(s):

RCP 108 HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 13.2 is related to the following approved RCP(s):

RCP 108 HTTP User Space Headers

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 113 of 232

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP ReplyText= quoted-string *SP> CRLF
[delimiter-tag]
column-tag
compact-data
[activation-tag]
[error-block]
[warning-block]
[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText= quoted-string *SP/>
</RETS> CRLF

In the compact-data, the server MUST send the values of Resource, Type, ResourceID, ObjectID and UID, if they were used in the request. The
UID, if it exists in the related ObjectData class, MUST be sent even if it was not requested. The UID MAY also be sent if no ObjectData class is
linked to this Object metadata, but the server is able to honor GetObject requests with UID.

Unless the UpdateAction requested was Delete, all other fields from the ObjectData table that were requested or changed MUST also be sent.
Other fields from the ObjectData table MAY be sent as well.

activation-tag ::= TIMESTAMP [; TEXT]

If the object is not immediately accessible, the server MUST send a datetime when it is supposed to be activated. An explanation why the object
is delayed MAY be appended.

error-block and are described in section 17.1 and 17.2.warning-block

13.5 Reply Codes

Table 13.1 Standard Reply Codes

Reply
Code

Meaning

0 Upload successful.

20800 Unknown resource

20801 Invalid object type

20802 Invalid identifier

20803 Invalid update action

20804 Invalid or inconsistent request parameters

20805 No object found (for Delete)

20806 Unsupported MIME type

20807 Unauthorized

20808 Some objects not deleted (in case of Delete without ObjectID or UID, if some objects could not be deleted, while some were)

20809 Refused: object does not meet business rules

20810 FileSize too large
Note that some servers MAY respond with HTTP status “413 – Request entity too large” if the uploaded file is larger than any
acceptable limit.

20811 Timeout

20812 Too many outstanding requests

20813 Miscellaneous error

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 114 of 232

Section 14 - **DEPRECATED** GetPayloadList Transaction

This document will use the term payload to describe output formats that use either RESO defined XML schema or RESO defined DTD documents
to provide the structure description for a well-formed XML document containing matching records from the server.

The GetPayloadList transaction is used to retrieve a list of available payloads for Search transaction output formats supported by the server.

The only available response format is COMPACT.

14.1 Required Request Arguments
14.2 **DEPRECATED** Optional Request Arguments
14.3 Required Response Arguments
14.4 Optional Response Arguments
14.5 **DEPRECATED** Payload Response Body Format
14.6 **DEPRECATED** Reply Codes

14.1 Required Request Arguments

There are no required request arguments.

14.2 **DEPRECATED** Optional Request Arguments

14.2.1 ID

The ID argument controls the payload list response, indicating that only payloads for the specified ID hierarchy should be returned.

ID ::= [metadata-id]metadata-id :

metadata-id ::= | 1*ALPHANUM *

Metadata is organized hierarchically. Each level specifies in its first field an identifier for the metadata contained within that level. The
GetPayloadList transaction only provides information for the Resource level of metadata. That is, a request may ask for all payloads for all
resources or all payloads for a specific Resource level. (e.g. for the Resource level: ResourceID-Agent, Property, etc.). This identifier can be used
to restrict requests to the payload list contained within specific instances of higher levels. If the last metadata-id is "*", then the request is for all
Type metadata contained within that level and all metadata.

The ID values are those returned in the GetMetadata transaction reflects the metadata hierarchy as shown in Figure 11.1. For any metadata
element, the ID argument is a list of the names of the parent elements for the desired element, separated by colons. For example, to retrieve the
payload list for a given named Resource, the argument is simply the ResourceID.

Example: ID=Property

To retrieve the payload list for a specific class within a resource:

Example: ID=Property:RES

Servers MUST treat a request without an ID argument as requesting all available payloads.

Note: An Approved RCP is Related to this Section
Section 14 was added by the following approved RCP(s):

RETS 1.8.0

RCP 76 GetPayloadList

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 14 was added by the following approved RCP(s):

RETS 1.9.0

RCP 110 - Deprecate and Replace GetPayloadList

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+76+-+GetPayloadList
http://members.reso.org/display/RCP/RCP+110+-++Deprecate+and+Replace+GetPayloadList

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 115 of 232

14.3 Required Response Arguments

There are no required response arguments.

14.4 Optional Response Arguments

There are no optional response arguments.

14.5 **DEPRECATED** Payload Response Body Format

The body of the GetPayloadList response has the following format:

 <RETS 1*SP ReplyCode=quoted-reply-code 1*SP
 ReplyText=quoted-string SP > CRLF

 <RETSPayloadList 1*SP Resource=quoted-string 1*SP
 Class =quoted-string 1*SP

 Version=quoted-string 1*SP
 Date =quoted-string SP > CRLF

 column-tag
 [*]compact-data

 []rets-status-tag
 </RETSPayloadList> CRLF

 </RETS> CRLF

compact-data ::= <DATA> *(field-data) </DATA> CRLF

A "<DATA>" tag, followed by a delimited list of field-data and a "</DATA>" end tag are returned to the client for each record returned. The
field-delimiter is determined by the delimiter-tag.

column-tag ::= <COLUMNS>
PayloadNameResourceClassDescriptionURIMetadataEntryIDVersion

 </COLUMNS> CRLF

A fixed format row that indicates the information represented in each delimited column of the response rows.compact-data

Column Name Content Type Description

PayloadName RETSNAME Name of the payload

Resource RETSID The ResourceID of a resource that supports the payload

Class RETSNAME The ClassName of a class that supports the payload

Description 1*256PLAINTEXT Description of the payload

URI URI Valid location of DTD or XML Schema defining the payload format

MetadataEntryID RETSID A value that does not change as long as the semantic meaning of the Payload record does not change.

Version dtd-version |

1*64PLAINTEXT

A string representing the version of the payload. If the payload name is "STANDARD-XML" the version
MUST be

in dtd-version format as described in section 7.5 Search Response Body Format.

NOTE:

RETS 1.8.0 requires all server responses to be well-formed XML, and additionally requires GetPayloadList responses to be valid
XML. In addition, RETS requires that clients parse server responses as XML, not as simple text streams. The response formats
shown here are normative with respect to content, but not normative with respect to form. That is, servers are free to produce
response XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the
appropriate DTD. XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML

 for full information on XML.Recommendation 1.0, Third Edition,

Note: An Approved RCP is Related to this Section

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 116 of 232

14.6 **DEPRECATED** Reply Codes

Table 14-1 GetPayloadList Reply Codes

Reply Code Meaning

0 Successful.

20500 Invalid Resource.
The request could not be understood due to an unknown resource.

20503 No Metadata Found.
No matching metadata of the type requested was found.

20508 Resource Unavailable.
The requested resource is currently unavailable.

20511 Timeout.
The request timed out while executing.

20513 Miscellaneous Error.
The server encountered an internal error.

Section 14 is related to the following approved RCP(s):

RETS 1.8.0

RCP 100 Alternate Standard Names

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this

RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rcpcenter/RCP+100+-++Alternate+Standard+Names

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 117 of 232

Section 15 - Compact Data Format

Clients may choose to access data from a server in a compact data format that does not use full XML representation. When a client requests
information from a compliant server in "COMPACT" or "COMPACT-DECODED" format, it will typically need to interpret the result by using the
metadata that the server makes available.

15.1 Overall format
15.2 Decoded Format
15.3 Multivalued Fields
15.4 Transmission standards

15.1 Overall format

Compact format records are sequences of fields separated by delimiter. A tab character (an octet with a value of 09) is the default delimiter unless
another is specified as part of the transaction. The delimiter MUST be some character other than the comma "," character. This character is
reserved for separating values in any field with an interpretation of LookupMulti where more than one value may be applied to that field. The
sequence of fields MUST be described by a tag in the body of the message that carries the compressed records. No field described<COLUMNS>
in the tag may be omitted from the ; if the value of a particular field for some record is undefined or is suppressed for<COLUMNS> <DATA>
authorization reasons, the value MUST be represented by two delimiters with no intervening space. No field omitted in the tag may beCOLUMNS
added in any tag. The number of fields in the tag MUST match the number of fields in the tags.DATA <COLUMNS> <DATA>

Each compact record is enclosed within a start tag and a end tag.s <DATA> </DATA>

Fields with an interpretation of Lookup or LookupMulti contains the LookupType Value from when the format is COMPACT and theTable 11-23
LookupType LongValue from when the format is COMPACT-DECODED.Table 11-23

15.2 Decoded Format

COMPACT-DECODED format requires sending field data in an expanded form. For example, if a field representing data for City is given the
interpretation of Lookup in the Metadata, there will be a corresponding LookupType table that contains at least two values, Value and LongValue.
It may also contain a ShortValue, but that is not relevant to the example. For this example, the Value is 101 and the LongValue is Anytown. In the
COMPACT format, the returned data for this field is 101. This is referred to as the coded value. In the COMPACT-DECODED format case, the
returned data for this field is Anytown. This is referred to as the decoded value. A server MUST perform the expansion from the Value to the
LongValue for fields with an interpretation of Lookup or LookupMulti.

15.3 Multivalued Fields

If the field is multivalued, values MUST be separated by commas and an optional space between each value. The final value does not have the
comma or space before the field delimiter.

15.4 Transmission standards

A client or server transmitting a compact record MUST encode the data according to Table 15-1.

Table 15-1 Compact Data Field Format Representation

Type Encoding Format

Numeric An optional negative sign, followed by zero or more digits, followed by an optional period, followed optionally by zero or more
digits. The interpretation determines if an optional character may be included. A valid number MUST contain at least one digit if it
includes a decimal point or sign. The value may contain leading zeros before the decimal point. The value may contain trailing
zeros after the decimal point and fraction, if any. Data types Tiny, Small, Int and Long () may be signed but may notTable 11-12
have a decimal point or fraction. Values with the interpretation LookupBitmask must not be signed, nor may they have nonzero
digits after the decimal point.

Character The plain character sequence, except for LookupMulti, which contains multiple sequences of characters separated by commas.
Values with the interpretation LookupBitstring must contain only the characters "0" and "1".

Date A date in format.full-date

Time A date in format.RETSTIME

Date-Time A date in format.RETSDATETIME

MultiSelect A string consisting of one or more substrings, comma-delimited, each of which corresponds to an entry in the field's associated
MetadataLookup table.

Boolean A single character, either 1 for true or 0 for false.

http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-Table11-23MetadataContent:LookupType
http://members.reso.org/display/rets18/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-Table11-23MetadataContent:LookupType
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-Table11-12MetadataContent-Tables

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 118 of 232

All fields described in the <COLUMNS> tag MUST be included in the <DATA> tag. If the value of a particular field is undefined or empty, the value
MUST be represented by two delimiters with no intervening space. If the value is suppressed, for authorization reasons, the value MUST be
represented by two delimiters with no intervening space unless the request included the RestrictedIndicator, in which case the value of the
RestrictedIndicator MUST be used.

Note: An Approved RCP is Related to this Section
Section 15.4 is related to the following approved RCP(s):

RETS 1.7.2:

RCP 71 Time Zone Data

RETS 1.8.0:

RCP 78 Specification Errata Changes
RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/RETS+Change+Proposal+71+-++Time+Zone+Data
http://members.reso.org/display/RCP/RCP+78+Specification+Errata+Changes
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 119 of 232

1.
2.
3.

Section 16 - Session Protocol

A RETS session follows a well-defined sequence of transactions defined in this document to become established and when terminating. In
particular, the authorization sequence MUST be followed in order to begin using other transactions within the protocol.

While HTTP is a stateless protocol, that is the current request does not depend on the previous request, the addition of the session protocol
allows critical information to be communicated to the client reliably.

HTTP does include additional methods that are not used within this document. HTTP status codes are used to provide HTTP level information
including session time out, while RETS status codes provide information on the response at the RETS protocol level.

The protocol contains four phases: connection establishment, authorization, session and termination.

16.1 Connection Establishment
16.2 Authorization
16.3 Session
16.4 Termination

16.1 Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any mutually agreed TCP port, with the default being 6103 for
unencrypted connections, and port 12109 for encrypted connections . When the TCP connection has entered the Established state, theTLS- (24)
session proceeds to the start of the Authorization phase.

16.2 Authorization

Authorization begins when the client sends the server a Login transaction. The Login transaction contains the basic information that the server
requires in order to start an authorization decision: the user ID and optionally, some information about the client software.

A server responds to the Login request by sending back a "401 Unauthorized" status code and a WWW-Authenticate header. This is part of an
authentication challenge to the client. Part of the WWW-Authenticate header may contain a checksum (nonce) of a concatenation of the following:

The client-IP.
The server-supplied timestamp.
The server's private-key.

Server implementers should note that because of intervening proxy servers, the client IP address may change from connection to connection.

The client concatenates the nonce to the checksum of the Request-URI; then performs an MD5 digest using a concatenation of the username,
realm and password as the secret. This result is then returned to the server as part of an Authorization header. The server MUST then compute
the equivalent function using its own stored copy of the user's password. If the two match and the nonce is the same, the user is considered
authenticated, and the login can proceed with the server informing the client of the available capabilities. The login has been accomplished
without actually sending the password. A server MAY provide an anonymous login. A client wishing an anonymous login sends an empty
Authentication field in its Login transaction, after which the authorization proceeds as before.

16.3 Session

Once the Authorization phase has been completed, both endpoints enter the Session phase. During the Session phase, clients may issue any
combination of requests for which they are authorized. The first of these MUST be to issue a GET requests for the "Action" URL, if any, included
in the Login response (). After this, clients may issue other transactions. Section 4.10 Note that the transport level security requirements will
determine the protocol (HTTP/HTTPS), the port (6103/12109) and the version of the protocol for a specific implementation. Vendors using
transport level security SHOULD use the most current version of the transport standard and the supporting libraries to minimize security risks.

Clients MAY issue multiple transactions without waiting for responses. However, servers are not required to process these requests in parallel,
nor are servers required to complete the requests in the order in which they were issued. If a client issues a request before receiving a response
to some earlier request, the client MUST be prepared to receive the responses in any order. The only way for a client to guarantee sequential
execution of requests on every server is to wait for a response to any outstanding request before issuing a new request.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 16.1 is related to the following approved RCP(s):

RCP 109 - Update TLS specification references

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

Note: RETS 1.9.0: An approved RCP is related to this section
Section 16.3 is related to the following approved RCP(s):

http://members.reso.org/pages/viewpage.action?pageId=8716369

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 120 of 232

16.4 Termination

A client SHOULD initiate termination of the session by sending a Logoff transaction. If a server receives a Logoff transaction while other
operations are pending, it SHOULD abort those pending operations. However, a server MUST NOT rely on receiving a Logoff transaction in order
to terminate a session, due to the possibility of communications problems preventing the transmission of the Logoff transaction by the client.

Servers SHOULD provide a timeout mechanism, and if they do, MUST inform the client of the timeout interval during the Login transaction (Sectio
).n 4.7

RCP 109 - Update TLS specification references

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/rets18/4.7+Required+Response+Arguments
http://members.reso.org/display/rets18/4.7+Required+Response+Arguments

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 121 of 232

Section 17 - Update Response Blocks

The Update Transaction and the PostObject Transaction may result in warnings or errors. Client applications may return an explanation for the
warning from the end user.

The format of the < > and < > tag content is identical to COMPACT format.ERRORDATA WARNINGDATA

17.1 Error Block

error-block ::= <ERRORBLOCK> CRLF
 1*(<ERRORDATA>

field-delimiter field field-delimiter error-num
field-delimiter error-offset field-delimiter

 error-text field-delimiter
)</ERRORDATA>

</ERRORBLOCK>

An Error Block is returned when there is a problem with one or more of the fields. The error block contains information about the fields that have
errors. It contains the field name, an error number, some additional text about the error (), and where in the field data the error occurred (error-text

).error-offset

error-num ::= 1* 16 DIGIT

This is the host error number. This number along with the MAY be displayed to the user when looking at the corresponding field in theerror-text
client application.

error-offset ::= 1*5DIGIT

This is the offset into the field data that was sent by the client application to the server. It indicates at what character in the field data the problem
was encountered. This number is set to zero ("0") if the offset of the error is unknown.

error-text ::= ALPHANUM* 1024

This is the error text generated by the host to assist the user in determining the problem with the field data. This text is associated with the error-n
.um

The error return format follows the data format in all particulars. This affects primarily the quoting of special characters and the selectionCOMPACT
of the delimiter that separates the field values. In effect, the error return is a data block without the usual element.COMPACT COLUMNS

17.2 Warning Block

warning-block ::= <WARNINGBLOCK>
 1*(<WARNINGDATA>

field-delimiter field field-delimiter warning-num
field-delimiter warning-offset field-delimiter
warning-text field-delimiter response-required

 field-delimiter
)</WARNINGDATA>

</WARNINGBLOCK>

A Warning Block is returned when there is a problem with one or more of the fields that would not prevent the record from being saved in the
database. It contains a field name, a warning number, some additional text about the warning (), where in the field data thewarning-text
warning occurred () and an indicator whether an end-user response to this warning is requested or required. The delimiter iswarning-offset
the same as the one defined for the .error-block

Note: An Approved RCP is Related to this Section
Section 17.1 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 122 of 232

field ::= RETSNAME

The SystemName of the field to which the warning applies.

warning-num ::= 1* 16 DIGIT

The host warning number. This number, along with the , MAY be displayed to an end-user in association with the correspondingwarning-text
field in the client application.

warning-text ::= +*1024+TEXT

warning-offset ::= 1*5DIGIT

The offset into the field data that was sent by the client application to the server. It indicates at what character in the field data the problem was
encountered. This number is set to zero if the offset of the error is unknown or if an offset is inapplicable.

response-required ::= | | 0 1 2

The value indicates whether an end-user response is requested or required:response-required

Warning Number Meaning Explanation

0 No response is permitted. The server is informing the user that a warning occurred. No user action is necessary.

1 A response is requested. Business rules on the server request that the user explain
why the warning occurred.

2 A response is mandatory. Business rules require a reason. A response is required before the record is accepted.

If the field indicates that a response is mandatory, the client MUST send the end-user response for the specificresponse-required
warning-num in the WarningResponse request argument in order for this record to be saved to the database.

17.3 Warning Response

A previous Update or PostObject Transaction may have resulted in one or more warnings that must be resolved before the record can be stored
in the server database. The WarningResponse permits the user to resolve those issues.

WarningResponse ::= warning-response *(field-delimiter warning-response)

warning-response ::= field : warning-num = user-response

warning-num ::= 1* 16 DIGIT

The value is the host warning number that was returned in the prior Update or PostObject Response body.warning-num

user-response ::= excluding delimiter* 1024 TEXT

The value is the text of the warning response in response to the specified warning. If a sent in the prior Updateuser-response warning-num
or PostObject Response body had a value of 2, then the value MUST NOT be null.response-required user-response

Note: An Approved RCP is Related to this Section
Section 17.2 is related to the following approved RCP(s):

RETS 1.8.0

RCP 59 Revised Update Transaction

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

Note: An Approved RCP is Related to this Section
Section 17.3 is related to the following approved RCP(s):

RETS 1.8.0

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 123 of 232

RCP 59 Revised Update Transaction

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 124 of 232

Section 18 - Authors
Paul Stusiak
Falcon Technologies Corporation
635 Ivy Ave.
Coquitlam, BC V3J 2H8
pstusiak@falcontechnologies.com

Sergio Del Rio
Templates for Business, Inc.
1155 West Pender Street, Suite 302
Vancouver, BC V6E 2P4
sergio.del.rio@t4bi.com

Libor Viktorin
CoreLogic Inc.
lviktorin@corelogic.com

Matthew McGuire
CoreLogic Inc.
MpMcGuire@corelogic.com

Archived - Previous to RETS 1.7.2
Leo Bijnagte
Vista Information Systems
100 Washington Square, Suite 1000
Minneapolis, MN 55401

Dan Musso
WyldFyre Technologies, Inc.
900 East Hamilton Ave.
Suite 500
Campbell, CA 95008

Bruce Toback
OPT, Inc.
11801 N. Tatum Blvd.
Suite 142
Phoenix, AZ 85028

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 125 of 232

Section 18 - Acknowledgments

The creation of this specification would not have been possible without the sponsorship and coordination of efforts provided by the National
Association of REALTORS®.

This document has benefited greatly from the comments of all those participating in the National Association of REALTORS®-Standards Work
Group.

In addition to the authors, valuable discussion instrumental in creating this document has come from:

Richard Mendenhall
National Association of REALTORS®

Dale Stinton
National Association of REALTORS®

Mark Lesswing
National Association of REALTORS®

Larry Colson
Moore Data Management Services

Tom Curtis
Metro MLS

Kevin Knoepp
GTE Enterprise Solutions

Tom McLean
Resolution Software Consulting, Inc.

Tony Salvati
Grant Thornton

Errol Samuelson
RealSelect, Inc.

Allan Shapiro
Wantao Zhou
Interealty Corporation

Stuart Schuessler
Libor Viktorin
Mathew McGuire
Steve Clarke
MarketLinx Corporation

Michael DelGaudio
MRIS, Inc.

Maggie Diaz
Brita Brodin
Laure Chipman
WyldFyre, Inc.

Joshua Vosper
Rapattoni Corporation

Laila Sharshar
NewportWorks, Inc.

Eric Schlosser
Hewlett-Packard Company

Frank Tadman
MLSListings Inc.

Sergio Del Rio
Templates for Business Inc.

Jaison Freed
FBS Data Systems, Inc.

Ryan Bonham
Transparent Technologies Inc.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 126 of 232

Gina Accawi
Falcon Technologies Corp.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 127 of 232

Section 19 - References

Number Reference

1 Braden, R., "Requirements for Internet Hosts — Communication Layers" STD 3, RFC 1123, IETF 1989.

2 R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests", RFC 7232, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014
J. Reschke, "Initial Hypertext Transfer Protocol (HTTP) Authentication Scheme Registrations", RFC 7236, June 2014
J. Reschke, "Initial Hypertext Transfer Protocol (HTTP) Method Registrations", RFC 7237, June 2014

3 Rivest, R., "The MD5 Message Authentication Algorithm", RFC 1321, April 1992

4 Crocker, D., "Standard for ARPA Internet Text Messages", RFC 2822, IETF 2001

5 US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information Interchange. Standard ANSI X3.4-1986, ANSI,
1986.

6 Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L. Stewart, "An Extension to HTTP: Digest Access
Authentication", RFC 2617, January 1997.

7 International Organization for Standards, "Data Elements and Interchange Formats - Information Interchange - Representation of
Dates and Times", ISO 8601, June 1988.

8 Borenstein, N., Freed, F., "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC
2045, November 1996.

9 American National Standard for Data Encryption Algorithm (DEA). Standard ANSI X3.92, ANSI, 1981.

10 Data Encryption Standard, FIPS46-2, December 30, 1993.

11 DES Modes of Operation, FIPS81, December 2, 1980

12 IEEE/ANSI Std. 1003.2-1992, Information Technology – Portable Operating System Interface (POSIX®) Part 2

13 Berners-Lee et al., "Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, IETF 1998

14 Kaliski, "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, IETF 1998

15 A. Barth, "HTTP State Management Mechanism", RFC 6265, April 2011

16 W3C, "HTML 4.01 Specification", W3C Recommendation 24 December 1999 ()http://www.w3.org/TR/html401/

17 W3C, "Extensible Markup Language (XML) 1.0 (Third Edition)", W3C Recommendation 4 February 2004 (http://www.w3.org/TR/20
)04/REC-xml-20040204/

18 Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000

19 International Standards Organization, "ISO 8601:2004(E) Date elements and interchange formats - Information interchange -
Representations of dates and times"

20 W3C, "Date and Time Formats", W3C Note 15 September 1997 [online] ()http://www.w3.org/TR/NOTE-datetime

21 Klyne, G. and Newman, C., "Date and Time on the Internet: Timestamps", RFC 3339, IETF 2002

22 Crocker, D. and Overell, P., "Augmented BNF for Syntax Specification: ABNF", RFC 2234, IETF 1997

23 M. Belshe, "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, May 2015

24 Dierks, T. "The Transport Layer Security (TLS) Protocol." . Internet Society. IETFThe Internet Engineering Task Force RFC 5246,
2008

: This RFC may be obsoleted by the IETF. Implementations where this standard applies (HTTP-over-TLS) MUST use theNOTE
most recent Standards Track version of the IETF standard.

http://www.w3.org/TR/html401/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/NOTE-datetime

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 128 of 232

Section 20 - Appendices
Appendix A - XML Schema References
Appendix B - Sample Compact Metadata Response
Appendix C - Summary of RETS Reply Codes
Appendix D - Maximum Field Length and Display Information
Appendix E - Approved RCPs

Version 1.7.2
RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata
RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring
RETS Change Proposal 71 - Time Zone Data
RETS Change Proposal 72 - LookupType String Length

Version 1.8.0
RCP 59 - Revised Update Transaction
RCP 60 - Metadata Changes for Update
RCP 61 - Validation Expression Replacement
RCP 63 - Object Data and Upload
RCP 65 - Session information tokens
RCP 68 - Search Has Key Index Support
RCP 69 - LookupType Value
RCP 70 - Metadata Role Support
RCP 74 - Location Availability in Object Metadata
RCP 75 - Offset Availability in the Metadata
RCP 76 - GetPayloadList
RCP 77 - Maximum Field Length
RCP 78 - Specification Errata Changes
RCP 79 - Add Preferred Flag to GetObject Responses
RCP 80 - Optional Query
RCP 82 - LookupMulti Quoting Rule
RCP 87 - RETS 1.7.2 Errata Document
RCP 90 - Deprecate CommonInterest Class Well-Known Name
RCP 91 - StandardNames Version Information in Login Transaction
RCP 92 - RESO Payload Transport-Level Metadata Support
RCP 93 - Add Content-Sub-Description to GetObject
RCP 94 - Improved Error Handling in GetObject
RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login
RCP 99 - Mixing StandardNames and SystemNames
RCP 100 - Alternate Standard Names
RCP 101 - Child Rows Support
RCP 102 - GetObject URL as Default Location

Version 1.9.0
RCP 103 - Geospatial Search
RCP 104 - StandardValue for Enumerations
RCP 105 - Update Transaction Response Format Correction
RCP 106 - Client cookie support for RFC 6265
RCP 107 - IETF HTTP RFC Updates to references in the RETS specification
RCP 108 - Migrate RETS specific HTTP Headers to HTTP User Space headers (X-*)
RCP 109 - Update TLS specification references to current Internet/Industry Standards
RCP 110 - Deprecate and Replace GetPayloadList
RCP 112 - RETS Metadata Version Header
RCP 113 - Search Transaction Optional Format Argument - Add JSON

Appendix A - XML Schema References

Table A-1 DTD References

Real Estate Transaction
Standard Data Content DTD

Description The document returned by a search specifying STANDARD-XML format. This DTD describes the document
only, not the entire response. It may be used when transmitting listing or membership data through a
channel other than a RETS server (for example, FTP).

Public Identifier -//RETS//DTD RETS Data Content 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/REData-20080829.dtd

Real Estate Transaction
Standard STANDARD-XML
Search Response DTD

http://www.rets.org/dtd/2008/08/REData-20080829.dtd

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 129 of 232

Description The response returned by a search specifying STANDARD-XML format. This DTD simply encapsulates the
REData DTD (above) in a standard RETS response element.

Public Identifier -//RETS//DTD RETS XML Search Response 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/RETS-20080829.dtd

Real Estate Transaction
Standard COMPACT Search
Response DTD

Description The response returned by a search specifying COMPACT or COMPACT-DECODED format.

Public Identifier -//RETS//DTD RETS COMPACT Search Response 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-compact-search-1_7_2.dtd

RETS Metadata Content DTD

Description This DTD describes the STANDARD-XML metadata format. It may be used when transmitting metadata
through a channel other than a RETS server.

Public Identifier -//RETS//DTD Metadata Content 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-metadata-content-1_7_2.dtd

RETS Metadata
STANDARD-XML
GetMetadata Response DTD

Description The document returned by a GetMetadata transaction specifying a format of STANDARD-XML. This
encapsulates the RETS Metadata Content DTD in a standard RETS response element.

Public Identifier -//RETS//DTD Metadata 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-metadata-1_7_2.dtd

RETS Metadata COMPACT
GetMetadata Response DTD

Description The document returned by a GetMetadata transaction specifying a format of COMPACT.

Public Identifier -//RETS//DTD Compact Metadata 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-compact-metadata-1_7_2.dtd

RETS Login Response DTD

Description The document returned by a Login transaction.

Public Identifier -//RETS//DTD Login Response 1.7.2//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-login-1_7_2.dtd

RETS Update Response DTD

Description The document returned by an Update transaction.

Public Identifier -//RETS//DTD Update 1.8.1//EN

System Identifier http://www.rets.org/dtd/2008/08/rets-update-1_7_2.dtd

Note: Certain System Identifier values have been split across multiple lines to prevent hypenation characters being added to the document that
are not part of the identifier. Each System Identifier is a well-formed URI.

Appendix B - Sample Compact Metadata Response

This appendix contains examples for COMPACT metadata responses. It is NON-NORMATIVE: these examples illustrate one way of formatting
COMPACT metadata, and one set of values. describes the content and formatting rules in detail.Section 11

B.1 System

http://www.rets.org/dtd/2008/08/RETS-20080829.dtd
http://www.rets.org/dtd/2008/08/rets-compact-search-1_7_2.dtd
http://www.rets.org/dtd/2008/08/rets-metadata-content-1_7_2.dtd
http://www.rets.org/dtd/2008/08/rets-metadata-1_7_2.dtd
http://www.rets.org/dtd/2008/08/rets-compact-metadata-1_7_2.dtd
http://www.rets.org/dtd/2008/08/rets-login-1_7_2.dtd
http://www.rets.org/dtd/2008/08/rets-update-1_7_2.dtd

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 130 of 232

<METADATA-SYSTEM Version="1.00.000" Date="2002-03-20T12:03:38Z">
 <SYSTEM SystemID= "NTREIS" SystemDescription= "North Texas Real Estate Information System" />

 <COMMENTS>
 This is a comment line

 </COMMENTS>
</METADATA-SYSTEM>

B.2 Resource

<METADATA-RESOURCE Version="1.00.000"
 Date="2002-03-20T12:03:38Z" >

 <COLUMNS>ResourceIDStandardNameVisibleNameDescription
 ClassCountKeyFieldClassVersionClassDateObjectVersion

 ObjectDateSearchHelpVersionSearchHelpDateEditMaskVersion
 EditMaskDate LookupVersionLookupDateUpdateHelpVersion

 UpdateHelpDate ValidationExpressionVersion
 ValidationExpressionDateValidationLookupVersion

 ValidationLookupDateValidationExternalVersion
 ValidationExternalDate</COLUMNS>

 <DATA>AgentAgent AgentAgent Table1 Agentid1.00.000
 2002-03-20T12:03:38Z</DATA>

 <DATA>PropertyPropertyPropertyProperty Tables5
 LN1.00.000 2002-03-20T12:03:38Z1.00.000

 2002-03-20T12:03:38Z1.00.000
 2002-03-20T12:03:38Z 1.00.000
 2002-03-20T12:03:38Z 1.00.000
 2002-03-20T12:03:38Z 1.00.000
 2002-03-20T12:03:38Z 1.00.000
 2002-03-20T12:03:38Z 1.00.000
 2002-03-20T12:03:38Z 1.00.000

 2002-03-20T12:03:38Z </DATA>
 <DATA>TaxTaxTaxMultimedia objects20 PID1.00.000

 2002-03-20T12:03:38Z</DATA>
</METADATA-RESOURCE>

B.3 Foreign Keys

<METADATA-FOREIGN_KEYS Version="1.00.000000"
 Date="Wed, 23 Jan 2002 12:37:38 GMT">

 <COLUMNS>PARENT_RESOURCE_IDPARENT_CLASS_IDPARENT_SYSTEMNAME
 CHILD_RESOURCE_IDCHILD_CLASS_IDCHILD_SYSTEMNAME</COLUMNS>

 <DATA>PropertyRESMLSNUMTAXTAXMLSNUM</DATA>
 <DATA>PropertyRESMLSNUMHistoryHistoryMLSNUM</DATA>

 <DATA>PropertyRESMLSNUMOpenHouseOpenHouseMLSNUM</DATA>
 <DATA>PropertyRESListingAgentIDAgentAgentAgentID</DATA>

 <DATA>PropertyRESCOListingAgentIDAgentAgentAgentID</DATA>
 <DATA>PropertyRESSellingAgentIDAgentAgentAgentID</DATA>

 <DATA>PropertyRESCOSellingAgentIDvAgentAgentAgentID</DATA>
 <DATA>PropertyRESListingOfficeIDOfficeOfficeOfficeID</DATA>
 <DATA>PropertyRESSellingOfficeIDOfficeOfficeOfficeID</DATA>

</METADATA-FOREIGNKEYS>

B.4 Class

GetMetadata request:

Note: An Approved RCP is Related to this Section
Section B.3 is related to the following approved RCP(s):

RETS 1.8.0

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 131 of 232

Type: METADATA-CLASS

ID: 0

Compact reply:

<METADATA-CLASS Resource="Agent" Version="1.00.000"
 Date="2002-03-20T12:03:38Z" />

 <COLUMNS>ClassNameVisibleNameStandardNameDescription
 TableVersionTableDateUpdateVersion UpdateDate </COLUMNS> OffsetSupport

 <DATA>AgentAgentAgentAll Agents1.00.000
 2002-03-20T12:03:38Z</DATA>

</METADATA-CLASS>

B.5 Table

GetMetadata request:

Type: METADATA-TABLE

ID: Property: RES

Compact reply:

<METADATA-TABLE Resource="Property" Class="RES" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z" >

 <COLUMNS>SystemNameStandardNameLongNameDBNameShortName
 MaximumlengthDataTypePrecisionSearchableInterpretation

 AlignmentUseSeparatorEditMaskIDLookupNameMaxSelectUnits
 IndexMinimumMaximumDefaultRequiredSearchHelpID

 MetadataEntryIDModTimeStampForeignKeyForeignFieldKeyQuery
 KeySelect</COLUMNS>

 <DATA>LNListIDListing IDLNListID8Int01
 NumberLeft011</DATA>

 <DATA>PTYPPropTypeProperty TypePTProp Type
 2Int01NumberLeft0</DATA>

 <DATA>LPListPriceList PriceLPLst Pr8Int01
 CurrencyRight1142</DATA>

 <DATA>OWNOwnerOwner NameOWNOwn Name20Character
 00Left0</DATA>

 <DATA>VEWViewViewVEWView10Long01LookupBitmaskLeft
 0VEW1</DATA>

 <DATA>EFExtFeatFeaturesEFExt Feat10Character01
 LookupMultiLeft0EFT2</DATA>

 <DATA>SDSchDistSchool DistrictSDSchDist10Character
 01LookupLeft0SD</DATA>

 <DATA>ARMLSAreaMLS AreaARArea4Int01LookupLeft
 0AR3031</DATA>

</METADATA-TABLE>

B.6 Update

GetMetadata request:

Type:METADATA_UPDATE

ID: Property: RES

Compact reply:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 132 of 232

<METADATA-UPDATE Resource="Property" Class="RES" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z" >

 <COLUMNS> UpdateNameDescriptionKeyFieldVersionDate
 MetadataEntryID</COLUMNS>

 <DATA>AddAdd a new Residential Listing1.00.000
 2002-03-20T12:03:38Z</DATA>

 <DATA>ChangeChange a Residential ListingListNumber1.00.000
 2002-03-20T12:03:38Z</DATA>

 <DATA>BOMPut a Residential Listing Back on Market ListNumber
 1.00.0002002-03-20T12:03:38Z</DATA>

</METADATA-UPDATE>

B.7 Update Type

GetMetadata request:

Type: METADATA-UPDATE_TYPE

ID: Property: RES: Add

Compact reply:

<METADATA-UPDATE_TYPE Resource="Property" Class="RES" Update="Add"
 Version="1.00.000" Date="2002-03-20T12:03:38Z" >

 <COLUMNS>SystemNameSequenceAttributesDefault
 ValidationExpressionIDUpdateHelpIDValidationLookupName

 ValidationExternalNameMetadataEntryIDMaxUpdate</COLUMNS>
 <DATA>STNUM12StNumHelp</DATA>

 <DATA>STNAME22StreetName</DATA>
 <DATA>LD32ListDateDateHelp</DATA>

 <DATA>LISTOFF42,3</DATA>
</METADATA-UPDATE_TYPE>

B.8 Object

GetMetadata request:

Class:METADATA-OBJECT

ID:0

Compact reply:

<METADATA-OBJECT Resource="Property" Version="1.00.000"
 Date="2002-03-20T12:03:38Z" >

 <COLUMNS>ObjectTypeMIMETypeVisibleNameDescription
 MetadataEntryIDObjectTimeStampObjectCount </COLUMNS>Location<

 <DATA>Photoimage/jpegFull PhotosHigh Resolution Property Photos
 1 4</DATA>2015-05-22T12:03:38Z12

 <DATA>Thumbnailimage/jpegSmall PhotosLow Resolution Property Photos
 1 12</DATA>2015-05-24T15:03:38Z

</METADATA-OBJECT>

B.9 Lookup

Note: An Approved RCP is Related to this Section
Section B.8 is related to the following approved RCP(s):

RETS 1.8.0

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous RETS version. Click the link above to review this RCP and the
associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 133 of 232

GetMetadata request:

Type: METADATA-LOOKUP

ID: 0

Compact reply:

<METADATA-LOOKUP Resource="Property" Version="1.00.000"
 Date="2002-03-20T12:03:38Z" >

 <COLUMNS>LookupNameVisibleNameVersionDateMetadataEntryID</COLUMNS>
 <DATA>1Status1.00.0002002-03-20T12:03:38Z</DATA>

 <DATA>2Phone Type1.00.0002002-03-20T12:03:38Z</DATA>
 </METADATA-LOOKUP>

 <METADATA-LOOKUP Resource="Agent" Version="1.00.000"
 Date="2002-03-20T12:03:38Z">

 <COLUMNS>LookupNameVisibleNameVersionDateMetadataEntryID</COLUMNS>
 <DATA>1Status1.00.0002002-03-20T12:03:38Z</DATA>

</METADATA-LOOKUP>

B.10 Lookup Type

GetMetadata request:

Type: METADATA-LOOKUP_TYPE

ID: *

Compact reply:

<METADATA-LOOKUP_TYPE Resource="Property" Lookup="AR" Version="1.00.000"
 Date="2002-03-20T12:03:38Z">

 ><COLUMNS>LongValueShortValueValueMetadataEntryID</COLUMNS>
 <DATA>Capitol HillCap Hill1</DATA>

 <DATA>Juanita HillJuanita2</DATA>
 <DATA>Maple ValleyMpl Valley3</DATA>

 <DATA>Downtown RedmondDntn Rdmd<4></DATA>
 </METADATA-LOOKUP_TYPE>

 <METADATA-LOOKUP_TYPE Resource="Agent" Lookup="STAT" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z">

 <COLUMNS>LongValueShortValueValueMetadataEntryID</COLUMNS>
 <DATA>Active ACT1</DATA>

 <DATA>SuspendedSUS2</DATA>
 <DATA>InactvieINA3</DATA>

</METADATA-LOOKUP_TYPE>

B.11 Search Help

GetMetadata request:

Type: METADATA-SEARCH_HELP

ID: Property

Compact reply:

<METADATA-SEARCH_HELP Resource="Property" Version="1.00.000"
 Date="2002-03-20T12:03:38Z" >

 <COLUMNS>SearchHelpIDValueMetadataEntryID</COLUMNS>
 <DATA>1Enter the number in the following format dxd</DATA>

 <DATA>2Enter the number in the following format d.dd</DATA>
</METADATA-SEARCH_HELP>

B.12 Edit Mask

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 134 of 232

GetMetadata request:

Type: METADATA-EDITMASK

ID: Property

Compact reply:

<METADATA-EDITMASK Resource="Property" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z">

 <COLUMNS>EditMaskIDValueMetadataEntryID</COLUMNS>
 <DATA>1[0-9]{1,2}[x][0-9]{1,2} </DATA>

 <DATA>2[0-9]{3}[0-9]{2}[0-9}{4} </DATA>
</METADATA-EDITMASK>

B.13 Update Help

GetMetadata request:

Type: UPDATE_HELP

ID: Property

Compact reply:

<METADATA-UPDATE_HELP Resource="Property" Version="1.00.000"
 Date="2002-03-20T12:03:38Z" >

 <COLUMNS>UpdateHelpIDValueMetadataEntryID</COLUMNS>
 <DATA>1Enter the number in the following format dxd</DATA>

 <DATA>2Enter the number in the following format d.dd</DATA>
</METADATA-UPDATE_HELP>

B.14 Validation Expression

GetMetadata request:

Type: METADATA-VALIDATION_EXPRESSION

ID: Property

Compact reply:

<METADATA-VALIDATION_EXPRESSION Resource="Property" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z" >

 <COLUMNS>ValidationExpressionIDValidationExpressionTypeValue
 MetadataEntryID</COLUMNS>

 <DATA>Office1ACCEPT>
 LAG=.AGENTCODE. .OR. (LO=.BROKERCODE. .AND. .ENTRY.=OFFICE)</DATA>

 <DATA>Agent1ACCEPT(LAG=.AGENTCODE.) .OR. (SAG=.AGENTCODE.)</DATA>
 <DATA>ListDateACCEPT LD>.TODAY. - 3 .AND. LD<.TODAY. + 3</DATA>

</METADATA-VALIDATION_EXPRESSION>

B.15 Validation External

GetMetadata request:

Type: METADATA-VALIDATION_EXTERNAL

ID: Property

Compact reply:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 135 of 232

<METADATA-VALIDATION_EXTERNAL Resource="Property" Version="1.00.000"
 Date= "2002-03-20T12:03:38Z" >

 <COLUMNS>ValidationExternalNameSearchResourceSearchClassVersionDate
 MetadataEntryID</COLUMNS>

 <DATA>1Office Office1.00.0002002-03-20T12:03:38Z </DATA>
 <DATA>2TaxHENN1.00.0002002-03-20T12:03:38Z </DATA>

</METADATA-VALIDATION_EXTERNAL>

B.16 Validation External Type

GetMetadata request:

Type: METADATA-VALIDATION_EXTERNAL_TYPE

ID: Property: VET1

Compact reply:

<METADATA-VALIDATION_EXTERNAL_TYPE Resource="Property"
 ValidationExternalName="VET1" Version="1.00.000"

 Date="2002-03-20T12:03:38Z" >
 <COLUMNS>SearchFieldDisplayFieldResultsFieldsMetadataEntryID

 </COLUMNS>
 <DATA>AgentID, AgentCodeAgentName, OfficeNameSaleAgentID=AgentID,

 SaleAgentName=AgentName, SaleOfficeID=OfficeID,
 SaleOfficeName=OfficeName</DATA>

</METADATA-VALIDATION_EXTERNAL_TYPE>

B.17 Column Group Set

GetMetadata request:

Type: METADATA-COLUMN_GROUP_SET

ID Format: Resource : Class

ID Example: Property : RES

Compact reply:

<METADATA-COLUMN_GROUP_SET Version="1.00.000" Date= "Sat, 20 Mar 2002 12:03:38 GMT" Resource="Property" Class="RES" >
<COLUMNS>MetadataEntryIdColumnGroupSetNameColumnGroupSetParent
SequenceLongNameShortNameDescriptionColumnGroupNamePresentationStylePresentationColumnsURL</COLUMNS>
<DATA>10000123456Residential1Residential ListingResidentialThe top node of the Residential Listing Data Entry Hierarchy</DATA>
<DATA>10000123457WaterFrontResidential1WaterFront InformationWaterFrontDetails about water front for propertyWaterFrontEdit1</DATA>
<DATA>10000123457BedroomsResidential2Bedroom InformationBedroomsDetails about bedrooms for propertyBedroomsMatrix</DATA>
<DATA>10000123457AgentInfoResidential3Agent InformationAgentAgent Website
www.mywebsite.com/agent?Agent=.AGENTCODE.?Listing=.ListingID.</DATA>
</METADATA-COLUMN_GROUP_SET>

B.18 Column Group

GetMetadata request:

Type: METADATA-COLUMN_GROUP

ID Format: Resource : Class

ID Example: Property : RES

Compact reply:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 136 of 232

<METADATA-COLUMN_GROUP Version="1.00.000" Date= "Sat, 20 Mar 2002 12:03:38 GMT"
Resource="Property" Class="RES" >
<COLUMNS>MetadataEntryIdColumnGroupNameControlSystemName
LongNameShortNameDescriptionVersionDate</COLUMNS>
<DATA>10001123456WaterFrontWaterFrontFlagWater Front InformationWater FrontListing data that contains water front information for the
Listing1.00.000Thu, 3 Feb 2005 20:35:15 GMT</DATA>
</METADATA-COLUMN_GROUP>

B.19 Column Group

GetMetadata request:

Type: METADATA-COLUMN_GROUP_CONTROL

ID Format: Resource : Class : ColumnGroup

ID Example: Property : RES : WaterFront

Compact reply:

<METADATA-COLUMN_GROUP_CONTROL Version="1.00.000" Date= "Sat, 20 Mar 2002 12:03:38 GMT" Resource="Property" Class="RES"
ColumnGroup="WaterFront" >
<COLUMNS>MetadataEntryIdLowValueHighValue</COLUMNS>
<DATA>1001112345611</DATA>
</METADATA-COLUMN_GROUP_CONTROL>

B.21 Column Group Table

GetMetadata request:

Type: METADATA-COLUMN_GROUP_TABLE
ID Format: Resource : Class : ColumnGroup

ID Example: Property : RES : WaterFront

Compact reply:

<METADATA-COLUMN_GROUP_TABLE Version="1.00.000" Date= "Sat, 20 Mar 2002 12:03:38 GMT" Resource="Property" Class="RES"
ColumnGroup="WaterFront" >
<COLUMNS>MetadataEntryIdSystemNameDisplayOrder</COLUMNS>
<DATA>10111123450WaterFront1</DATA>
<DATA>10111123451WaterAccess2</DATA>
<DATA>10111123452WaterFrontage3</DATA>
<DATA>10111123453WaterView4</DATA>
</METADATA-COLUMN_GROUP_TABLE>

B20 Column Group Normalization

GetMetadata request:

Type: METADATA-COLUMN_GROUP_NORMALIZATION
ID Format: Resource : Class : ColumnGroup

ID Example: Property : RES : WaterFront

Compact reply:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 137 of 232

<METADATA-COLUMN_GROUP_NORMALIZATION Version="1.00.000" Date= "Sat, 20 Mar 2002 12:03:38 GMT" Resource="Property"
Class="RES" ColumnGroup="WaterFront" >
<COLUMNS>MetadataEntryIdTypeIdentifierSequenceColumnLabelSystemName</COLUMNS>
<DATA>10211123450Bedroom1LengthBedroom1Length</DATA>
<DATA>10211123451Bedroom1WidthBedroom1Width</DATA>
<DATA>10211123452Bedroom1AreaBedroom1Area</DATA>
<DATA>10211123453Bedroom2LengthBedroom2Length</DATA>
<DATA>10211123454Bedroom2WidthBedroom2Width</DATA>
<DATA>10211123455Bedroom2AreaBedroom2Area</DATA>
<DATA>10211123456Bedroom3LengthBedroom3Length</DATA>
<DATA>10211123457Bedroom3WidthBedroom3Width</DATA>
<DATA>10211123458Bedroom3AreaBedroom3Area</DATA>
<DATA>10211123459LivingRoomLengthLivingRoomLength</DATA>
<DATA>10211123460LivingRoomWidthLivingRoomWidth</DATA>
<DATA>10211123461LivingRoomAreaLivingRoomArea</DATA>
<DATA>10211123462DiningRoomLengthDiningRoomLength</DATA>
<DATA>10211123463DiningRoomWidthDiningRoomWidth</DATA>
<DATA>10211123464DiningRoomAreaDiningRoomArea</DATA>
<DATA>10211123465KitchenLengthKitchenLength</DATA>
<DATA>10211123466KitchenWidthKitchenWidth</DATA>
<DATA>10211123467KitchenAreaKitchenArea</DATA>
</METADATA-COLUMN_GROUP_NORMALIZATION>

Example Screen Display based on Above Compact Reply:

Type Sequence Length Width Area

Bedroom 1 Bedroom1Length Bedroom1Width Bedroom1Area

Bedroom 2 Bedroom2Length Bedroom2Width Bedroom2Area

Bedroom 3 Bedroom3Length Bedroom3Width Bedroom3Area

LivingRoom LivingRoomLength LivingRoomWidth LivingRoomArea

DiningRoom DiningRoomLength DiningRoomWidth DiningRoomArea

Kitchen KitchenLength KitchenWidth KitchenArea

The user's data entry area would be the greyed out section and the data that they enter would be assigned to the SystemName in that grid
position.

B.21 Payload

GetMetadata request:

Type: METADATA_PAYLOAD

ID: Property

Compact reply:

Note: An Approved RCP is Related to this Section
Section B.18 is related to the following approved RCP(s):

RETS 1.7.2

RCP 71 Time Zone Data

RETS 1.8.0

RCP 87 RETS 1.7.2 Errata Document

Content in this section has been updated or modified since the previous
RETS version. Click the link above to review this RCP and the associated
changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+71+Time+Zone+Data
http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 138 of 232

<METADATA-PAYLOAD Version="1.00.000"
 Date="2017-03-16T12:03:38Z" >

<COLUMNS>RESOURCE_IDCLASS_IDPAYLOAD PAYLOADNAMEVERSION_ID URIDESCRIPTION</COLUMNS>
<DATA>PropertyRESRESListing1Residential Listing Short1.5http://example.com/rs1.xsdOne line residential

</DATA>listing
<DATA>PropertyRESRESListing2 1.5http://example.com/rs2.jsonJson one lineResidential Listing Short-json
resi</DATA>
<DATA>PropertyLNDLand1LotsAndLand1.5 </DATA>http://example.com/lnd1.xsdLots and Land
<DATA>AgentAgentListingAgent1Short Agent1.5http://example.com/agt1Public agent information for

</DATA>syndication

</METADATA-PAYLOAD>

Appendix C - Summary of RETS Reply Codes

Table C-1 Consolidated RETS Reply Codes

Reply
Code

Meaning

0 Operation successful

10000 System error
The server has detected an error with the request that prevents it from identifying the type of request, or that prevents the server
from routing the request for processing. This return code MUST NOT be used when a more specific return code can be
determined.

20003 Zero Balance
The user has zero balance left in their account.

20004 thru
20011

RESERVED

20012 Broker Code Required
The user belongs to multiple broker codes and one must be supplied as part of the login. The broker list is sent back to the client
as part of the login response (see).section 4.6

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru
20019

RESERVED

20022 Additional login not permitted
There is already a user logged in with this user name, and this server does not permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be displayed to the user

20037 Client authentication failed.
The server requires the use of a client password (), and the client either did not supply the correct client passwordsection 4.1.2
or did not properly compute its challenge response value.

20041 User-agent authentication required.
The server requires the use of user-agent authentication (), and the client did not supply the user-agent headersection 4.1.2
values.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

20140 Insecure password.
The password does not meet the site's rules for password security.

20141 Same as Previous Password.
The new password is the same as the old one.

20142 The encrypted user name was invalid.

http://members.reso.org/display/rets18/4.6+Login+Response+Body+Format
http://members.reso.org/display/rets18/4.1+Security#id-4.1Security-4.1.2ClientAuthentication
http://members.reso.org/display/rets18/4.1+Security#id-4.1Security-4.1.2ClientAuthentication

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 139 of 232

20200 Unknown Query Field
The query could not be understood due to an unknown field name.

20201 No Records Found
No matching records were found.

20202 Invalid Select
The Select statement contains field names that are not recognized by the server.

20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed to the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the supplied login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This reply code indicates that the maximum records allowed
to be returned by the server have been exceeded. Note: reaching/exceeding the "Limit" value in the client request is not a cause
for the server to generate this error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be accepted at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains too many nesting levels or too many values for a
lookup field.

20212
[deprecated]

Invalid key request [deprecated]
The transaction does not meet the server's requirements for the use of the option.Key

20213
[deprecated]

Invalid [deprecated] Key
The transaction uses a key that is incorrect or is no longer valid. Servers are not required to detect all possible invalid key
values.

20301 Invalid parameter.
Additional information is provided in the error block.

20302 Unable to save record on server.

20303 Miscellaneous Update Error.

20311 Warning Response was not given for all warnings that contained a {{ }}value of 2.response-required

20312 Warning Response was given for a warning that contained a value of 0.response-required

20400 Invalid Resource
The request could not be understood due to an unknown resource.

20401 Invalid Type
The request could not be understood due to an unknown object type for the resource.

20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.

20403 No Object Found
No matching object was found to satisfy the request.

20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.

20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the supplied login does not grant access.

20408 Resource Unavailable
The requested resource is currently unavailable.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 140 of 232

20409 Object Unavailable
The requested object is currently unavailable.

20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.

20411 Timeout
The request timed out while executing

20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be accepted at this time.

20413 Miscellaneous error
The server encountered an internal error.

20414 URL Location Not Supported
The server does not support retrieving Objects by URL.

20415 Objects in the response body, Location=0 Not Supported

The server does not support retrieving Objects in the response body.

20500 Invalid Resource
The request could not be understood due to an unknown resource.

20501 Invalid Type
The request could not be understood due to an unknown metadata type.

20502 Invalid Identifier
The identifier is not known inside the specified resource.

20503 No Metadata Found
No matching metadata of the type requested was found.

20506 Unsupported MIMEType
The server cannot return the metadata in any of the requested MIME types.

20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which the supplied login does not grant access (e.g.
Update Type data).

20508 Resource Unavailable
The requested resource is currently unavailable.

20509 Metadata Unavailable
The requested metadata is currently unavailable.

20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.

20511 Timeout
The request timed out while executing.

20512 Too many outstanding requests
The user has too many outstanding requests and new requests will not be accepted at this time.

20513 Miscellaneous error
The server encountered an internal error.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using a DTD version that the server cannot provide.

20701 Not logged in
The server did not detect an active login for the session in which the Logout transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional information.

20800 Unknown resource

20801 Invalid object type

20802 Invalid identifier

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 141 of 232

20803 Invalid update action

20804 Invalid (inconsistent) request parameters

20805 No object found (for Delete)

20806 Unsupported MIME type

20807 Unauthorized

20808 Some objects not deleted (in case of Delete without ObjectID or UID, if some objects could not be deleted, while some were)

20809 Refused: object does not meet business rules

20810 FileSize too large
Note that some servers MAY respond with HTTP status “413 – Request entity too large” if the uploaded file is larger than any
acceptable limit.

20811 Timeout

20812 Too many outstanding requests

20813 Miscellaneous error

Appendix D - Maximum Field Length and Display Information

This appendix defines formulas used to determine the maximum character length of field data based on the data type of the field and provides
examples. These formulas describe how the RETS server should calculate the MaximumLength for reliable use by RETS client applications.

It is NON-NORMATIVE: these examples illustrate one case of calculating and formatting field values and their metadata and one set of values. Se
 describes the rules in detail.ction 11.3.2

D.1 Datatype Boolean

Any field with the Boolean data type should represent the MaximumLength as '1'. The definition of the Boolean data type requires a single
character representation of the data.

Interpretation Precision Separator Units Max Select Extreme Example Maximum Length Display

null n/a n/a n/a n/a 0 1 False

null n/a n/a n/a n/a 1 1 True

Lookup n/a n/a n/a n/a 12345678 8 from lookup LookupName,
longvalue, lookup
shortvalue, the value from
the corresponding lookup
values, from value, 0 or 1

D.2 Datatype Character

Fields designated as the Character data type with an interpretation of Lookup or LookupMulti should calculate the MaximumLength according to
the following:

(MaxSelect * (MaxValueLength + 3)) -1

Add the maximum character length of the longest Lookup Value in the Lookup metadata defined by the Lookup Name of the field to the enclosing
quotations and delimiter characters ('3') then multiply this with the MaxSelect for the field. Finally, since there is no final delimiter in the list of
delimiter separated values, subtract '1' from the total to determine the MaximumLength.

Example: The Field 'Appliance' has 10 Lookup items and has a MaxSelect of 4 lookup items. The longest Lookup Value length is 6 for the Lookup
Value 'FRIDGE', used for the Lookup Long Value 'Refrigerator'

(4 * (6 + 3)) - 1 = 35.

Interpretation Precision Separator Units Max Select Extreme Example Maximum Length Display

null n/a n/a n/a n/a random_string 13 random_string

Lookup n/a n/a n/a n/a random_string 13 from lookup
LookupName, True

D.3 Datatype Decimal

Fields designated as Decimal only include numbers represented using a Decimal point. The Precision of the field determines the maximum
number of decimal characters following the decimal point of the number. However, the maximum decimal precision of the data includes the
decimal spaces before the decimal as well. For a decimal number, the MaximumLength should match the maximum decimal precision of the

http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table
http://members.reso.org/display/rets18/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 142 of 232

value plus one to represent the decimal point character itself.

An example: A signed 16 bit floating point number with a Precision of 3 has a maximum number of +32.787/-32.768 which is 7 characters,
including sign. RETS does not define Decimal numbers by binary size, so the server should advertise the MaximumLength as appropriate to the
data exposed via the RETS server interface.

The Currency interpretation follows the same rules as a Decimal number with 2 decimal points of Precision.

Interpretation Precision Separator Units Max Select Extreme Example Maximum Length Display

Numeric 2 , null n/a -12342.21 9 -12,342.21

Numeric 1 , Feet n/a 123.1 5 123.1 feet

Currency 2 , n/a n/a 1246.227 7 $1246.22

Appendix E - Approved RCPs

Version 1.7.2
RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata
RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring
RETS Change Proposal 71 - Time Zone Data
RETS Change Proposal 72 - LookupType String Length

Version 1.8.0
RCP 59 - Revised Update Transaction
RCP 60 - Metadata Changes for Update
RCP 61 - Validation Expression Replacement
RCP 63 - Object Data and Upload
RCP 65 - Session information tokens
RCP 68 - Search Has Key Index Support
RCP 69 - LookupType Value
RCP 70 - Metadata Role Support
RCP 74 - Location Availability in Object Metadata
RCP 75 - Offset Availability in the Metadata
RCP 76 - GetPayloadList
RCP 77 - Maximum Field Length
RCP 78 - Specification Errata Changes
RCP 79 - Add Preferred Flag to GetObject Responses
RCP 80 - Optional Query
RCP 82 - LookupMulti Quoting Rule
RCP 87 - RETS 1.7.2 Errata Document
RCP 90 - Deprecate CommonInterest Class Well-Known Name
RCP 91 - StandardNames Version Information in Login Transaction
RCP 92 - RESO Payload Transport-Level Metadata Support
RCP 93 - Add Content-Sub-Description to GetObject
RCP 94 - Improved Error Handling in GetObject
RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login
RCP 99 - Mixing StandardNames and SystemNames
RCP 100 - Alternate Standard Names
RCP 101 - Child Rows Support
RCP 102 - GetObject URL as Default Location

Version 1.9.0
RCP 103 - Geospatial Search
RCP 104 - StandardValue for Enumerations
RCP 105 - Update Transaction Response Format Correction
RCP 106 - Client cookie support for RFC 6265
RCP 107 - IETF HTTP RFC Updates to references in the RETS specification
RCP 108 - Migrate RETS specific HTTP Headers to HTTP User Space headers (X-*)
RCP 109 - Update TLS specification references to current Internet/Industry Standards
RCP 110 - Deprecate and Replace GetPayloadList
RCP 112 - RETS Metadata Version Header
RCP 113 - Search Transaction Optional Format Argument - Add JSON

Note: An Approved RCP is Related to this Section
Appendix D is related to the following approved RCP(s):

RETS 1.8.0

RCP 77 Maximum Field Length

Content in this section has been updated or modified since the previous RETS version.
Click the link above to review this RCP and the associated changes that were proposed and adopted in this version.

http://members.reso.org/display/RCP/RCP+77+-+Maximum+Field+Length

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 143 of 232

Version 1.7.2

Change proposals that were added to the RETS 1.7.2 version:
RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata
RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring
RETS Change Proposal 71 - Time Zone Data
RETS Change Proposal 72 - LookupType String Length

RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata

Information

Change Proposal Number: 64
Change Proposal Title: Omnibus Adopted Schemas Revisions and Errata
Originating Workgroup: Schema
Date: March 31, 2008
Version: 1.0.0
RETS Version: Data Schemas
Status: Adopted
Submitted Date: March 30, 2008
Voting Date:
Contact Information
Author: Paul Stusiak
Organization: Falcon Technologies Corp.
Telephone:
E-mail: pstusiak@falcontechnologies.com

Synopsis

The change proposal modifies the adopted schemas as of the April 2008 trimester meeting to resolve some issues discovered in implementations
of the schemas and to better describe the intent of the schemas through renaming of certain elements.

Rationale

The change proposal provides clarifications and corrections to the existing schemas.

Proposal

The following schemas are to be modified:
Offices.xsd,
Members.xsd,
Teams.xsd,
Person.xsd,
ContactMethods.xsd,
Address.xsd.
Financial.xsd,
Listings.xsd.
The modifications are as follows.
Offices.xsd and Members.xsd - change the name of the element from MLSLicensing to ProfessionalLicensing and the type from RELicense to
ProfessionalLicenseType to reflect the more general use of licensing to include appraisers and auction.
Offices.xsd and Members.xsd - make consistent use of the cardinality maxOccurs on each element to remove ambiguity by explicitly showing the
cases of maxOccurs="1". maxOccurs="1" is the default, therefore the change in this case creates no functional difference.
Members.xsd - change the ModificationTimestamp element to be required to match the other top level schema.
Members.xsd - add the missing retsid values for the enumeration MLSMembershipStatusEnum.
Members.xsd - add MembersMediaItems element to provide media for members.
Members.xsd – add a container for EligibleRoles and a string for a list of BillingCodes.
Offices.xsd - change the type definition nrds:OfficeType to nrds:OfficeCategory in NRDSCommons to resolve an ambiguous reference error in
certain parser-generators that may be used with the schema to validate and/or generate instances or code stubs. This also makes the archetype
more consistent with the general pattern that complexTypes take the ending 'Type' while elements that describe the classification of the concept
take the ending 'Category'.
Offices.xsd - rename Media to OfficeMediaItems to be consistent.
Teams.xsd - add TeamMediaItems element to provide media for teams.
Person.xsd - resolve a retsid conflict with retsid=100016 being repeated twice in the document. Change the second instance of the id on element
ContactMethods to 101612.
Address.xsd - move the unit type out of the sequence to stand alone at the same level as City and ProvinceOrState at the request of the
Syndication workgroup. Change the type definitions to use the pattern of 'Type'.
Address.xsd - correct the missing retsids for the AddressCategoryEnumeration.
ContactMethods.xsd - correct the missing retsids for the enumerations.Financial.xsd - resolve a retsid conflict with retsid=101280 being repeated
twice in the document. Change the second instance of the id on enumeration Other - Federal to 101604.
Financial.xsd - resolve a retsid conflict with retsid=100161 - 100163 being repeated twice in the document. Change the first instance of the id on

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 144 of 232

elements of ClosingFinancingType to 101604.
Listings.xsd - resolve a retsid conflict with retsid=100384 being repeated twice in the document. Change the second instance of the id on element
ClosingTerms to 101597.
Listings.xsd - resolve a retsid conflict with retsid=100359 being repeated twice in the document. Change the first instance of the id on element
Financing of type ClosingFinancingType to 101598.
The namespace of each affected schema will be updated to 2008-04.

Impact

For each of the changes that involves a retsid or documentation change, there should be no impact. For changes that rename existing fields or
restructure the sequence of fields, the impact will be minor to medium if the schema has been used to generate code stubs. If the schema has not
been used to general code, the impact should be minor.

Compatibility

The changes may break compatibility when mapping between existing implementations of the schema and applications that depend on those
schemas. Given the small number of implementations of the schema, the changes should be broadly compatible.

Document History

Date Version Author Description

2008-03-29 1.0 Paul Stusiak Initial Release

2008-04-10 1.1 Paul Stusiak Added namespace version update

RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring

Information

Change Proposal Number: 66
Change Proposal Title: Deprecate Lookup Types LookupBitmask and LookupBitString
Originating Workgroup: RETS 1.7.1 Document
Date: June 9th, 2008
Version: 1.0.0.
RETS Version: 1.8
Status: Adopted
Submitted Date: June 9th, 2008
Voting Date: [{review board authorized voting date for the change proposal}]
Contact Information
Author: Mark Lesswing
Organization: National Association of REALTORS(R)
Telephone:
E-mail: mlesswing@realtors.org
Author: Paul Stusiak
Organization: Falcon Technologies Corporation
Telephone:
E-mail: pstusiak@falcontechnologies.com

Synopsis

The lookup types LookupBitmask and LookupBitstring be removed from the standard and be marked deprecated because they represent
implementation details and are not generally used, making the documentation of LookupType unnecessarily complex.

Rationale

Confusion has existed around the LookupType metadata which has three different types of lookup representation. These three different types
exist to provide some direct mapping between the standard and certain relational databases. In general use, most if not all implementations have
settled on a single form, the direct mapping, where each lookup triplet (LongValue, ShortValue and Value) is represented by a single lookup
Value. Having unused lookup formats does not improve the interoperability of the standard and requires additional code on the part of client
vendors to support this limited feature, making a barrier to entry to the standard.

Note: This RCP Affects the Following Sections
Section 11.4.3 Lookup Type

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RETS180a/11.4+Metadata+Format+for+Shared+Elements#id-11.4MetadataFormatforSharedElements-11.4.3LookupType

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 145 of 232

Proposal

The proposal will modify Section 11.4.3, Table 11-10, removing the definitions for LookupBitmask and LookupBitstring. The existing text,
The value to be sent to the server when performing a search. This field must be numeric for LookupBitmask and LookupBitstring types. For
LookupBitmask fields, 2(value-1) is used to compute this component as part of the applicable choices. For LookupBitstring fields, this is the
position with in the field, 1-based, at which the value contains a"1".
will be replaced by
The value to be sent to the server when performing a search.

Impact

This change will remove LookupBitstring and LookupBitmask from the standard and from the compliance tester. Existing systems that provide this
feature may still have this feature, but it will be an extension to the standard. Client applications will not work with such systems without additional
coding and documentation to describe how the form is used.
Given that the premise of the change proposal is that this is not a widely used form, the actual impact will be limited or no impact.

Compatibility

This change will be compatible with RETS 1.8 and higher.h3.Document History

Date Version Author Description

June 9, 2008 1.0.0 Paul Stusiak Initial Release

RETS Change Proposal 71 - Time Zone Data

Original document: RCP 71 Time Zone Data

Information

Author: Matthew McGuire
Organization: MarketLinx Inc.
Telephone Number: (865) 470-1500
Address: 1400 Centerpoint Blvd. Suite 100, Knoxville, TN 37932
Email: mmcguire@marketlinx.com
Status: Adopted
Date: July 2, 2007
Version: 1.7d6
Incorporated in Version: 1.7.2

1 Synopsis

This proposal refines the formatting and use of Date and Time data with regards to the application of Time Zones. To that effect this proposal will
define how Time Zone data can be communicated by the server using metadata and data representation. This proposal will also attempt to clarify
any date or time specific inconsistencies in the specification that may have an affect on the interpretation or use of time zone information.

2 Rationale

Note: This RCP Affects the Following Sections:
Section 2.4 – Atoms and Primitive Entities
Section 3.6 – Server Response Header Fields
Section 4.4.2 – SavedMetadataTimestamp Argument
Section 4.7.3 – Metadata Version Information
Section 4.8.2 – Access Control Information
Section 5.11 – Multipart Responses
Section 7.7.1 – Query Language BNF
Section 7.7.2 – Query Language Interpretation
Section 11.2.1 – System Metadata
Section 11.3.2 – Table
Section 13.3(13.4) – Transmission Standards
Appendix B – Sample COMPACT Metadata Responses

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+71+Time+Zone+Data
http://members.reso.org/display/RETS180a/4.4+Optional+Request+Arguments#id-4.4OptionalRequestArguments-4.4.2SavedMetadataTimestampArgument
http://members.reso.org/display/RETS180a/4.7+Required+Response+Arguments#id-4.7RequiredResponseArguments-4.7.3MetadataVersionInformation
http://members.reso.org/display/RETS180a/4.8+Optional+Response+Arguments#id-4.8OptionalResponseArguments-4.8.2AccessControlInformation
http://members.reso.org/display/RETS180a/7.6+Query+language#id-7.6Querylanguage-7.7.1QuerylanguageBNF
http://members.reso.org/display/RETS180a/7.6+Query+language#id-7.6Querylanguage-7.7.2Queryparameterinterpretation
http://members.reso.org/display/RETS180a/11.2+System-Level+Metadata#id-11.2System-LevelMetadata-11.2.1System
http://members.reso.org/display/RETS180a/11.3+Metadata+Format+for+Class+Elements#id-11.3MetadataFormatforClassElements-11.3.2Table

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 146 of 232

The specification currently provides various time and date-time data points to communicate time information about the server and response
content. However the specification does not define a method or practice for handling data in default or multiple time-zones. Presently the
specification also requires all Search requests to be formed in GMT and translated by the server to the appropriate time zone. However this does
not address the time zone of data returned by the server and therefore only obscures the actual time zone for the data returned to the client.
RETS 1.7d6 Section 15 – Server Information attempts to address this outside of the existing metadata model. Although the attempt minimizes
impact on the existing metadata formats, it is unclear how the Server Information response integrates with the existing metadata model or how the
client application would be able to use this information effectively for either metadata or content data. Additionally the Server Information response
does not address the presentation of time zone data in search response bodies. This proposal attempts to resolve these shortcomings by
redefining the time and date-time formats where necessary and adds additional metadata to the specification in order to provide a precise
representation of data on the server.

3 Proposal

3.1 Specification Changes

The following sections detail each area of the existing specification that needs to be changed or clarified and provides reasoning related to each
change. Each are of the change will be listed according to the section of the specification using the specification numbering in italics. For example
changes to the METADATA-SYSTEM response format would look like the following: "Section 11.2.1".
Section 2.4 – Atoms and Primitive Entities
This section defines a series of tokens for use within the Augmented BNF content of the specification. Presently only DATE exists to represent a
time format in the BNF. Additionally the DATE token is defined as "Date using the format defined in RFC 1123" which is incongruent with the
remaining specification where ISO8601 is defined in most cases such as the Search Query BNF. To resolve this, the following segment of BNF
replaces the BNF for DATE in section 2.4 and removes the reference to RFC 1123. For simplicity throughout changes to the specification the
definitions for DATE, TIME, and DATETIME are redefined to use the appropriate definitions below.

::= 4DIGITdate-fullyear
date-month::= 2DIGIT ; 01-12
date-mday::= 2DIGIT ; restriction based on month/year
time-hour::= 2DIGIT ; 00-23
time-minute::= 2DIGIT ; 00-59
time-second::= 2DIGIT ; restriction based on leap second rules
time-secfrac::= "." 1*DIGIT
time-noffset::= ("+" | "-") time-hour ":" time-minute
time-offset::= "Z" | time-noffset
partial-time::= time-hour ":" time-minute ":" time-second [time-secfrac]
full-date::= date-fullyear " " date-mday" date-month "
full-time::= partial-time [time-offset] time-offset
date-time::= full-date "T" full-time
ISODATE ::= full-date
ISOTIME ::= full-time
ISODATETIME::= date-time
ISOTIMEZONE::= time-offset
DATE::= RFC 1123 date format which MUST be GMT
Note that DATE is defined for use throughout the specification and all reference to DATE must be reviewed and modified to be ISODATE,
ISOTIME, or ISODATETIME as appropriate. However to allow for backwards compatibility the DATE definition which is used throughout the
Metadata hierarchy is not changed other than to require that this date represent time in GMT. This additional requirement assures that metadata
timestamps and other metadata related content is consistently represented across the server. This is also consistent with the usage of the date
format in HTTP and has been chosen to reduce confusion. The ISODATE, ISOTIME, and ISODATETIME definitions are provided to enable time
zone aware dates and times in content response bodies and search criteria. The ISOTIMEZONE definition simply abstracts the time-offset
definition for naming consistency. This definition will be used to communicate the default and current time zone offset of data communicated by
the server.
Section 3.6 – Server Response Header Fields
The existing specification explicitly requires the use of the DATE HTTP header. This date format must conform to the format defined in RFC 2616.
As a result dates within HTTP headers must use the DATE definition in Section 2.4. Although there are no changes to the language of this section
this note is provided for clarity.
Section 4.4.2 – SavedMetadataTimestamp Argument
This argument is defined in order to communicate the metadata timestamp of cached by the client application. As a result this date format should
be consistent with the existing metadata timestamps and is represented in RFC format. The additional requirement that this dateWHA2616 T
represent GMT time still applies. This note was provided for clarity.
Section 4.7.3 – Metadata Version Information
The metadata versioning mechanism defines two timestamps using the DATE primitive. These two dates must represent GMT time as described
in the BNF in section 2.4. The remaining use of the DATE definition will not be detailed as all use of this definition will conform to the description
here. This note was provided for clarity.
Section 4.8.2 – Access Control Information
This section of the specification defines a method for communicating session timeout information to a client application. The necessary change
applies to the following text:
pwd-expire-key ::= Expr = pwd-expr , expr-warn-per CRLF
Indicates when a users password will expire. The parameter pwd-expr is a date in RFC 1123 format. And expr-warn-per is the number of days
(1*3DIGIT) prior to expiration that the user should be warned of the upcoming password expiration. A expr-warn-per value of (-1) indicates that
the password expiration is disabled.
This text refers to RFC1123 and should be replaced with the following text.
pwd-expire-key ::= Expr = pwd-expire-date "," pwd-expire-warn CRLF

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 147 of 232

pwd-expire-date ::= ISODATETIME
pwd-expire-warn ::= 1*3DIGIT
The pwd-expire-key indicates when a user's password will expire. The second value, listed as pwd-expire-warn, represents the number of days
prior to expiration that the user should be warned of the upcoming password expiration. A pwd-expire-warn value of (-1) indicates that the
password expiration is disabled.
The above changes set the format of the response to ISODATETIME format to support time zone in the data. If time zone is not declared in the
data the time zone defaults to the System TimeZoneOffset metadata information.
Section 5.11 – Multipart Responses
The subsection 5.11.1 defines the general formatting for multipart-mime content as used by the Get Object specification. Since this format is
based on the existing multipart-mime format, the format of the Date header value must conform to the multipart-mime standard defined by RFC
2045, which in turn depends on RFC 1123. For the purpose of RETS multipart-mime content this date MUST represent GMT time as defined in
Section 2.4.
Section 7.7.1 – Query Language BNF
The existing query language BNF contains date formatting defined in a manner consistent with ISO date and time, but does not allow for
communicating time zone in the search or the response. To correct this, the BNF is modified to the following which references section 2.4 as
appropriate.
date ::= ISODATE | TODAY
time ::= ISOTIME | NOW
datetime ::= ISODATETIME | NOW
Since the rest of the date time format is detailed in section 2.4 the following items are removed from the Query Language BNF.
fraction, second, minute, hour, day, month, year
Section 7.7.2 – Query Language Interpretation
This section details how the search query information is interpreted based on the type and use of the query data. This section contains the
following text which must be modified to handle time zone information in the query.
All datetimes submitted in queries MUST be in GMT. All other dates or times are interpreted in host time. The host MUST interpret the token
NOW as the current date and time, and the token TODAY as the current date. If a DateTime is used in a Date context, the host MUST either
reject the expression or interpret the date as a datetime with a time of 0000.
Since this text declares a mandatory default time zone it must be changed to the following for this proposal.
Dates and times submitted in a query MAY declare time zone using the time zone formatting of the ISODATETIME and ISOTIME format. If a time
is submitted with time zone data it MUST be interpreted according to the time zone declared in the submitted query. If the time zone is not
declared in the query the server MUST interpret the submitted time according to the System default time zone offset. If no TimeZoneOffset is
declared for the System the default time zone MUST be interpreted as UTC/GMT. The use of the TODAY tokens MUST also adhere toand NOW
the time zone offset declared in the metadata. If a DateTime is submitted in the context of a Date, the server MUST either reject the date or
interpret the date as a DateTime with a Time of 00:00:00 adhering to the time zone offset declared in the metadata. For backwards compatibility if
a client application requests a RETS version of 1.7d6 or lower, the server MUST treat all submitted dates and times without time zone data as
UTC/GMT. In this case the advertised time zone offset is ignored since the client is not expected to be aware of the correct offset.
The query language interpretation is written this way to support limited backwards compatibility. Servers which do not expose TimeZoneOffset
metadata are required to use UTC/GMT as the default. Additionally the server is not required to send time zone offset for all date time content in
responses. As a result if a server has no time zone offset metadata and does not send time zone data in the response bodies, the server
functions the same as prior versions and adheres to UTC/GMT as defined.
Section 11.2.1 – System Metadata
The existing System Metadata response does not declare any time zone information for the date and time data of the server. To facilitate this, the
following response data format is modified to the following.
<METADATA-SYSTEM Version="system-version" Date="system-date" > [TimeZoneOffset="time-zone-offset"] I would make this a separate
element. The attributes usually define which part of Metadata is going on (the position of this piece of metadata in the Metadata hierarchy), while
elements provide the metadata info (the data being communicated by this metadata).
<SYSTEM SystemID="code-name" SystemDescription="long-name " />
[<COMMENTS>
*(comment)
</COMMENTS>]
</METADATA-SYSTEM><METADATA-SYSTEM Version="system-version" Date="system-date" >
<SYSTEM SystemID="code-name" SystemDescription="long-name" TimeZoneOffset="time-zone-offset"/>
[<COMMENTS>
*(comment)
</COMMENTS>]
</METADATA-SYSTEM>
Where in this metadata format the ISOTIMEZONE is define in Section 2.4. Please note that the Date attribute value is unchanged and remains in
the legacy date format taken from RFC 1123. The following subsection is added in order to describe the time-zone-offset format in the response
body.
System Default Time Zone
time-zone-offset ::= ISOTIMEZONE
To support time zone aware functionality the server MAY provide time zone offset data in the System metadata. The optional TimeZoneOffset
value declares the time zone as a time offset from UTC. The format is defined in Section 2.4. The server adheres to this value as defined in
Section 7.7.1. Client applications SHOULD use this value in order to calculate the correct date and time criteria for requests.
This additional section directly refers to the Query Language interpretation and explicitly recommends that Client application use this value when
calculating the correct dates and times for requests. This is made clear to encourage better support for incremental updates on both server and
client implementations.

 – TableSection 11.3.2
To support communicating the time zone in a response the definition of field DataType must be modified to support the ISODATETIME and
ISOTIME formatting. To do this the following definition of DataType should be used in . Table 11-9

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 148 of 232

DataType Date A date in ISODATE format. (see section 2.4)

 DateTime A date and time in ISODATETIME format. (see section 2.4)

 Time A time in ISOTIME format. (see section 2.4)

This redefinition refers to Section 2.4 for clarity. Note that the time zone data is optional and when unused the date retains the format prior to this
change proposal. How is the timezone optional?

Section 13.3 – Transmission Standards
This section defines the formatting for COMPACT and COMPACT-DECODED data in response bodies. Since Table 13-1 defines the date and
time formats it should be changed to the following.

Date A date in ISODATE format. (see section 2.4)

Time A time in ISOTIME format. (see section 2.4)

DateTime A date and time in ISODATETIME format. (see section 2.4)

This redefinition again refers to the formal definition in Section 2.4 for clarity. Note here that the time zone formatting is optional and servers
returning the plain time or date time values will not be affected. How is the timezone optional?
Appendix B – Sample COMPACT Metadata Responses
This section contains many examples that would need to be updated according to the proposed changes above. I have omitted them for brevity.

4. Compatibility

Since this proposal directly affects the use and representation of existing data types in metadata or content there are possible backwards
compatibility issues to address. This section will list the areas where changes defined above may or will produce changes that are not backwards
compatible. Areas that are not affected will be omitted. If an area appears to be omitted in error please refer to the changes defined above for
suggested best practices or interpretations of the specification as they apply to this proposal.
Metadata Format Complication
The addition of a new Metadata attribute or field for System, Resource, and Class changes the DTD for validating the Metadata responses. This
will be a compatibility concern as old clients and servers may not accept the new XML nodes and fail to parse them correctly. Although document
validation should be associated to the DTD declaration in the response body it is possible that client and server applications cache this DTD
locally for performance reasons. Any hosts that do not adopt the new DTD will fail document validation.
Query Language BNF
Changes to the Query Language BNF will require servers to adopt the formatting in their query parsing software. For some platforms this may be
difficult. Fortunately most modern software platforms recognize the ISO8601 date time formatting as a valid representation of a date or time. This
may mitigate any difficulty in parsing dates and times that contain full time zone data.
Atoms and Primitives
Although I have tried to isolate all of the existing locations affected by updating the Atoms and Primitives, it is possible that some parts of the
specification refer to the DATE format in a conflicting manner. The additional tokens ISODATE, ISODATETIME, and ISOTIME were added to help
prevent any conflict in the specification. Adding new BNF may or may not be a problem depending on the on how a software vendor chooses to
use it. Presently the BNF used by the RETS 1.x specification line does not work with most parser generators. Therefore it is assumed that adding
to the BNF will not produce a backwards compatibility issue.

 Server Information Request
The server information request appears to be an entirely new capability that was added to the specification in order to resolve a similar issue. I
have not declared any modifications to this section or declared a removal of it. This change proposal seeks to resolve the time zone issue from
within the existing design of the RETS 1.x metadata system. To that end the Server Information approach has been left intact for future
discussion.

RETS Change Proposal 72 - LookupType String Length

Original document: RCP 72 - LookupType String Length

Information

Author: Matthew McGuire
Organization: MarketLinx Inc.
Telephone Number: (865) 470-1500
Address: 1400 Centerpoint Blvd. Suite 100, Knoxville, TN 37932
Email: mmcguire@marketlinx.com

Note: This RCP Affects the Following Sections
Section 11.4.3 Lookup Type

The above sections have been updated or modified since the previous RETS version.

Click the links above to go to sections having changes adopted in this version.

http://members.reso.org/display/RCP/RCP+72+LookupType+String+Length

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 149 of 232

Status: Adopted
Date: Nov. 14, 2007
Version: 1.7d6
Incorporated in Version: 1.7.2

1 Synopsis

This proposal addresses the string length for Long Value, Short Value, and Value of Lookup Type metadata. Presently the Short Value and Value
lengths are set to 32 characters. Although this encourages using the values for strings shorter than the long value, there are instances where both
the Short Value and Value may be longer than 32 characters within the database of the vendor system.

2 Rationale

The Lookup Type metadata in the specification is used to describe coded values for records that may contain one or more values. Conceptually
these coded values will typically be short strings or even numeric codes that represent longer human readable strings such as City or Street
names. However in some cases these values can be longer than 32 characters. For instance if a system contains School Names and stores the
names as full length strings there are no encoded values for the Long Value. In this instance the Long, Short, and "actual" values are the same
string as no encoding is performed. Although uncommon this is a valid practice and the specification should not prevent a system from
representing Lookup Values as appropriate to the implementation.

3 Proposal

3.1 Specification Changes

Section 11.4.3 Lookup Type
This section defines the structure of Lookup Type metadata. Here Table 11-20 defines the character representation of Long Value and Short
Value and Value as the following:
LongValue 1*128TEXT
ShortValue 1*32TEXT
Value 1*32ALPHANUM
This proposal recommends that the above character representations be changed to the following:
LongValue 1*128PLAINTEXT
ShortValue 1*128PLAINTEXT
Value 1*128PLAINTEXT | 1*32ALPHANUM
These changes will assure that system providers may represent the lookup values as appropriate to the system containing the data exposed by
the RETS server.

4. Compatibility

The changes in this proposal would allow for all previous Lookup Type metadata content. Therefore there appears to be no backwards
compatibility issues with this proposal.

Version 1.8.0

Change proposals that were added to the RETS 1.8.0 version:
RCP 59 - Revised Update Transaction
RCP 60 - Metadata Changes for Update
RCP 61 - Validation Expression Replacement
RCP 63 - Object Data and Upload
RCP 65 - Session information tokens
RCP 68 - Search Has Key Index Support
RCP 69 - LookupType Value
RCP 70 - Metadata Role Support
RCP 74 - Location Availability in Object Metadata
RCP 75 - Offset Availability in the Metadata
RCP 76 - GetPayloadList
RCP 77 - Maximum Field Length
RCP 78 - Specification Errata Changes
RCP 79 - Add Preferred Flag to GetObject Responses
RCP 80 - Optional Query
RCP 82 - LookupMulti Quoting Rule
RCP 87 - RETS 1.7.2 Errata Document
RCP 90 - Deprecate CommonInterest Class Well-Known Name
RCP 91 - StandardNames Version Information in Login Transaction
RCP 92 - RESO Payload Transport-Level Metadata Support
RCP 93 - Add Content-Sub-Description to GetObject
RCP 94 - Improved Error Handling in GetObject
RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login
RCP 99 - Mixing StandardNames and SystemNames
RCP 100 - Alternate Standard Names
RCP 101 - Child Rows Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 150 of 232

RCP 102 - GetObject URL as Default Location

RCP 59 - Revised Update Transaction

Original document: RCP 59 Revised Update Transaction

Author Sergio Del Rio

Organization Templates 4 Business, Inc.

E-mail Sergio dot Del dot Rio at t4bi dot com

Author Libor Viktorin

Organization MarketLinx

Email lviktorin at marketlinx dot com

Submitted Date: March 18, 2005

Revision Date: August 7, 2005

Revised Date October 30, 2007

RETS Version 1.8.0

Status Adopted

1. Synopsis

This change request consists of a set of changes that are designed to enhance the functionality of the RETS 1.7 specification. These
enhancements are geared towards enabling a fully metadata driven RETS Update client.

2. Rationale

We have been striving to create RETS Update Client that is 100% metadata driven, yet still presents itself to users as a fully functional update
client that presents data to them in a way that they are comfortable with.

When looking at what is available in the specification as it stands today, we realized that this goal was not fully attainable unless some changes
were made to the specification. With that in mind, we set out to build it.

With all the changes that are presented below, we were able to build a RETS Update Client that is as functional as we believe is necessary to
provide users with a good user experience and allow them to enter their listing data in the most effective way possible. This client is now in beta
testing and is almost identical to it’s predecessor which was interacting directly with the MLS database.

3. Proposal

This proposal affects several sections of the RETS 1.7.2 document as follows.
10.1 Required Request Arguments

Each Update request MUST specify following arguments:
 Resource = resource -nameClassName = class -nameValidate = validate -flagAction = update-action

) Record = field-name = field-value (field-delimiter field-name *= field-value
 ::= The name of the resource to be updated, as specified in the metadata. This is the SystemName as defined inresource-name 1*32ALPHANUM

Section 11.2.2.
 ::= The name of the class to be updated, as defined in the metadata. This is the ClassName as definedclass-name 1*24ALPHANUMRETSNAME

in section 11.3.1.
 ::= | | validate-flag 0 1 2

If this parameter is set to one (" "), then the partial record is validated by the host; any fields that are not provided are not validated. Any fields1
with metadata field "Attributes" set to "Autopop" in the metadata (see Section 11.3.4) will have their field values filled in by the server and returned
to the client. This mode is used primarily for auto-population of the data record. The record in the server database is not updated. If this entry is
set to zero (" ") and there are no errors in the record the record is updated on the server. If this entry is set to two ("2"), the server validates all0

Note: This RCP Affects the Following Sections:
Section 10.1 Required Request Arguments
Section 10.2 Optional Request Arguments
Section 10.5 Update Response Body Format
Section 10.6 Record Locking
Section 10.8 Reply Codes
Section 11.3.3 Update

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+59+-+Revised+Update+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 151 of 232

fields and returns any errors found, but does store the record. not
 ::= The to perform, as specified by the metadata. This is the as defined in Section 11.3.4. update-action 1*24 ALPHANUM action UpdateAction

 ::= Changed to RETSNAMEfield-name RETSNAME
The name of the field to be updated, as specified in the metadata. This is the SystemName as defined in Section 11.3.2.

 ::= field-delimiter OCTETField delimiter as specified by the optional argument Delimiter, or ASCII HT character (09) if that argument is missing.
 ::= <varies depending on the field>field-value

The text representation of the field value as defined by the metadata in Section 11.3.2 subject to the business rules. The value MUST be
submitted as if in COMPACT format.
The Record specifies values for fields that are to be changed, or are otherwise important for the update transaction. For Clone, Change and

 Delete update actions, the value for the KeyField (as defined in 11.3.3) MUST be specified, to identify a record which is to be modified. If an
Update transaction with the same KeyField value has been previously answered by the server, the client MUST include in the Record argument at
least all the fields returned by the server in the previous response.
10.2 Optional Request Arguments

Delimiter = HEX HEX
Specifies the octet which will separate fields in the record. If this is not specified, an ASCII HT character (09) is assumed.

 WarningResponse = warning-response *(field-delimiter warning-response)
 warning-response::= field:warning-num = user-response

 warning-num ::= 1*16DIGIT
Fixed warning-response to include field and increased size of warning-num Increased size ofuser-response ::= *1024TEXT excluding delimiter
user-response

 The warning-num value is the host warning number that was returned in the prior Update Response body. The user-response value is the text of
 the warning response in response to the specified warning. If a warning-num sent in the prior UpdateResponse body had a response-required val

 ue of 2, then the user-response value MUST NOT be null.
 Lock = lock-time

 lock-time ::= 1*DIGIT
Specifies a request to lock the requested record to avoid changes by other clients.

 If the lock-time is a number greater than zero, the server SHOULD lock the requested record for the next lock-time seconds. If the record has
 already been locked by this user, the lock timeout is extended to the next lock-time seconds. Server MAY use a lower lock timeout, or ignore the

 lock request completely: the requested lock-time is merely a hint from the client about how long it may take before final update on the record will
be requested.
If the lock-time argument is missing, the server will use its own discretion about locking the record.
Negative or zero value in lock-time request argument means that the client does not want to lock the record. The server will still use its own
locking policy. Namely, if the UpdateAction is BeginUpdate, the server MAY lock the record, and the client MUST request another Update
transaction to release the lock. Because of possible connectivity problems, however, the server should not rely on the next request to come, and
should implement a lock-expiring strategy.

 LockKey = lock-key
If the server locks the requested record, it MAY return a lock-key. The lock-key value MUST be sent back in the next Update transaction to allow
the server to verify that the client operates with the values the record had at the time it had been locked.
If the client fails to provide the correct lock-key, the server MAY fail the update request. In that case, the client has to request another
BeginUpdate action to lock the record and get the actual data, and then request the needed Update request with the new lock-key.

 Select = field-name (,* field-name)
 Specifies a list of fields that should be returned in the response. Server MUST return current (updated) values for all fields in this list; the server

MAY return more fields if it considers them needed for a proper update transaction.
The field-names in the Select argument must be the Standard names as defined in the Table metadata (11.3.2).
10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:
 transaction-id-tag<RETS 1*SP ReplyCode= quoted-reply-code 1*SPReplyText= quoted-string SP *> CRLF

[lock-tag]
[delimiter-tag]
column-tag
compact-data
[<RETS-STATUS />*1*SP ReplyCode= quoted-end-reply-code 1*SPReplyText= quoted-string SP

 </RETS> CRLF
The body of the update response has the following format when there are errors or warnings:

 transaction-id-tag<RETS 1*SP ReplyCode= quoted-reply-code 1*SPReplyText= quoted-string SP *> CRLF
[lock-tag]
[lock-key]
[delimiter-tag]
column-tag
compact-data
[error-block]
[warning-block]

 </RETS> CRLF
 Lock-tag ::= Lock=lock-time

The lock-time is the number for which the record will be locked on the server. If lock-time is zero, the lock has been already released. Note that
the lock-time MAY be less than requested, if the server uses any internal logic to limit the time for which a record will be locked.
Server which supports record locking MUST return the Lock-tag in the response. If no lock was requested, server which supports locking MUST
return Lock=0. Missing Lock-tag indicates that the server does not support record locking.

 Lock-key::= LockKey=lock-key

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 152 of 232

1.

2.

3.

4.

1.

If the server locks the requested record, it MAY return a lock-key. The lock-key value MUST be sent back in the next Update transaction to allow
the server to verify that the client operates with the values the record had at the time it had been locked.
If the client fails to provide the correct lock-key, the server MAY fail the update request. In that case, the client has to request another
BeginUpdate action to lock the record and get the actual data, and then request the needed Update request with the new lock-key.
If a BeginUpdate action was requested on a record that is already locked by the same user, the LockKey, if present, MUST be the same as when
the record was originally locked. That allows the client to verify that the record has not changed since the original lock has been granted.

 =error-block ::
 1*() <ERRORBLOCK > CRLF <ERRORDATA>fielderror-numerror-offseterror-text</ERRORDATA> </ERRORBLOCK>

 =warning-block ::
<WARNINGB LOCK>
1*(<WARNINGDATA>fieldwarning-numwarning-offset

)warning-textresponse-required</WARNINGD ATA>
 </WARNINGBLOCK>

The format of the <ERRORDATA> and <WARNINGDATA> tag content is identical to COMPACT format.
10.5.1 Error block

An Error Block is returned when there is a problem with one or more of the fields. The error block contains information about the fields that have
errors. It contains the field name, an error number, some additional text about the error (), and where in the field data the error occurred (error-text

). error-offset
 ::= Increased Size.error-num 1*16DIGIT

This is the host error number. This number along with the MAY be displayed to the user when looking at the corresponding field in theerror-text
client application.

 ::= This is the offset into the field data that was sent by the client application to the server. It indicates at what character inerror-offset 1*5DIGIT
the field data the problem was encountered. This number is set to zero ("0") if the offset of the error is unknown.

 ::= Increased size by making it unlimited.error-text *TEXT
This is the error text generated by the host to assist the user in determining the problem with the field data. This text is associated with the error-n

. um
The error return format follows the COMPACT data format in all particulars. This affects primarily the quoting of special characters and the
selection of the delimiter that separates the field values. In effect, the error return is a COMPACT data block without the usual COLUMNS
element.

10.5.2 Warning block

A Warning Block is returned when there is a problem with one or more of the fields that would not prevent the record from being saved in the
database. It contains a field name, a warning number, some additional text about the warning (), where in the field data the warningwarning-text
occurred () and an indicator whether an end-user response to this warning is requested or required. The delimiter is the same aswarning-offset
the one defined for the . error-block

 ::= The SystemName of the field to which the warning applies. field 1*32ALPHANUM
 ::= Increased Sizewarning-num 1*16DIGIT

The host warning number. This number, along with the , MAY be displayed to an end-user in association with the corresponding fieldwarning-text
in the client application.

 ::= * Increased Size by making it unlimited. warning-text TEXT
 ::= The offset into the field data that was sent by the client application to the server. It indicates at what character in thewarning-offset 1*5DIGIT

field data the problem was encountered. This number is set to zero if the offset of the error is unknown or if an offset is inapplicable.
::= | | response-required 0 1 2

The value indicates whether an end-user response is requested or required:response-required
 No response is permitted.0
 A response is requested.1
 A response is mandatory.2

If the field indicates that a response is mandatory, the client MUST send the end-user response for the specific warning-num inresponse-required
the WarningResponse request argument in order for this record to be saved to the database.
10.6. Locking records

Clients are encouraged to use record locking to avoid intermittent changes by other parties. Typical procedure for updating record in a GUI based
client would be as follows:

Client requests an Update transaction with UpdateAction=BeginUpdate, Record specifying only the key value of the requested record,
and (optionally) Lock set to several minutes. Server locks the requested record and sends its current data.
Client presents the current data to the user and lets them make necessary changes. If the lock-time returned by the server expires before
the user is ready, the client requests another Update transaction with UpdateAction=BeginUpdate , Record specifying only the key value
of the requested record, and Lock set to several more minutes. The server extends the lock on the record. If returning the LockKey, the
server returns the value returned with the original lock, so that the client may make sure that nothing changed in the mean time.
If the client input form has several pages and the client wants to update the record one page at a time, it requests Update transactions
with Record specifying the data collected on each page and Lock set to several more minutes. The server updates the requested part of
the record and keeps it locked. It returns the original LockKey to show that the lock has not been released.
After the user has finished filling in new data, the client requests a final Update transaction with Lock=0. The server updates the record
for the last time and releases the lock.

Typical procedure for updating record in non-GUI based client would be as follows:

Client requests an Update transaction with Record specifying only the key value of the requested record, and Lock set to several

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 153 of 232

1.

2.
seconds. Server locks the requested record and sends its current data.
Client calculates new data and requests an Update transaction with Record specifying all the new data and Lock=0. Server updates the
record and releases the lock.

If in any case the client fails to continue requesting Update transactions as described above, the server will release the record lock when the
lock-time expires.
The client may try to send a "real" update request without first requesting the BeginUpdate action. If a server allows for updating a non-locked
record, then the record is updated, the server sends back a response with lock-time being zero (or missing), and that finishes the transaction. If
the server does require the BeginUpdate action, it will return with error 20314. Not that the server MUST specify RequiresBegin=1 in the metadata
if it requires the BeginUpdate action.
The server may not implement the locking mechanism. If this is the case, the response to any BeginUpdate action will immediately return without
lock-tag, just providing the requested data for a record (client could get the same data using a SEARCH transaction). The missing lock-tag tells
the client that locking is not in effect, and the client can come at any time with the Change (or any other) action.
10.7 Reply Codes

Additional reply codes:

20313 Incorrect LockKey. The lock on the record may have been released before the
update request came.

20314 Record has not been locked. The BeginUpdate action has to be requested
before the Update. (This error will be returned if the server requires the
BeginUpdate, and the request did not specify the LockKey, indicating that no
lock has been requested).

21315 Record lock expired. The BeginUpdate action has to be requested before the
Update. (This error will be returned if the record is not locked, and the request
did specify the LockKey, indicating that a lock has been previously requested).

21316 Unknown UpdateAction. Requested UpdateAction is not defined for this class.

21317 Unknown Resource or ClassName.

21318 Requested record does not exist.

11.3.3 Update

Table 11-11 Metadata Content – Update

Metadata
Field

Content Type Description

…

UpdateAction 1*24ALPHANUM This identifies the nature of the update, such as "add" or "modify".
Some update types, such as changes to a property record (e.g
"Sell", "Back on Market"), will imply a set of business rules specific to
the server. However, where possible, the following standard type
names should be used:

Update Name Function

Add Add a new record

Clone Create a new record by copying an old one

Change Change an existing record

Delete Delete an existing record

BeginUpdate MAY be requested before any other Update request to get the
 specified record's actual data, and to put a lock on the specified record.

The server MAY lock the requested record until another Update for that
record is requested.

CancelUpdate MUST be used after BeginUpdate, if no other update is requested on
 the locked record. It is not an error to request CancelUpdate on a

record that is not locked.

ShowLocks Request to show which records are currently locked by this user. The
server MUST response with column-tag showing KeyField and
LockTime, with copmact-data containing one line for each locked
record, showing the KeyField value of the record and number of
seconds before the lock will expire.

RequiresBegin BOOLEAN If this value is true (1), the BeginUpdate action MUST be called
before this update action.

…

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 154 of 232

4. Development Impact

This proposal does not change anything or remove anything from the existing specification, it merely adds additional metadata fields to existing
metadata tables.

As such, development impact depends on current RETS client and server implementations, but should not have any impact on future RETS client
and server implementations. Each existing RETS server and client, prior to passing of this proposal, have the option to change accordingly to be
RETS compliant. Future RETS server and client implementation after approval of RETS 1.7 MUST follow the RETS 1.8 standard.

5. Compatibility

Servers that do not implement any of the additional metadata will remain backwards compatible to RETS 1.7. Current servers that add the
additional metadata fields will also remain backwards compatible to RETS 1.7 since the specification allows for additional fields to be returned by
servers. Current servers that want to become RETS 1.8 compliant MUST implement all of the additional metadata fields.

RCP 60 - Metadata Changes for Update

Original document: RCP 60 - Metadata Changes for Update

Author Sergio Del Rio

Organization Templates 4 Business, Inc.

E-mail Sergio dot Del dot Rio at t4bi dot com

Author Libor Viktorin

Organization MarketLinx

Email lviktorin at marketlinx dot com

Submitted Date: March 18, 2005

Revised Date October 30, 2007

RETS Version 1.8.0

Status Adopted

1. Synopsis

2. Rationale

3. Proposal

This proposal affects several sections of the RETS 1.7.2 document as follows.

Note: This RCP Affects the Following Sections:
Section 11.1.1 Metadata Organization
Section 11.2.3 Foreign Keys
Section 11.2.4 Filter
Section 11.3.2 Table
Section 11.3.4 Update Type
Section 11.4.2 Lookup
Section 11.4.3 Lookup Type
Section 11.4.8 Validation Lookup Type
Section 11.4.10 Validation External
Section 11.4.11 Validation External Type
Section 11.5.1 Column Group Set
Section 11.5.2 Column Group
Section 11.5.3 Column Group Control
Section 11.5.4 Column Group Table
Section 11.5.5 Column Group Normalization

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+60+-+Metadata+Changes+for+Update
http://members.reso.org/pages/createpage.action?spaceKey=RETS180a&title=11.4.8+Validation+Lookup+Type+DEPRECATED&linkCreation=true&fromPageId=13468583

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 155 of 232

 Metadata Extensions Existing Metadata Extensions

This section outlines all the existing Metadata Output Formats that have been extended for the Update Transaction.
The following existing Metadata Output Formats have been extended
The corrected and upgraded Metadata structure

METADATA-FILTER

Filters and Filter_values describe a parent-child relation between Lookups by specifying which values in the Child lookup are legal based on the
value in Parent lookup. If filtered lookups are used in the Table metadata (meaning a LookupName and ParentField metadata items are not
empty), the server MUST guarantee that the values in the child field will not fall outside the set specified by the filter based on the value in the
parent field. The client SHOULD use the filter information when checking values for the Update transaction. The LookupFilter argument in
GetMetadata can also be used to limit the amount of metadata information sent by the server.
Filter header tag arguments- Version- Date
Filter metadata fields:

FilterID RETSNAME A unique ID that represents this filter

ParentResource RETSNAME ResourceID of the parent lookup

ParentLookupName RETSNAME LookupName of the parent lookup

ChildResource RETSNAME ResourceID of the child lookup

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 156 of 232

ChildLookupName RETSNAME LookupName of the child lookup

NotShownByDefault BOOL If true the server will by default not include the FilterValue data of this filter in any metadata request, unless specifically
asked to using the LookupFilter argument in GetMetadata.

METADATA-FILTER_VALUE

Filter Value tag arguments:- FilterID- Date- Version
Filter metadata fields:

FilterValueID RETSNAME A unique ID that represents this FilterValue

ParentValue 1*128ALPHANUM Value from the LookupType in the parent lookup

ChildValue 1*128ALPHANUM Value from the LookupType in the child lookup

Metadata Lookup additional field:

FilterID RETSNAME FilterID of an existing filter. If present, the range of
valid LookupType values in this lookup is limited by
the value of a parent lookup.

NotShownByDefault BOOL If true, the server will by default not include the
LookupType data of this lookup in any metadata
request, unless specifically asked to using the
LookupFilter argument in GetMetadata. This flag
MUST be set to 0 (or empty) unless a FilterID is
non-empty

Metadata Table additional field:

FilterParentField RETSNAME Specifies that values allowed in this field are limited
by the Lookup's filter, using the contents of the field
named here as ParentValue. FilterParentField may
only be specified with fields that have a
LookupName, where the named Lookup has a
non-empty FilterID.

Lookup GetMetadata Extensions

Some servers may use lookups that list hundreds of values (like community names or street names). Such lookups will make the full metadata
very large. Therefore clients may opt to get metadata with limited sets of values. To do that, an optional argument is allowed in the GetMetadata
transaction:
LookupFilterArgument ::=)*)*)LookupFilter=(*Filter (*,(*Filter

=-1)LookupFilter=(LookupFilter=()* =
Filter::= FilterID ParentValue =
ParentValue::= *

-1 1*128ALPHANUM
If LookupFilter argument is present, the
server that implements this extension
MUST limit lookup data in the response.
Specifically, LookupType data for a Lookup
whose FilterID is included in the
LookupFilterArgument MUST be limited to
the child values for the requested
ParentValue. Also, FilterValue data for a
filter included in the LookupFilterArgument
MUST be limited to those with requested
ParentValue.
The asterisk (}{) in place of FilterValue
specifies that all values should be

 specifies that no values shouldlisted; *-1
be listed.
If the LookupFilter argument is specified as
=-1)*, the server MUST NOT send any(

LookupType data for lookups that have
non-empty FilterID, nor any FilterValue
data at all.
If the LookupFilter argument is specified as
(), the server MUST send all requested=
LookupTypes without limitations.
This extension is meant to be used with
requests for LookupType metadata, Filter
metadata, or any metadata with ID ending

with asterisk
.

METADATA-TABLE

The following table outlines the extensions to the TABLE metadata that were necessary to make for a better user experience:
 Metadata Content – Extensions – TableTable 11-9.1

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 157 of 232

Metadata Field Content
Type

Description

Interpretation URI An arbitrary URI or URL that is fully qualified and that an application will be able to successfully link to.

DefaultSearchOrder Numeric The order that fields should appear in a default search screen that is executed in order to give the user a list of existing
records to select from. Fields that should not appear in the default search screen should have a value of 0. Fields that
should never be visible to the user should have a value of -1.

FilterParentField RETSNAME Specifies that values allowed in this field are limited by the Lookup's filter, using the contents of the field named here as
ParentValue. FilterParentField may only be specified with fields that have a LookupName, where the named Lookup has a
non-empty FilterID.

Case UPPER,
LOWER,
EXACT,
MIXED

A value which indicates whether the server stores the data in this text field in the specified case. This allows a client to
automatically convert data in these fields to upper case for both searches and updates. EXACT and MIXED indicate that
data is stored as entered by the user in the database. EXACT indicates that a case sensitive search will be performed by
the server. MIXED indicates that a case insensitive search will be performed by the server. UPPER and LOWER indicate
that the server will perform a case insensitive search.

METADATA-LOOKUP_TYPE

The following table outlines the extensions and changes to the LOOKUP_TYPE metadata that were necessary to make for a better user
experience:

 Metadata Content – Extensions – LookupTypeTable 11-20.1

Metadata Field Content Type Description

LongValue 1*128PLAINTEXT The value of the field as it is known to the user. This is a localizable, human-readable string. Use of this field is
implementation-defined; expected uses include displays on reports and other presentation contexts.

ShortValue 1*32PLAINTEXT An abbreviated field value that is also localizable and human-readable. Use of this field is implementation-defined;
expected uses include picklist values and other human interface elements.

FilterID RETSNAME FilterID of an existing filter. If present, the range of valid LookupType values in this lookup is limited by the value of a
parent lookup.

NotShownByDefault BOOL If true the server will by default not include the LookupType data of this lookup in any metadata request, unless
specifically asked to using the LookupFilter argument. This flag MUST be set to 0 (or missing) unless a FilterID is
non-empty

DisplayOrder 1*5DIGIT The order in which to display the Lookup Type within the list for the Lookup. All records returned by the server MUST
either all return numbers or all be blank within one lookup. If the DisplayOrder is blank or missing, the client
SHOULD display the data in the order in which it is received. The DisplayOrder does not have to be a contiguous
numbering scheme but no duplicates are allowed.

We are also proposing to increase the size of ShortValue and Value to 128.
METADATA-UPDATE_TYPE

The following table outlines the extensions to the UPDATE_TYPE metadata that are necessary to make for a better user experience:
 Metadata Content – Extensions – Update TypeTable 11-13.1

Metadata Field Content Type Description

Attributes See Table 11-13
in RETS
document.

Additional Values Required:

Value Meaning Description

6 AutopopRequired Indicates that this field is mandatory when calling the Update transaction for Auto Population (validate-flag=1)

7 Hidden Indicates that this field may be used in ValidationExpressions but is to remain hidden from the user.

SearchResultOrder Numeric The order that fields should appear in a default one-line search result that is executed in order to give the user a list of
existing records to select from for updating them. Fields that should not appear in the default one-line format should
have a value of 0. Fields that should never be visible to the user should have a value of -1.

SearchQueryOrder Numeric The order that fields should appear in a default search screen that is executed in order to give the user a list of
existing record to select from for updating them. Fields that should not appear in the default search screen should
have a value of 0. Fields that should never be visible to the user should have a value of -1.

METADATA-FOREIGNKEYS

The following table outlines the extensions to the METADATA-FOREIGNKEYS metadata that were necessary to make for a better user
experience:

 Metadata Content – Extensions – Metadata ForeignKeysTable 11-5.1

Metadata Field Content Type Description

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 158 of 232

OneToManyFlag Boolean A truth value which indicates whether the foreign key will return multiple rows if queried from the source to the destination.

 METADATA-VALIDATION_LOOKUP_TYPE Validation Lookup

The Validation Lookups are now deprecated. METADATA-FILTER should be used instead to specify parent-child relations between lookups.MET
ADATA-VALIDATION_EXPRESSION
The following table outlines the extensions to the METADATA-VALIDATION_EXPRESSION metadata that were necessary to make for a better
user experience:

 Metadata Content – Extensions – Validation ExpressionTable 11-37.1

Metadata Field Content Type Description

Message 1*512TEXT A message to be displayed in the following cases:
1. Expression Type of ACCEPT results in FALSE.
2. Expression Type of REJECT results in TRUE.
3. Expression Type of WARNING results in TRUE.

METADATA-VALIDATION_EXTERNAL

The following table outlines the extensions to the METADATA-VALIDATION_EXTERNAL metadata that were necessary to make for a better user
experience:

 Metadata Content – Extensions – Validation ExternalTable 11-38.1

Metadata Field Content
Type

Description

AutoQuery Boolean If true, there is no need to display an intermediary query screen to the user before executing a query (after restricting query with
RestrictFields) on the external resource. If false, then such a query would return too many rows; in this case, the interface
should allow the user to further refine the search by entering data into any of the specified SearchFields before executing the
query.
In either case, the user SHOULD be allowed to further refine the query after they are given the initial list of results.

AllowDirectEntry Boolean If true, users should be allowed to enter data into all enterable fields that are being auto-filled based on the ResultFields of the
ValidationExternalType metadata.
If false, all fields are not directly enterable by a user and are only auto-filled based on the ResultFields of the
ValidationExternalType metadata.

AllowUnlistedData Boolean If true, users are not required to enter only data that is found in the ValidationExternal Resource/Class into all fields that are in
the LookupButtons list.
If false, users MUST enter only data that is found in the ValidationExternal Resource/Class into all fields that are in the
LookupButtons list.

METADATA-VALIDATION_EXTERNAL_TYPE

The following table outlines the extensions to the METADATA-VALIDATION_EXTERNAL_TYPE metadata that were necessary to make for a
better user experience:

 Metadata Content – Extensions – Validation External TypeTable 11-40.1

Metadata
Field

Content Type Description

RestrictFields 1*1024PLAINTEXT A comma separated list of valid field pairs joined by = (equal) the first is a target field in the table being updated and the
second is a source field in the table being searched. The fields use a SystemName from Section 11.3.2.

If values have been entered in the table being updated for any of the above fields, the query executed on the source table must be restricted to
the values entered.|

LookupButtons 1*512PLAINTEXT A comma separated list of fields from the target
table that should have lookup buttons displayed for
them on a UI. It is expected that clicking on the
lookup button will display the ValidationExternal
lookukp screen.

Presentation Metadata Extensions

Need to add note to Presentation Metadata Specification that Compliance needs to get involved and determine how Compliance will view this new
metadata.
This section outlines all the Metadata Output Formats that have been implemented as RETS 1.7 extensions to metadata that were required to
make fully metadata driven Update Client with a functional presentation.
The following Metadata Output Formats have been implemented as RETS Extensions:
METADATA-COLUMN_GROUP_SET

This metadata defines a tree structure which should be used to render the data in any GUI system that is designed in order to satisfy the display
requirements of an MLS.
The Column Group Set metadata starts with a <METADATA-COLUMN_GROUP_SET> tag with Resource, Class, Version, and Date attributes.
This is followed by a <COLUMNS> section, which contains the name of the fields as defined in Table 11-24, followed by the <DATA> section,

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 159 of 232

which contains the actual field information. The Column Group Set metadata has the following format:
 SP SP SP SP <METADATA-COLUMN_GROUP_SET Resource="resource-id" Class="class-id" Version="column-group-set-version" Date="c

olumn-group-set-date">
 *<COLUMNS>column-group-set-field (column-group-set-field)</COLUMNS>

* *(<DATA>column-group-set-data (column-group-set-data)</DATA>)
</METADATA-COLUMN_GROUP_SET>

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to which the Classesresource-id ::= 1*32ALPHANUM
belong.

This value MUST be a ClassName found in the Class metadata for this Resource. It is the Class to which the Columnclass-id ::= 1*32ALPHANUM
Group Set applies.

 This is the version number of this Column Group Set metadata. The conventioncolumn-group-set-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
used is a "<major>.<minor>.<release>" numbering scheme. Every time this Column Group Set metadata changes the version number should be
increased.

The latest change date of this Column Group Set metadata.column-group-set-date ::= DATE
{_}column-group-set-data ::= <valid value as defined in Table 11-24>_An examplecolumn-group-set-field ::= <Field Name from Table 11-24>

Table section follows:
GetMetadata request:
Type: METADATA-COLUMN_GROUP_SET
ID Format: Resource : Class
ID Example: Property : RES
Compact reply:
<METADATA-COLUMN_GROUP_SET Resource="Property" Class="RES" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >
<COLUMNS>MetadataEntryIdColumnGroupSetNameColumnGroupSetParent
SequenceLongNameShortNameDescriptionColumnGroupNamePresentationStylePresentationColumnsURL</COLUMNS>
<DATA>10000123456Residential1Residential ListingResidentialThe top node of the Residential Listing Data Entry Hierarchy</DATA>
<DATA>10000123457WaterFrontResidential1WaterFront InformationWaterFrontDetails about water front for propertyWaterFrontEdit1</DATA>
<DATA>10000123457BedroomsResidential2Bedroom InformationBedroomsDetails about bedrooms for propertyBedroomsMatrix</DATA>
<DATA>10000123457AgentInfoResidential3Agent InformationAgentAgent Website
www.mywebsite.com/agent?Agent=.AGENTCODE.?Listing=.ListingID.</DATA>
</METADATA-COLUMN_GROUP_SET>

 Metadata Content – Column Group SetTable 11-24

Metadata Field Content Type Description

MetadataEntryId 1*32ALPHANUM A value that never changes as long as the semantic definition of this field remains unchanged. In particular, it
should be managed so as to allow the client to detect changes to the ColumnGroupSetName.

ColumnGroupSetName 1*32ALPHANUM The name that uniquely identifies this Column Group Set within the Class.

ColumnGroupSetParent 1*32ALPHANUM The ColumnGroupSetName of the Parent Column Group Set. If not specified, this Column Group Set is the top
node in the tree.

Sequence 1*5DIGIT The sequence that this Column Group Set is to be displayed in within it's parent group.

LongName 1*64ALPHANUM The name of the Column Group Set as it is known to the user. This is a localizable, human-readable string. Use
of this field is implementation-defined; it is expected that clients will use this value as a title for this Column
Group Set when it appears on a report.

ShortName 1*32ALPHANUM An abbreviated field name that is also localizable and human-readable. Use of this field is
implementation-defined; it is expected that clients will use this field in human-interface elements such as
picklists.

Description 1*256ALPHANUM A brief description of the purpose for this Column Group Set.

ColumnGroupName 1*32ALPHANUM The name of the Column Group that is to be displayed in this Column Group Set. If not specified, this Column
Group Set is to be treated as a node in the tree that displays no data. The ColumnGroupName must exist in the
Column Group metadata for this Class.

PresentationStyle 1*32ALPHANUM One of the following values:
 – Basic Edit Block displayed in PresentationColumns number of columns. Edit

 – Expected to be displayed using Normalization Grid. Matrix
 – Show one record per row. List

 – Show one record per row and allow the records to be added, edited and deleted. Edit List
 – Special Case: Can only have 2 columns in Column Group. First column is Latitude andGIS Map Search

Second column is Longitude. These columns are expected to be filled in with results from GIS Map Search.
 – Indicates that this is to simply go to the specified URL, a ColumnGroup name MUST not be specified andURL

a URL MUST be specified for this PresentationStyle.

URL 1*256TEXT Indicates a URL that is to be accessed using this entry instead of a standard Column Group. You may not
specify a ColumnGroupName and a URL. The URL may be formed with place-holders surrounded by the '[' and
']' characters so that a substitution for any valid SystemName within the class being displayed, Info Tokens from
the Login Response or Validation Expression Special Operand Tokens as specified in Table 11-20. To
differentiate between SystemNames and tokens, an additional character '.' is used to surround the tokens.
Example: [http://www.example.com/agent?Agent=[.AGENTCODE.]] &Listing=[ListingID]

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 160 of 232

ForeignKeyID 1*32ALPHANUM The identifier of the Foreign Key that is to be displayed in this ColumnGroupSet. If specified, the ForeignKeyID
MUST exist in the METADATA-FOREIGNKEY metadata and the Parent MUST be the Property and Class of this
ColumnGroupSet.

When this is specified, it means that a multi-row block is expected to be displayed to the user within which he
can Add, Edit or Delete records of the Child Resource and Class that is specified. Furthermore, the
ChildSystemName field should always be filled from data found in the ParentSystemName field to provide for a
proper Master/Detail relationship.

Notes: It is important to note that only one of ColumnGroupName, ForeignKeyId or URL may contain data. These three fields are mutually
exclusive.
METADATA-COLUMN_GROUPS

This metadata defines grouping element which should be used to group columns together in any GUI system that is designed in order to satisfy
the display requirements of an MLS.
The Column Group metadata starts with a <METADATA-COLUMN_GROUP> tag with Resource, Class, Version, and Date attributes. This is
followed by a <COLUMNS> section, which contains the name of the fields as defined in Table 11-25, followed by the <DATA> section, which
contains the actual field information. The Column Group metadata has the following format:

 SP SP SP SP <METADATA-COLUMN_GROUP Resource="resource-id" Class="class-id" Version="column-group-version" Date="column-gro
up-date">

 *<COLUMNS> column-group-field (column-group-field)</COLUMNS>
* * (<DATA> column-group-data (column-group-data)</DATA>)
</METADATA-COLUMN_GROUP>

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to which the Classesresource-id ::= 1*32ALPHANUM
belong.

This value MUST be a ClassName found in the Class metadata for this Resource. It is the Class to which the Columnclass-id ::= 1*32ALPHANUM
Group applies.

 This is the version number of this Column Group metadata. The convention used iscolumn-group-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
a "<major>.<minor>.<release>" numbering scheme. Every time this Column Group metadata changes the version number should be increased.

The latest change date of this Column Group metadata.column-group-date ::= DATE
{_}column-group-data ::= <valid value as defined in Table 11-25>_An example Tablecolumn-group-field ::= <Field Name from Table 11-25>

section follows:
GetMetadata request:
Type: METADATA-COLUMN_GROUP
ID Format: Resource : Class
ID Example: Property : RES
Compact reply:
<METADATA-COLUMN_GROUP Resource="Property" Class="RES" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >
<COLUMNS>MetadataEntryIdColumnGroupNameControlSystemName
LongNameShortNameDescriptionVersionDate</COLUMNS>
<DATA>10001123456WaterFrontWaterFrontFlagWater Front InformationWater FrontListing data that contains water front information for the
Listing1.00.000Thu, 3 Feb 2005 20:35:15 GMT</DATA>
</METADATA-COLUMN_GROUP>

 Metadata Content – Column GroupTable 11-25

Metadata Field Content Type Description

MetadataEntryId 1*32ALPHANUM A value that never changes as long as the semantic definition of this field remains unchanged. In particular, it
should be managed so as to allow the client to detect changes to the ColumnGroupName.

ColumnGroupName 1*32ALPHANUM The name that uniquely identifies this Column Group within the Class.

ControlSystemName 1*32ALPHANUM The SystemName of the Table Metadata that identifies the data element that is used to control the display of this
Column Group.

LongName 1*64ALPHANUM The name of the Column Group as it is known to the user. This is a localizable, human-readable string. Use of this
field is implementation-defined; it is expected that clients will use this value as a title for this Column Group when it
appears on a report.

ShortName 1*32ALPHANUM An abbreviated field name that is also localizable and human-readable. Use of this field is implementation-defined;
it is expected that clients will use this field in human-interface elements such as picklists.

Description 1*256ALPHANUM A brief description of the purpose for this Column Group.

Version 1*2DIGIT .
1*2DIGIT .
1*5DIGIT

The latest version of the Column Group metadata. The convention used is a "<major>.<minor>.<release>"
numbering scheme. The version number is advisory only.

Date DATE The date on which any of the Column Group metadata child elements were last
changed. Clients MAY rely on this date for cache management.

METADATA-COLUMN_GROUP_CONTROL

This metadata defines the valid ranges of values that the specified SystemName may have that control the display of the Column Group. If the
SystemName contains any of the values that fall within the ranges specified in this table, the Column Group may be displayed. If it does not, the

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 161 of 232

Column Group should not be displayed. The data is returned as a list of high and low values that determine whether the Column Group should be
displayed.
The Column Group Control metadata starts with a <METADATA-COLUMN_GROUP_CONTROL> tag with Resource, Class, ColumnGroup,
Version, and Date attributes. This is followed by a <COLUMNS> section, which contains the name of the fields as defined in Table 11-26,
followed by the <DATA> section, which contains the actual field information. The Column Group Control metadata has the following format:

 SP SP SP "* SP <METADATA-COLUMN_GROUP_CONTROL Resource="resource-id" Class="class-id" ColumnGroup="*column-group-id V
 SP ersion="column-group-control-version" Date="column-group-control-date">

 *<COLUMNS> column-group-control-field (column-group-control-field)</COLUMNS>
* * (<DATA> column-group-control-data (column-group-control-data)</DATA>)
</METADATA-COLUMN_GROUP_CONTROL>

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to which the Classesresource-id ::= 1*32ALPHANUM
belong.

This value MUST be a ClassName found in the Class metadata for this Resource. It is the Class to which the Columnclass-id ::= 1*32ALPHANUM
Group Control applies.

This value MUST be a ColumnGroupName found in the ColumnGroup metadata for this Class. It is thecolumn-group-id ::= 1*32ALPHANUM
ColumnGroup for which the control applies.

 This is the version number of this Column Group Control metadata. Thecolumn-group-control-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
convention used is a "<major>.<minor>.<release>" numbering scheme. Every time this Column Group Control metadata changes the version
number should be increased.

The latest change date of this Column Group Control metadata.column-group-control-date ::= DATE
{_}column-group-control-data ::= <valid value as defined in Table 11-26>_Ancolumn-group-control-field ::= <Field Name from Table 11-26>

example Table section follows:
GetMetadata request:
Type: METADATA-COLUMN_GROUP_CONTROL
ID Format: Resource : Class : ColumnGroup
ID Example: Property : RES : WaterFront
Compact reply:
<METADATA-COLUMN_GROUP_CONTROL Resource="Property" Class="RES" ColumnGroup="WaterFront" Version="1.00.000" Date= "Sat, 20
Mar 2002 12:03:38 GMT" >
<COLUMNS>MetadataEntryIdLowValueHighValue</COLUMNS>
<DATA>1001112345611</DATA>
</METADATA-COLUMN_GROUP_CONTROL>

 Metadata Content – Column Group ControlTable 11-26

Metadata Field Content Type Description

MetadataEntryId 1*32ALPHANUM A value that never changes as long as the semantic definition of this field remains unchanged. In particular, it should be
managed so as to allow the client to detect changes to an individual pair of High/Low values.

LowValue 1*64ALPHANUM The minimum value that the ControlSystemName field of the ColumnGroup is allowed to have in order to display the
ColumnGroup. It is expected that the actual data type returned is interpreted as per the data type of the
ControlSystemName of the ColumnGroup.

HighValue 1*64ALPHANUM The maximum value that the ControlSystemName field of the ColumnGroup is allowed to have in order to display the
ColumnGroup. It is expected that the actual data type returned is interpreted as per the data type of the
ControlSystemName of the ColumnGroup. If the restricting data is not a range, then HighValue may be left blank.

METADATA-COLUMN_GROUP_TABLE

This metadata defines the set of SystemNames that are to be displayed within a Column and the order in which they are to be displayed.
The Column Group Table metadata starts with a <METADATA-COLUMN_GROUP_TABLE> tag with Resource, Class, ColumnGroup, Version,
and Date attributes. This is followed by a <COLUMNS> section, which contains the name of the fields as defined in Table 11-27, followed by the
<DATA> section, which contains the actual field information. The Column Group Table metadata has the following format:

 SP SP SP "* SP <METADATA-COLUMN_GROUP_TABLE Resource="resource-id" Class="class-id" ColumnGroup="*column-group-id Vers
 SP ion="column-group-table-version" Date="column-group-table-date">

 *<COLUMNS> column-group-table-field (column-group-table-field)</COLUMNS>
* * (<DATA> column-group-table-data (column-group-table-data)</DATA>)
</METADATA-COLUMN_GROUP_TABLE>

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to which the Classesresource-id ::= 1*32ALPHANUM
belong.

This value MUST be a ClassName found in the Class metadata for this Resource. It is the Class to which the Columnclass-id ::= 1*32ALPHANUM
Group applies.

This value MUST be a ColumnGroupName found in the ColumnGroup metadata for this Class. It is thecolumn-group-id ::= 1*32ALPHANUM
ColumnGroup for which the table applies.

 This is the version number of this Column Group Table metadata. Thecolumn-group-table-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
convention used is a "<major>.<minor>.<release>" numbering scheme. Every time this Column Group Table metadata changes the version
number should be increased.

The latest change date of this Column Group Table metadata.column-group-table-date ::= DATE
{_}column-group-table-data ::= <valid value as defined in Table 11-27>_An examplecolumn-group-table-field ::= <Field Name from Table 11-27>

Table section follows:
GetMetadata request:
Type: METADATA-COLUMN_GROUP_TABLE
ID Format: Resource : Class : ColumnGroup

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 162 of 232

ID Example: Property : RES : WaterFront
Compact reply:
<METADATA-COLUMN_GROUP_TABLE Resource="Property" Class="RES" ColumnGroup="WaterFront" Version="1.00.000" Date= "Sat, 20
Mar 2002 12:03:38 GMT" >
<COLUMNS>MetadataEntryIdSystemNameDisplayOrder</COLUMNS>
<DATA>10111123450WaterFront1</DATA>
<DATA>10111123451WaterAccess2</DATA>
<DATA>10111123452WaterFrontage3</DATA>
<DATA>10111123453WaterView4</DATA>
</METADATA-COLUMN_GROUP_TABLE>

 Metadata Content – Column Group TableTable 11-27

Metadata Field Content Type Description

MetadataEntryId 1*32ALPHANUM A value that never changes as long as the semantic definition of this field remains unchanged.

SystemName 1*32ALPHANUM The SystemName of the field that is to be displayed in the ColumnGroup. This MUST be a valid SystemName for
this Class. A SystemName MUST be unique within the ColumnGroup. This MUST not be specified if a
ColumnGroupSetName is specified.

ColumnGroupSetName 1*32ALPHANUM The name of a ColumnGroupSet to display in place of a single field. It is expected that this is a ColumnGroupSet
that does not display a large number of columns. This MUST not be specified if a SystemName is specified. The
ColumnGroupSet MUST not contain a ColumGroup that also specifies a ColumnGrupoSetName in the
COLUMN_GROUP_TABLE metadata.Mark will try it out on presentation styles other than Matrix and will get back
to the group on how easy it is to implement this.

LongName 1*64ALPHANUM The name of the Column Group Table (data field) as it is known to the user. This is a localizable, human-readable
string. Use of this field is implementation-defined; it is expected that clients will use this value as a title for this
Column Group when it appears on a report.

ShortName 1*32ALPHANUM An abbreviated field name that is also localizable and human-readable. Use of this field is implementation-defined;
it is expected that clients will use this field in human-interface elements such as picklists.

DisplayOrder 1*5DIGIT The order within the ColumnGroup that this SystemName is to be displayed in. DisplayOrder values MAY contain
gaps and may have the same value as other columns. If multiple columns have the same value, the client
SHOULD display the columns in Alphabetical order.

DisplayLength 1*5DIGIT The number of characters to allow when displaying data for this column.

DisplayHeight 1*5DIGIT The number of rows to display the data in. A value greater than one in this column implies a multi-line data entry
field of DisplayLength width. If users enter data into this field that is longer than will fit within this text box, it is
expected that the field will scroll to allow further data entry.

ImmediateRefresh Boolean A truth value which indicates whether a change to this field by the user should cause an automatic GUI refresh.
This is primarily intended for use

METADATA-COLUMN_GROUP_NORMALIZATION

This metadata defines a grid that can be used by a client to display related fields in a manner more appropriate for data entry.
The Column Group Renormalization metadata starts with a <METADATA-COLUMN_GROUP_NORMALIZATION> tag with Resource, Class,
ColumnGroup, Version, and Date attributes. This is followed by a <COLUMNS> section, which contains the name of the fields as defined in Table
11-28, followed by the <DATA> section, which contains the actual field information. The Column Group Normalization metadata has the following
format:

 SP SP SP <METADATA-COLUMN_GROUP_NORMALIZATION Resource="resource-id" Class="class-id" ColumnGroup="*column-group-id
"* SP SP Version="column-group-normalization-version" Date="column-group-normalization-date">

 *<COLUMNS> column-group-normalization-field (column-group-normalization-field)</COLUMNS>
* * (<DATA> column-group-normalization-data (column-group-normalization-data)</DATA>)
</METADATA-COLUMN_GROUP_NORMALIZATION>

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to which the Classesresource-id ::= 1*32ALPHANUM
belong.

This value MUST be a ClassName found in the Class metadata for this Resource. It is the Class to which the Columnclass-id ::= 1*32ALPHANUM
Group Normalization applies.

This value MUST be a ColumnGroupName found in the ColumnGroup metadata for this Class. It is thecolumn-group-id ::= 1*32ALPHANUM
ColumnGroup for which the grid applies.

 This is the version number of this Column Group Normalizationcolumn-group-normalization-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS
metadata. The convention used is a "<major>.<minor>.<release>" numbering scheme. Every time this Column Group Normalization metadata
changes the version number should be increased.

The latest change date of this Column Group Normalization metadata.column-group-normalization-date ::= DATE
{_}column-group-normalization-data ::= <valid value as defined in Tablecolumn-group-normalization-field ::= <Field Name from Table 11-28>

11-28>_An example Table section follows:
GetMetadata request:
Type: METADATA-COLUMN_GROUP_NORMALIZATION
ID Format: Resource : Class : ColumnGroup
ID Example: Property : RES : WaterFront
Compact reply:
<METADATA-COLUMN_GROUP_NORMALIZATION Resource="Property" Class="RES" ColumnGroup="WaterFront" Version="1.00.000" Date=

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 163 of 232

"Sat, 20 Mar 2002 12:03:38 GMT" >
<COLUMNS>MetadataEntryIdTypeIdentifierSequenceColumnLabelSystemName</COLUMNS>
<DATA>10211123450Bedroom1LengthBedroom1Length</DATA>
<DATA>10211123451Bedroom1WidthBedroom1Width</DATA>
<DATA>10211123452Bedroom1AreaBedroom1Area</DATA>
<DATA>10211123453Bedroom2LengthBedroom2Length</DATA>
<DATA>10211123454Bedroom2WidthBedroom2Width</DATA>
<DATA>10211123455Bedroom2AreaBedroom2Area</DATA>
<DATA>10211123456Bedroom3LengthBedroom3Length</DATA>
<DATA>10211123457Bedroom3WidthBedroom3Width</DATA>
<DATA>10211123458Bedroom3AreaBedroom3Area</DATA>
<DATA>10211123459LivingRoomLengthLivingRoomLength</DATA>
<DATA>10211123460LivingRoomWidthLivingRoomWidth</DATA>
<DATA>10211123461LivingRoomAreaLivingRoomArea</DATA>
<DATA>10211123462DiningRoomLengthDiningRoomLength</DATA>
<DATA>10211123463DiningRoomWidthDiningRoomWidth</DATA>
<DATA>10211123464DiningRoomAreaDiningRoomArea</DATA>
<DATA>10211123465KitchenLengthKitchenLength</DATA>
<DATA>10211123466KitchenWidthKitchenWidth</DATA>
<DATA>10211123467KitchenAreaKitchenArea</DATA>
</METADATA-COLUMN_GROUP_NORMALIZATION>

Example Screen Display based on Above Compact Reply:

Type Sequence Length Width Area

Bedroom 1 Bedroom1Length Bedroom1Width Bedroom1Area

Bedroom 2 Bedroom2Length Bedroom2Width Bedroom2Area

Bedroom 3 Bedroom3Length Bedroom3Width Bedroom3Area

LivingRoom LivingRoomLength LivingRoomWidth LivingRoomArea

DiningRoom DiningRoomLength DiningRoomWidth DiningRoomArea

Kitchen KitchenLength KitchenWidth KitchenArea

The user's data entry area would be the greyed out section and the data that they enter would be assigned to the SystemName in that grid
position.

Table 11-28 Metadata Content – Column Group Normalization

Metadata Field Content Type Description

MetadataEntryId 1*32ALPHANUM A value that never changes as long as the semantic definition of this field remains unchanged.

TypeIdentifier 1*32ALPHANUM Y Axis – Row Label – The Label that is to be displayed on the left side of the screen that identifies the Type of data that
the user is entering.

Sequence 1*5DIGIT Y Axis – Row Sequence – The Sequence number that is to be displayed on the left side of the screen after the
TypeIdentifier. This itemizes the Type of data that the user is entering.

ColumnLabel 1*32ALPHANUM X Axis – Column Label – This is the label that is to appear at the top of the screen for data within this column. It is
expected that all data in this grid with the same ColumnLabel be displayed in the same column on the screen.

SystemName 1*32ALPHANUM The SystemName of the field that is to be displayed in this position in the Grid for the ColumnGroup. This MUST be a
valid SystemName for this Class and MUST be within the ColumnGroupTable of the ColumnGroup. Fields that appear
within a ColumnGroup, but not within the Normalization for the ColumnGroup, are to be treated as separate data entry
fields that are not part of the grid. The SystemName MUST be unique within the ColumnGroup.

4. Development Impact

5. Compatibility

RCP 61 - Validation Expression Replacement

Original document: RCP 61 Validation Expression Replacement

Note: This RCP Affects the Following Sections:
Section 11.3.2 Table
Section 11.4.9.1 Validation Expression Types and Data Types
Section 11.4.9.2 Validation Expression Special Operand Tokens
Section 11.4.9.3 Validation Expression Functions and Operators
Section 11.4.9.4 Validation Expression BNF Representation

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having

http://members.reso.org/display/RCP/RCP+61+-+Validation+Expression+Replacement

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 164 of 232

Author Sergio Del Rio

Organization Templates 4 Business, Inc.

E-mail Sergio dot Del dot Rio at t4bi dot com

Author Libor Viktorin

Organization MarketLinx

Email lviktorin at marketlinx dot com

Submitted Date August 7, 2005

Revised Date October 30, 2007

RETS Version 1.8.0

Status Adopted

1. Synopsis

This proposal replaces the current validation expression description with a formalized BNF that is machine readable.

2. Rationale

Currently the Validation Expression section does not take into a account a number of factors such as data type and format that would provide a
consistent interpretation between RETS Servers. This proposal corrects this by defining the validation expression elements required to
successfully determine the validity of a data element against the business rules of the system.

3. Proposal

3.1 Section 11.3.2 – Additional field to Table Metadata

Following row should be added to table 11-36 (Validation Expression Metadata Content):

Message *TEXT Message to be shown to the user if a field is
rejected, or a warning is issued, because of this
validation expression

IsCaseSensitive BOOL When true, the string comparisons in the
expressions are case sensitive.

Section 11.4.9 should be rewritten as follows:

This section describes the ValidationExpression table that is referenced in Section 11.3.4. There MUST be a corresponding table entry for each
ValidationExpressionID referenced in the METADATA-UPDATE_TYPEs for a Resource.

The table contains expressions that are to be evaluated when a field value is entered by the user. Expressions in the list MUST be evaluated in
the order in which they appear in the list.

Note that the key for an update field (see table 11-11) has a specific role. If there is a validation expression associated with that field, it must be
evaluated even if the field itself is not part of the update request (in ADD update). If the expression for this field evaluates as REJECT, the whole
record is rejected and the client SHOULD NOT send the Update request.

There are several types of validation expressions, each introduced by a keyword preceding the expression:

Keyword
Expression type

Value
Type

Purpose

ACCEPT Boolean If the expression is true, the field value is considered accepted without further testing. Immediately following SET
expressions MUST be executed. If the expression is false, following validation expressions MUST be executed. If the
expression is ERROR (evaluation failed) in client, the client SHOULD act as if the field was accepted, allowing the server
to make the final decision.

REJECT Boolean If the expression is true, the field value is considered rejected without further testing. Subsequent SET expressions
MUST NOT be evaluated. If the expression is false, following validation expressions MUST be executed. If the
expression is ERROR, evaluation failed in client, the client SHOULD act as if the field was accepted, allowing the server
to make the final decision.

WARNING Boolean If the expression is true, the client should show a warning message to the user, and if the warning is OK-ed by the user,
include a Warning-Response in the UPDATE request. If the user does not OK the warning, the field is considered
rejected and following SET validation expressions MUST NOT be evaluated. If the expression is false, following
validation expressions MUST be evaluated.

changes adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 165 of 232

SET Assignment The expression MUST begin with a field name and an equal sign. The following expression is evaluated and the result
stored in the designated field.

SET_DEFAULT Appropriate
Data Type
of
Assigned
field.

This expression MUST be executed ONLY when a NEW record is created. Supersedes the default value as indicated in
the Update Metadata.

SET_REQUIRED Boolean Expressions of this type are designed to evaluate an expression and set the field the rule is being executed on to
Required if the expression returns true and to Non Required if the expression returns false.

SET_READ_ONLY Boolean Expressions of this type are designed to evaluate an expression and set the field the rule is being executed on to Read
Only if the expression returns true and to Updateable if the expression returns false.The client application is expected to
lock the value of the field the rule is being executed on to the value at the time the SET_REQUIRED expression is
evaluated.

RESTRICT_PICKLIST List of
CHARs

Expressions of this type are designed to return one or more LOOKUP values that are to be removed from the LOOKUP
list that is defined for the field the rule is being executed on. This is always the entire set of values to remove from the
lookup. In other words, if this returns a blank list or .EMPTY., the entire set of LOOKUP values is to be displayed. The
value of this expression MUST be a <List>, rather than <Exp>, as defined in 11.4.9.1. All members of the list MUST be
of the same type as the type of the field the rule is being executed on.

SET_PICKLIST List of
CHARs

Expressions of this type are designed to return one or more LOOKUP values that are to be used in the LOOKUP list that
is defined for the field the rule is being executed on. The value of this expression MUST be a <List>, rather than <Exp>,
as defined in 11.4.9.1. Every member of the list MUST exist in the Lookup list as defined in the metadata for the field the
rule is being executed on.

SET_DISPLAY Boolean Expressions of this type are designed to allow a client to make fields visible or invisible based on the evaluation of an
expression. The result of this expression has no effect on whether a field is READ ONLY or not.

The Server MAY expose expressions with other keywords; the keyword of such an expression MUST begin with a prefix “X-”. Clients MUST
ignore any expression with a keyword they do not recognize.

If the field is not rejected after processing all validation expression, a client MUST consider it accepted.

Every validation expression has one of following types:
Table 3-x Validation Expression Data Types

CHAR any string of ASCII characters

INT any integer (tiny, small, int, long)

FLOAT decimal number with fraction part

TIME time, date, datetime

BOOLEAN true or false

LIST list of several values of the same type. The type of the values may be any of those above.

EMPTY missing data (similar to NULL in database systems)

ERROR this is the type of an expression which cannot be parsed

11.4.9.x Validation Expression BNF

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 166 of 232

<Exp> ::= <OrExp>
<List> ::= <LParen> <RParen>
| <LParen> Exp *(, <Exp>) <RParen>\\
 <OrExp> ::= <AndExp> *(.OR. <AndExp>)\\
 <AndExp> ::= <NotExp> *(.AND. <NotExp>)\\
 <NotExp> ::= .NOT. <NotExp> | <EqExp>\\
 <EqExp> ::= <CmpExp> |
| <CmpExp> = <CmpExp> |
| <CmpExp> \!= <CmpExp>\\
 <CmpExp> ::= <CntExp> |
| <CntExp> <= <CntExp> |
| <CntExp> >= <CntExp> |
| <CntExp> < <CntExp> |
| <CntExp> > <CntExp> \\
 <CntExp> ::= <SumExp> |
| <SumExp> .CONTAINS. <SumExp> |
| <SumExp> .IN. <List>\\
 <SumExp> ::= <ProdExp> *((+ | - | <Concat>) <ProdExp>)\\
 <ProdExp> ::= <AtomExp> *((* | / | .MOD.) <AtomExp>)\\
 <AtomExp> ::= <LParen> <Exp> <RParen> |
| <Value> |
| <FuncExp>\\
 <FuncExp> ::= <Func> <LParen> <Param> *(, <Param>) <RParen>\\
 <Func ::= ALPHA *(ALPHANUM)\\
 <Param> ::= <Exp>\\
 <Value> ::= <SpecValue> |
| <CharValue> |
| <IntValue> |
| <FloatValue> |
| <TimeValue> |
| <TimeSpanValue> |
| <FieldName>\\
 <Concat> ::= |
<FieldName> ::= RETSNAME \| \[RETSNAME \]
<SpecValue> := . RETSNAME .
<CharValue> ::= ' PLAINTEXT ' \| " PLAINTEXT "
<TimeValue> ::= # DATE #
<IntValue> ::= 0*1(\+ \| \-) 1*(DIGITS)
<FloatValue>::= <IntValue> . *(DIGIT)
<LParen> ::= (
<RParen> ::=)

The value of a Validation Expression MUST conform to the <Exp> syntax in the grammar above, except for RESTRICT_PICKLIST and
SET_PICKLIST expressions, whose value MUST conform to the <List> syntax. Any expression with keyword starting with “X-” MAY have a <List>
value as well.

The text in CharValue must not include the (single or double) quote used to delimit the value.

TimeValue must be expressed in the ISO8601 format and enclosed in hashmarks(#) (ex. #2007-09-11T14:30:00#).

A <FieldName> is a name of a field belonging to the same class as the field to which this expression is attached, and has a type of that field
specified by the metadata. If used in brackets, its value is the value of the field as it was in the database before the current updates took place. If
used without brackets, the updated value of the field MUST be used.

A <TimeValue> has TIME type.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 167 of 232

A <CharValue> has CHAR type.

A <IntValue> has INT type.

A <FloatValue> has FLOAT type.

A <SpecValue> may be one of these values:
Table Special Token Names

Token Name Data Type Description

.TRUE. BOOLEAN Boolean value of TRUE (1)

.FALSE. BOOLEAN Boolean value of FALSE (0)

.EMPTY. EMPTY A value that matches an empty or all-blank field. Supplies an empty (zero-length) field when used in a SET expression.

.TODAY. TIME The current date.

.NOW. TIME The current time.

.ENTRY. type of the
current field

The current field text, as a string.

.OLDVALUE. type of the
current field

The text that was in the field as returned from the host in the search operation. If the field is new, .OLDVALUE. is an
EMPTY value.

.USERID. CHAR The value of the user-id field returned in the Login transaction, unless an info-token-key named USERID has been
returned in the Login transaction.

.USERCLASS. CHAR The value of the user-class field returned in the Login transaction, unless an info-token-key named USERCLASS has been
returned in the Login transaction.

.USERLEVEL. CHAR The value of the user-level field returned in the Login transaction, unless an info-token-key named USERLEVEL has been
returned in the Login transaction.

.AGENTCODE. CHAR The value of the agent-code field returned in the Login transaction, unless an info-token-key named AGENTCODE has
been returned in the Login transaction.

.BROKERCODE. CHAR The value of the broker-code field returned in the Login transaction, unless an info-token-key named BROKERCODE has
been returned in the Login transaction.

.BROKERBRANCH. CHAR The value of the broker-branch field returned in the Login transaction, unless an info-token-key named BROKERBRANCH
has been returned in the Login transaction.

.UPDATEACTION. CHAR Name of the UpdateAction for which this validation is performed.

.any. (see
Description)

If the name of the SpecValue (stripped of the first and last dot) is equal to a name of one of the info-token-keys returned as
part of the Login response, then the type and value of this SpecValue is defined by that info-token-key. If no such
info-token-key exists, the value is ERROR.

A <FuncExp> is a function with parameters. Following functions are defined:

Function parameter types type

BOOL BOOLEAN or CHAR BOOLEAN

CHAR Any, except for FLOAT CHAR

CHARF FLOAT, INT CHAR

TIME TIME or CHAR TIME

DATE TIME or CHAR TIME

INT INT or FLOAT or BOOL or CHAR INT

FLOAT INT or FLOAT or BOOL or CHAR FLOAT

SUBSTR CHAR,INT,INT CHAR

STRLEN CHAR INT

LOWER CHAR CHAR

UPPER CHAR CHAR

IIF BOOLEAN,any,any any

YEAR TIME INT

MONTH TIME INT

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 168 of 232

DAY TIME INT

WEEKDAY TIME INT

The BOOL, CHAR, TIME, DATE, INT and FLOAT functions are used just to change a type of expression. The DATE and TIME functions are
synonyms. Note that any of these functions may fail (return an ERROR value) if the parameter can not be transformed to the appropriate type.

In conversion from BOOLEAN to INT or FLOAT, .TRUE. is converted to 1 and .FALSE. is converted to 0. Casting FLOAT to INTEGER discards
the fractional part.

When converting to CHAR, BOOL values are represented as “0” and “1”, TIME values are represented using format defined in RFC 1123 with
digital timezone, INT values are represented with no leading zeroes.

When converting from CHAR to BOOL, values “0”,”1”,”YES”,”NO”,”TRUE” and “FALSE” (no matter what the case) MUST be understood.

When converting from CHAR to TIME, any RFC 1123 --compliant format MUST be understood. A leading and/or trailing # MUST be removed
before conversion.

When converting from CHAR to INT or FLOAT, usual formats MUST be understood. Scientific format (with exponent) MUST NOT be understood.
FLOAT numbers with empty integral part (.5, -.4) MUST be understood as long as there is at least one digit after the decimal point.

The CHARF function converts a Float number, and in the second parameter specifies how many decimal digits MUST appear after the point.

The SUBSTR function returns a substring of its first parameter. Second parameter is a starting position of the substring, third parameter is the
ending position of the substring. Positions are 1-based.

The STRLEN function returns the length if its parameter.

The Upper function returns its parameter upper-cased.

The IIF function return the value of its second parameter if the first parameter evaluates to true, or the value of its third parameter otherwise.
Types of second and third parameter must be same, and it is the type of the result.

The YEAR,MONTH,DAY and WEEKDAY parse the date part of TIME value. They return values ranging from 1 to the appropriate maximum.
WEEKDAY returns 1 for Sunday, 2 for Monday etc.

Other functions may be defined later (HOUR and MINUTE are first candidates). If a server uses a function the client does not recognize, the client
MUST evaluate it as ERROR.

The operators may be applied on certain types, and the resulting type is defined by the following table:
Operators

Operator Left operand Right operand Result Meaning

.MOD. INT INT INT Arithmetic MODULO operation

/,* INT INT INT Integral division and multiplication

/,* INT FLOAT FLOAT Division and multiplication

/,* FLOAT INT FLOAT Division and multiplication

/,* FLOAT FLOAT FLOAT Division and multiplication

+ INT INT INT Addition

+ INT FLOAT FLOAT Addition

+ FLOAT INT FLOAT Addition

+ FLOAT FLOAT FLOAT Addition

+ FLOAT TIME TIME Time shift

+ TIME FLOAT TIME Time shift

|| CHAR CHAR CHAR String concatenation

- INT INT INT Subtraction

- INT FLOAT FLOAT Subtraction

- FLOAT INT FLOAT Subtraction

- FLOAT FLOAT FLOAT Subtraction

- TIME FLOAT TIME Time shift

- TIME TIME FLOAT Time shift

.CONTAINS. CHAR CHAR BOOLEAN String containment (true if right operand is a substring in left operand)

.IN. Any List of operands, all of the same type as left BOOLEAN List inclusion (true if left is equal to any member of the list)

=,!= Any Same as left BOOLEAN Equality

.AND.,.OR. BOOLEAN BOOLEAN BOOLEAN Boolean operations

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 169 of 232

.NOT. BOOLEAN BOOLEAN BOOLEAN Boolean negation

Arithmetic operations between dates use number of days as the FLOAT parameter (or result); e.g. 0.25 represents a time span of 6 hours.

String operations are case sensitive or not, based on the IsCaseSensitive field in the expression's metadata.

Any operation with an ERROR argument MUST evaluate to ERROR. An EMPTY value may be compared (=,!=) against any value.

Appropriate casting functions (BOOL, CHAR, TIME, INT, FLOAT) MUST be applied to the parameters. If a function or an operator is applied to a
datatype different than shown in the above tables, the expression MUST evaluate to ERROR.

The using of strong types will help in optimizing and preprocessing the validation expressions, as well as it specifies more precisely how to
calculate the expression values. However, it forced the use of conversion functions, so I added some basic other functions as well. More functions
may be added to the specifications if the need shows.

The rest of 11.4.9 (Validation Expression Metadata), following table 11-34, should remain unchanged (except for the new row in table 11-36, see
top of 3.1 in this proposal).

4. Development Impact

Because the proposal changes the validation expressions as they are currently defined it will have a big impact on current client and server
software not currently following this format.

5. Compatibility

This is not backward compatible.

RCP 63 - Object Data and Upload

Original document: RCP 63 Object Data and Upload

Author Libor Viktorin

Organization MarketLinx

E-mail lviktorin at marketlinx dot com

Submitted Date July 20, 2007

Originating Workgroup

RETS Version 1.8.0

Status Adopted

1. Synopsis

This proposal adds a missing functionality to the RETS specifications. It specifies a method to upload binary objects, such as images, to the
server.
It also addresses the need to store and expose detailed information about these objects, and makes it easier to search for them.

This is a second updated version of "RETS Change Proposal: Object Upload" filed on August 8, 2003.

2. Rationale

The RETS currently does not specify a way to upload objects to the server. This proposal adds a PostObject transaction, which complements the
GetObject transaction already specified. It also adds a way of exposing additional data about objects such as descriptions, captions, image sizes,
modification dates, etc. With this additional info, a client can search for objects matching some criteria, rather than requesting objects only by their
order number.

3. Proposal

Note: This RCP Affects the Following Sections:
Section 5.3 Required Request Arguments
Section 5.4 Optional Request Arguments
Section 5.6 Optional Server Response Header Fields
Section 5.12 ObjectData Classes
Section 11.4.1 Object
Section 13 - PostObject Transaction

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+63+-+Object+Data+and+Upload

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 170 of 232

 3.1 Specification Changes & Additions 3.1.1 ObjectData field in Object metadata

The following line should be added to the Table 11-16 (Object Metadata Content). Adequate change should be done to the METADATA.dtd file.

Field
Name

Content Type Description

PostSupport 0
1

PostObject transaction is unavailable for this object type
PostObject transaction is available for this object type

ObjectData RETSNAME:RETSNAME Resource and Class of a table that provides additional data about
objects described by this metadata. If an object contains no additional
data, this field MUST be empty or missing.

MaxFileSize Numeric Indicates that maximum file size (in bytes) that is accepted by the
server. The server MAY refuse any objects sent that are greater than
this size. The server MAY return an http error code if an object bigger
than this is received.

Object Data classes

The following should be added to the specs as chapter 5.12. The current chapter 5.12 (Error codes) should be renumbered to 5.13, and its table
5-1 should be renumbered to 5-2.
5.12 ObjectData classes

The server MAY expose additional data for object files. If it does, such a data MUST be exposed in a class linked to an object type via the
ObjectData metadata field in the Object metadata. Any table linked this way to the Objects MUST hold exactly one record for each object file
available through the GetObject transaction on the linked Resource and ObjectType. The data must always correctly describe the object (eg. if a
FileSize field is exposed, its value MUST be the length of a file sent by the GetObject transaction).

A good practice would be for the server to expose all such tables within one resource named OBJECT; however, the server is free to use any
resource and class name as it sees fit.

Any class linked to an Object metadata item MAY expose any data about the object; however, if the data is one of the fields listed in table 5-1, the
class MUST use the standard names from that table. Any class MUST expose fields shown in .bold

Data from the ObjectData table will be communicated via HTTP headers (see 5.4.2 and X 1.2).

Table 5-1

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 171 of 232

Standard Name DataType Description

UID CHARACTER Unique ID. This field must be unique within the class and its
resource.

ObjectType CHARACTER ObjectType of this object. This is the Type parameter in the
GetObject request.

ResourceName CHARACTER Standard name of the resource this object belongs to. This is the
Resource parameter in the GetObject request.

ResourceID CHARACTER Value of the Key Field identifying a record within the resource
described by ResourceName. This is the first part of the ID
parameter in the GetObject request.

ObjectID INT Ordinal number of this object within all objects belonging to the
record identified by ResourceName and ResourceID. This is the
ObjectID in the GetObject request.

MimeType CHARACTER MimeType of the object

IsDefault BOOL 1 if this object is the default one (sent when an object with
ObjectId= 0 was requested). This is the main object that should be
displayed for the ObjectType.

ObjectModificationTimestamp DATETIME Time of the last modification of the object

ModificationTimestamp DATETIME Time of the last modification of this data record (including the
object modification)

OrderHint INT Provides an override for the ObjectId value so a client can specify
an alternate ordering of ObjectData while preserving the one
specified by the ObjectIds. This allows clients performing updates
using the UID field perform operations such as resource
reordering more easily.
Unlike the ObjectId, where ordinal values are defined by starting
with the number 1 and using the formula n+1 to arrive at each
consecutive term in the sequence, the OrderHint values can form
any integer set provided that sequence of items within the set is
preserved.
If A and B are two objects in a collection then the following
expression must be true:
If ObjectA.OrderHint > ObjectB.OrderHint
then
ObjectA.ObjectId > ObjectB.ObjectId
If the OrderHint is supported, then the server must maintain the
number as sent by the client.

Description CHARACTER Description of the object.

Caption CHARACTER Short title of the object.

FileSize INT Size, in bytes, of the object

WidthPix INT Width of an image, in pixels

HeightPix INT Height of an image, in pixels

Duration INT Length of a movie or audio, in seconds

WidthInch INT Width of an image, in inches

HeightInch INT Height of an image, in inches

… Other well-known fields will be defined later

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 172 of 232

Searching for objects: Any ObjectData class is searchable as any other class. The object data may be searched by any
searchable field specified in the class. The ResourceName, ResourceID and Order or UID of the matching results may be used as
parameters in a subsequent GetObject transaction requesting the matching objects.

Updating object data: The server MAY expose updates for the ObjectData class. However, the data MUST stay consistent with
the object files, so eg. the system must not allow changing the WidthPix field unless it is able to crop or resize the underlying image
file.

The system MUST NOT expose an Add update for the ObjectData class, since objects will be added via the PostObject transaction.
The system MAY expose a Delete update, which will have a similar effect as the PostObject transaction with the Update=Delete
(namely, it will remove a record from the Object table AND delete the object file). The system MAY also expose a CLONE
transaction to allow for reusing an existing object in more than one record.

The system MAY expose an UPLOAD update. Clients SHOULD NOT use this update directly; if they do, server MUST refuse it.
This update type is used to hook up validation expressions and update help to the PostObject transaction. If the UPLOAD update
exists, both client and server SHOULD use it to check data sent via the PostObject transaction. The UPLOAD update’s validation
expressions may place constraints on any field defined in the Object table, thus specifying acceptable file characteristics.

Any document listing Standard Names should be updated to reflect the names in Table 5-1.
3.1.3 GetObject transaction modification

The following section should be added to the end of RETS specification, chapter 5.3 (GetObject Required Request Arguments):

UID The string identifying the object(s) being requested:

UID ::= TOKEN *("," TOKEN)

The UID argument allows for requesting objects by their UIDs, as described in table 5-1. Either ID or UID argument MUST be
present in the request, but not both of them. If the server does not support UIDs for the requested type of objects, it MUST respond
with an error (Preferred code would be 20403: No object found. Servers that do not implement the functionality proposed in this
document may respond with 20402: Invalid Identifier). However, if the requested type of objects has an ObjectData class linked in
its metadata, the server MUST support this argument.

The following section should be added to the RETS specifications, chapter 5.4 (GetObject Optional Request Arguments):
5.4.2 ObjectData

ObjectData *| FieldName *(, FieldName)

FieldName ::= RETSNAME

This parameter indicates that data relevant to the object should be sent as HTTP headers in the server response . If ObjectData is
set to "*", the server MUST include a header line for each field in the ObjectData class linked to the requested Object Type, as
described in chapter 5.6. If ObjectData is set to a list of fields, ObjectData headers for the requested fields only MUST be sent in the
response. If this argument is missing, no ObjectData will be sent.

The following section should be added to the RETS specification, chapter 5.6 (GetObject Optional Server Response Header Fields)

UID

The UID of the object. This field is required and MUST be returned if the request used UID rather than ID argument, and MAY be
sent if ID has been used.

ObjectData

If the client has submitted a request with “ObjectData” the header of the response MUST contain the ObjectData header field(s).
The server MUST include a header line for each requested field in the ObjectData class linked to the requested Object Type. Each
such header will have the name of “ObjectData”, and its value will be the SystemName of the field, followed by an equals sign,
followed by the value of the field.

Example:
ObjectData: PropMediaCaption=caption for kitchen
ObjectData: PropMediaDescription=details about kitchen

3.1.4 PostObject transaction

The following section should be added to the RETS specifications as a special chapter (replace X with the chapter number)

Section X: PostObject Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 173 of 232

The PostObject transaction is used to upload structured information related to known system entities. This transaction allows the
client to send one file as a MIME type along with more information. The server's response is similar to that of the Update
transaction.

If the server supports the PostObject transaction, it sets the PostSupport field in the Object metadata to 1.

Before a client tries to upload an object, it SHOULD check for the presence of the ObjectData class in the metadata. If such a class
exists, the client SHOULD check all its validation expressions, supplying the characteristics of the uploaded file as values of the
known fields of the ObjectData table. See the table 5-1.

The PostObject request MUST be sent using POST method. The request arguments for the transaction are sent using HTTP
headers.

X.1 Required request header fields

In addition to the Required client request header fields specified in section 3.4, the header of any single-file message MUST contain
the following fields:

UpdateAction = | | Add Replace Delete

Content-type = <mime-type as defined in 5.1>

Content-length = <length of the posted data>

Type = <object type as defined in table 11.11>

Resource = <ResourceID of a resource as defined in table 11.3>

X.2 Conditionally required request header fields

ResourceID =resource-id

ObjectID =1*5DIGIT

UID =TOKEN

OrderHint =1*5DIGIT

resource-id is a value from the KeyField of the Resource for which the object is to be uploaded.

ObjectID is the order number of an object within the ID. It corresponds to the Object-ID argument for the GetObject transaction.
UID is the UID of an existing object, as reported by the server in a previous PostObject, or in the related ObjectData class.
OrderHint is a number suggesting where in the sequence of all objects belonging to the same ResourceID an uploaded object
should be placed. Unlike ObjectID numbers, which must be an uninterrupted sequence of integral numbers starting with 1, the
OrderHint may be any number. After an update, the server must modify ObjectID values for a given ResourceID, to ensure that the
ObjectID order is the same as the OrderHint order. ObjectID numbers MUST follow the ordering of OrderHint numbers in the sense
that if the OrderHint for object A is lower than the OrderHint for object B, then the ObjectID for object A MUST be lower that
ObjectID for object B. In the case where multiple objects are set to share the same OrderHint value, the resulting ObjectID ordering
is non-predictive. In the case of a multi-part upload, any ObjectID reordering that needs to be done to synchronize with the
OrderHint order will be done by the server after all the objects are loaded.

The OrderHint MUST NOT be used in the PostObject request if it is not exposed in the ObjectData class linked to this object
metadata (see 5.12 and Table 5-1). If it is used, the server should ignore the parameter.

Depending on the UpdateAction value, the ResourceID, ObjectID, UID or OrderHint may be missing from the request.

If UpdateAction=Add and the ResourceID and either ObjectID or OrderHint number is used, the uploaded file will be added to the
list ofobjects. The server will adjust ObjectIDs to ensure that the uploaded object assumes appropriate position in the list of existing
objects. If ObjectID is used, the server MUST increase the ObjectID by one for existing objects that have an ObjectID that is of the
same value or greater than the ObjectID of the inserted object. If the number of existing objects is less then the ObjectID, the
uploaded object becomes the last one in the list. If OrderHint is used, the server recalculates ObjectIDs of all objects so that they
stay in sync with the order of the OrderHint values. If a client sends values for both ObjectID and OrderHint, the server MUST return
error, preferably 20804 (Inconsistent parameters).

If UpdateAction=Add and the UID is given, the behavior is the same as if ResourceID and ObjectID of the object identified by the
UID were requested. Namely, the uploaded file will be inserted before the object identified by UID. If any of ResourceID, ObjectID or
OrderHint are used along with UID, the server MUST return error, preferably 20804 (Inconsistent parameters).

If UpdateAction=Add and none of ObjectID, OrderHint or UID is provided, the uploaded file becomes the last in the list of existing
objects. ResourceID is required in this case. The server may set its OrderHint to any number higher that all existing OrderHints for
this ResourceId.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 174 of 232

If UpdateAction=Replace, either the ResourceID and ObjectID, or the UID MUST be used. The uploaded file replaces the original
object. Any ObjectData fields not sent with the PostObject request (and not affected by the uploaded file) keep their previous
values. If a client sends values for both ObjectID and UID, the server must return error, preferably 20804 (Inconsistent parameters).

If UpdateAction=Delete, either the ResourceID and ObjectID, or the UID MUST be used, and they MUST identify an existing object.
The body of the request SHOULD be empty and MUST be ignored by the server. It is expected that the server will re-adjust the
ObjectIDs such that there is no gap introduced by a Delete. If a client sends values for both ObjectID and UID, the server must
return error, preferably 20804 (Inconsistent parameters).

The Delete request may also be sent with ResourceID without ObjectID, in which case all objects for the given ResourceID are to
be deleted.

X.3 Optional request header fields

The client MAY specify any other headers. If the header coincides with a System Name of a field in a correspondent ObjectData
class (see 5.12), the server MAY use the header's value to update that field. It's the server's decision whether such a field will be set
to the client provided value, or calculated based on the uploaded file or other data. However, the server SHOULD calculate the
values (rather than using the client-provided values) whenever it’s able to do so. Specifically, the field with standard name FileSize
SHOULD always reflect the length of the file as it is stored with the server.

The client SHOULD check the ObjectData class to see what headers may be needed for the server.

Warning-Response = warning-num=user-response

In case there were any warning while validating the request, the client MAY sent Warning-Response header. If a server responded
to a previous PostObject request with a WarningBlock (see X.1.4), the client SHOULD include a Warning-Response header(s) when
re-posting the request. The syntax and semantics of this header should resemble that of the WarningResponse argument from the
Update transaction.

X.4. Request body

The body of the request is the file being uploaded. If UpdateAction=Delete, the body MAY be empty, and SHOULD be ignored by
the server.

X.5 Server response body format

The response from the server is similar to that of the Update transaction (10.5):

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP ReplyText= quoted-string *SP> CRLF
[pendingrcps: delimiter-tag]
column-tag
compact-data
[pendingrcps:activation-tag]
[pendingrcps:error-block]
[pendingrcps:warning-block]
[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText= quoted-string *SP/>
</RETS> CRLF

In the compact-data, the server MUST send the values of Resource, Type, ResourceID, ObjectID and UID, if they were used in the
request. The UID, if it exists in the related ObjectData class, MUST be sent even if it was not requested. The UID MAY also be sent
if no ObjectData class is linked to this Object metadata, but the server is able to honor GetObject requests with UID.

Unless the UpdateAction requested was Delete, all other fields from the ObjectData table that were requested or changed MUST
also be sent. Other fields from the ObjectData table MAY be sent as well.

activation-tag ::= TIMESTAMP [pendingrcps: ; TEXT]

If the object is not immediately accessible, the server MUST send a datetime when it is supposed to be activated. An explanation
why the object is delayed MAY be appended.

The reply code MUST be zero (success) even if the object is accepted for testing only. However, if the server knows in the time of
the transaction that the object will be refused, it SHOULD reply with an error reply code (eg. 20809).

error-block and are explained in section 10.5.warning-block

 X.6. Reply Codes Table X.1 Standard Reply Codes

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 175 of 232

0 Upload successful.

20800 Unknown resource

20801 Invalid object type

20802 Invalid identifier

20803 Invalid update action

20804 Invalid (inconsistent) request parameters

20805 No object found (for Delete)

20806 Unsupported MIME type

20807 Unauthorized

20808 Some objects not deleted (in case of Delete without ObjectID or UID, if some objects could not be deleted,
while some were)

20809 Refused: object does not meet business rules

20810 FileSize too large
Note that some servers MAY respond with HTTP status “413 – Request entity too large” if the uploaded
file is larger than any acceptable limit.

20811 Timeout

20812 Too many outstanding requests

20813 Miscellaneous error

Chapter 4.10 (Capability URL List) should be modified to account for an optional PostObject transaction.

4. Compatibility

The ObjectData and PostSupport metadata fields in the Object metadata are optional. Clients implementing this proposal should make sure that
they can handle metadata without these items to stay compatible with older servers. Older clients may have problems with new servers, since the
metadata DTD is changed, but there is a chance even old clients will work correctly, if they are able to just ignore unknown metadata items.

Object data classes are regular classes, so they should not pose any compatibility risk.

Since previous versions of the specs did not allow for object upload, there are no compatibility issues with the PostObject transaction.

5. Acknowledgements

Thanks to Sergio Del Rio and all participants in the Rets Upload Workgroup for revising this proposal and making many valuable comments,
which shaped this version of the document.

RCP 65 - Session information tokens

Original document: RCP 65 Session information tokens

Note: This RCP Affects the Following Sections:
Section 4.4.1 Broker Code Argument
Section 4.6 Login Response Body Format
Section 4.7.1 Broker - deprecated
Section 4.7.2 Member Name - deprecated
Section 4.7.3 Metadata Version Information - deprecated
Section 4.7.4 User information - deprecated
Section 4.7.5 Session Information Tokens
Section 4.8.1 Accounting Information - deprecated
Section 4.8.2 Access Control - deprecated
Section 4.8.3 Office List Information - deprecated
Section 11.4.9.1 Validation Expression Types and Data Types
Section 11.4.9.2 Validation Expression Special Operand Tokens

http://members.reso.org/display/RCP/RCP+65+-+Session+information+tokens

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 176 of 232

Author Libor Viktorin

Organization MarketLinx

E-mail lviktorin at marketlinx dot com

Submitted Date July 20, 2007

Originating Workgroup

RETS Version 1.8.0

Status Adopted

1. Synopsis

2. Rationale

Validation expressions currently use several special operand tokens (see table 11-34) to account for data such as UserID, BrokerCode etc,
describing the current user. The values for these tokens are set in the Login transaction response.

With broader use of the update transaction and validation, it's becoming clear that the current tokens may not be sufficient for all situations. RETS
needs a way to let the server provide any information pertaining to the current session. This document proposes a way to do it.

3. Proposal

In chapter 4.6, the normal "OK" response format should be given as:

 =<RETS 1*SP ReplyCode quoted-reply-code
 = >1*SP ReplyText quoted-string *SP

 <RETS-RESPONSE>
 [pendingrcps:member-name-key]

 [pendingrcps:user-info-key]
 [pendingrcps:broker-key]

 [pendingrcps:metadata-ver-key]
 [pendingrcps:metadata-timestamp-key]

 [pendingrcps:min-metadata-timestamp-key]
 [pendingrcps: office-list-key]

 [pendingrcps: balance-key]
 [pendingrcps: timeout-key]

 [pendingrcps: pwd-expire-key]
 *(info-token-key)
 capability-url-list

 [pendingrcps: =</RETS-RESPONSE> [<RETS-STATUS 1*SP ReplyCode quoted-end-reply
 -code

 =]/>1*SP ReplyText quoted-string * SP
 </RETS> CRLF

In each of chapters 4.7.1, 4.7.2, 4.7.3, 4.7.4, 4.8.1, 4.8.2 the following should be added:

This argument is deprecated and will be replaced by the Session Information Token (see 4.7.5).
Servers that claim to be backwards compatible with previous versions of RETS MUST still use this argument, but MUST also send
the same information in a info-token-key.
Servers that do not claim to be backwards compatible MUST NOT use this argument.
Clients MUST use this information ONLY if an info-token-key with appropriate name is not provided; otherwise, the info-token-value
of that token MUST be used instead.
Clients that do not claim being backwards compatible with previous versions of RETS MUST NOT use this argument.

In chapter 4.8.3 the following should be added:

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 177 of 232

This argument is deprecated and will be replaced by the Session Information Token (see 4.7.5).
Note that in the OfficeList information token the values are delimitted by commas, rather than semicolons.
Servers that claim to be backwards compatible with previous versions of RETS MUST still use this argument, but MUST also send
the same information in a info-token-key.
Servers that do not claim to be backwards compatible MUST NOT use this argument.
Clients MUST use this information ONLY if an info-token-key with appropriate name is not provided; otherwise, the info-token-value
of that token MUST be used instead.
Clients that do not claim being backwards compatible with previous versions of RETS MUST NOT use this argument.

Following text should be inserted before Chapter 4.7.5. Current chapter 4.7.5 should be renumbered.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 178 of 232

4.7.5. Session Information Tokens

info-token-key ::= = [pendingrcps: ; Info info-token-name info-token-typ
] ; e info-token-value CRLF

info-token-name ::= RETSNAME

info-token-type ::= TOKEN

info-token-value ::= TEXT

Information token represents a named and typed piece of information about the current session. This information is sent by the
server to the client to use in various occations, eg session and password management, creating search queries targetted to the
current user, or in validation expressions (see table 11-34).

Any number of information tokens can be sent in the Login response, provided all of them have unique names.

The is one of the DataTypes defined in table 11-9. If is missing, the token's data type defaults toinfo-token-type info-token-type
Character; the MUST NOT include semicolons in this case. Otherwise, may be any of theinfo-token-value the inf-token-type
DataTypes specified in Table 11-9. The must conform to the token's data type.info-token-value

Names and types of well known tokens are listed in Table 4-1. The server MUST specify tokens shown in bold in that table. These
tokens replace the deprecated information described in 4.7.1-4.7.4. The server also MUST specify well-known tokens providing
information specified in optional response arguments (see 4.8), if these arguments are used. Clients MUST use the token values
rather than the data in the response arguments; however, if the tokens are not present, the response argument values MUST be
used.

If a token with a well-known name is specified without the , client MUST cast it to the type shown in Table 4-1.info-token-type

Names and types of well known tokens are listed in Table 4-1.

Table 4-1. Well-Known Information Tokens

Token name Data
type

Deprecated argument

USERID Character user-id

USERCLASS Character user-class

USERLEVEL Int user-level

AGENTCODE Character agent-code

BROKERCODE Character broker-code

BROKERBRANCH Character broker-branch

MEMBERNAME Character member-name

MetadataVersion Character metadata-version

MetadataTimestamp DateTime metadata-timestamp-key

MinMetadataTimestamp DateTime min-metadata-timestamp-key

Balance Decimal balance

TimeoutSeconds Int timeout-key

PasswordExpiration Date pwd-expr

WarnPasswordExpirationDays Int expr-warn-per

OfficeList Character office-list-key
The value of the OfficeList token will be comma-delimited, rather than
semicolon-delimited as it was in the case of the OfficeList response
argument

More well-known Information Tokens may be added in later version of this document.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 179 of 232

Following table should replace Table 11-34. The DataType Column should be used only if the Validation Expressions, as suggested by the
Update Workgroup, use data types.

Token Name Data Type Description

.TRUE. BOOLEAN Boolean value of TRUE (1)

.FALSE. BOOLEAN Boolean value of FALSE (0)

.EMPTY. EMPTY A value that matches an empty field. Supplies an empty field when used in a
SET expression.

.TODAY. TIME The current date.

.NOW. TIME The current time.

.ENTRY. type of the
current field

The new field value.

.OLDVALUE. type of the
current field

The original value of the field as returned from the host in the search
operation. If the field is new, .OLDVALUE. is an EMPTY value.

.USERID. CHAR The value of the user-id field returned in the Login transaction, unless an
info-token-key named USERID has been returned in the Login transaction.

.USERCLASS. CHAR The value of the user-class field returned in the Login transaction, unless an
info-token-key named USERCLASS has been returned in the Login
transaction.

.USERLEVEL. CHAR The value of the user-level field returned in the Login transaction, unless an
info-token-key named USERLEVEL has been returned in the Login
transaction.

.AGENTCODE. CHAR The value of the agent-code field returned in the Login transaction, unless an
info-token-key named AGENTCODE has been returned in the Login
transaction.

.BROKERCODE. CHAR The value of the broker-code field returned in the Login transaction, unless an
info-token-key named BROKERCODE has been returned in the Login
transaction.

.BROKERBRANCH. CHAR The value of the broker-branch field returned in the Login transaction, unless
an info-token-key named BROKERBRANCH has been returned in the Login
transaction.

.UPDATEACTION. CHAR Name of the UpdateAction for which this validation is performed.

.any. (see
Description)

If the name of the SpecValue (stripped of the first and last dot) is equal to a
name of one of the info-token-keys returned as part of the Login response,
then the type and value of this SpecValue is defined by that info-token-key. If
no such info-token-key exists, the value is ERROR.

4. Compatibility

While the proposed solution makes the Login response cleaner, better organized and more flexible, it poses a big thread to a backwards
compatibility. That's why the deprecated items are left in place, allowing old servers and clients to stay compatible.

In moving forward, both servers and clients are encouraged to break backward compatibility and drop the deprecated items as soon as they
believe all the end-points they communicate with have implemented this proposal.

Breaking backwards compatibility will prepare servers and clients to the next stage, where the deprecated items will really be dropped.

RCP 68 - Search Has Key Index Support

Original document: RCP 68 Search Has Key Index Support

http://members.reso.org/display/RCP/RCP+68+-+Search+Has+Key+Index+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 180 of 232

Author Matthew McGuire

Organization MarketLinx

E-mail mmcguire at marketlinx dot com

Submitted Date June 9th, 2008

Originating Workgroup RETS 1.7.1 Document

RETS Version 1.8.0

Status Adopted 2008-08-07

1. Synopsis

This proposal addresses a common concern among client applications designed to replicate the data available on a given RETS server. This
proposal attempts to
resolve these concerns by providing additional metadata and modifying the Search Transaction to retrieve the keys for a given Class.

2. Rationale

Presently if a client application wishes to replicate data they must either acquire all of the records using a single search request, multiple requests
using OFFSET, or multiple requests using a local index of keys. The first approach is often limited to a maximum number of records. The second
approach is based on a feature that may not be supported by all servers and may not guarantee all the records. The third approach depends on a
previously acquired set of keys which may or may not be complete at the time of use. Additionally there is no way for a server vendor to advertise
support for data replication. By providing a metadata specifically designed to advertise keys used for replication, the client can acquire a list of
keys for retrieving the records accurately and the server can advertise support for replication by providing the metadata.

3. Proposal

3.1 Specification Changes

The following sections detail each area of the existing specification that needs to be changed or clarified and provides reasoning related to each
change. Each area of the change will be listed according to the section of the specification using numbering in italics. For example changes to the
METADATA-SYSTEM response
format would look like the following: “ ”.Section 11.2.1

This proposal extends the Search Transaction and affects server support for records limits in a specific way. Language to this effect is added to
the following
sections.
Section 7.4.3 Limit

The following sentence should be added to the end of the section.

Any request that sets a numeric Limit disables support for unlimited key index results as described in .section 7.4.5 Select
Section 7.4.5 Select

The following sentence should be added to the end of the section.

If the requested Class advertises HasKeyIndex as True in the Class Metadata and the client only selects fields advertised as InKeyIndex as True
in the Table Metadata, the Server MUST return all the matching records unless the Client has declared a Limit other than NONE.
Section 11.3.1 Class

The following additional Metadata Field should be added to Table 11-7 Metadata Content: Resource Class.

HasKeyIndex – Boolean – This value declares that a Class supports the retrieval of key data for fields advertised in the Table Metadata as
InKeyIndex.
Section 11.3.2 Table

The following additional Metadata Field should be added to Table 11-9 Metadata Content – Tables.

InKeyIndex – Boolean – This value declares that a field may be used in the Select argument to suppress normal Search Limit behavior following
the rule outlined in Section 7.4.5.

Note: This RCP Affects the Following Sections:
Section 7.4.3 Limit
Section 7.4.5 Select
Section 11.3.1 Class
Section 11.3.2 Table

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 181 of 232

1.

2.

5. Compatibility

The additional metadata and behavior should not impact systems before version 1.7.1. Given the common need for this behavior, including this in
the 1.7.1 is desirable.

RCP 69 - LookupType Value

Original document: RCP 69 LookupType Value

Author Steve Clarke

Organization MarketLinx

E-mail sclarke at marketlinx dot com

Submitted Date June 6th, 2008

Originating Workgroup RETS 1.7.1 Document

RETS Version 1.8.0

Status Adopted 2008-08-07

1. Synopsis

Certain MarketLinx site configurations observed already do have occasional values defined that violate the current specificationLookupType
requirement that a value is ALPHANUM. In some cases these are in fact string fields that may have had a Lookup metadata addedLookupType
after the fact. Data in the database is already stored with non-ALPHANUM characters. Furthermore, in these situations, there are already RETS
clients that are using this data in their feeds.

Under the current specification, we would have only two options for 100% compliancy in this area:

We can map these values to some arbitrary (100% alphanumeric) value and perform this mapping both when processingLookupType
the search request as well as returning the data. This would not only require significant server development, but it would also add
performance overhead and would impact all current implementations against these servers. Actually changing the data stored in the
native databases is not an option because other MLS applications depend on this.
We could simply eliminate the from the metadata and treat these fields strictly as string fields. This would bring the servers intoLookup
compliance, but it would reduce the quality of the metadata and the value of the server.

This proposal intends to make values more flexible by allowing them to behave in a similar capacity as regular string fields, while stillLookupType
providing the value of the Lookup metadata.

2. Rationale

The RETS standard already supports non-alphanumeric data in both queries and results. The DMQL2 BNF already supports string-literal, which is
any TEXT except double-quote itself. DMQL parsers already can deal with this type of quoted string in search criteria against string fields.

With minor changes to the specification, a Lookup field can be treated exactly like a string field, except that it brings additional metadata that
defines the set of possible values. This approach gives added flexibility to the systems without introducing additional overhead and without
impacting existing client use cases.

3. Proposal

 3.1 Specification Changes 11.4.3 Lookup Type

Table 11-20 Metadata Content: Lookup Type

Change content type for Value element from 1*32ALPHANUM to 1*128TEXT.

7.7.1 Query language BNF

Change definition of lookup element to:

Note: This RCP Affects the Following Sections:
Section 7.6.1 Query Language BNF
Section 11.4.3 Table

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

Note: this change was already discussed and voted on in December 2007 (Miami) RCP by Matt McGuire, but at the time it deferred
spec review WG . Unfortunately, this was missed in the 1.7.1 work done recently.

http://members.reso.org/display/RCP/RCP+69+-+LookupType+Value

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 182 of 232

lookup ::= <any legal string-literal value as per metadata>|<any legal TEXT value for
the field as per metadata>

Sample search criteria:

HEAT=%7CBSBRD,ELEC,GEOTH
HEAT=%7CBSBRD,ELEC,GEOTH,”HV/AC”
HEAT=%7C”BSBRD”,”ELEC”,”GEOTH”,”HV/AC”
HEAT=%7C”BSBRD”,”ELEC”,”GEOTH”,”HV/AC”
HEAT=%7E”BSBRD”,”ELEC”,”GEOTH”,”HV/AC”
HEAT=%2B”BSBRD”,”ELEC”,”GEOTH”,”HV/AC”

Compatibility

At certain sites, MarketLinx servers already expose non-alphanumeric values in RETS metadata. MarketLinx servers already supportLookupType
the capability of quoting a value in search criteria. A wide variety of client vendors are already successfully using this feature. A fewLookupType
vendors are unable to query using quoted values and are hesitant to implement because this is not presently described in theLookupType
specification. This proposal will not change the way the affected servers operate. It merely formalizes the approach that is already supported.
Vendors that do not support non-alphanumeric values and clients that choose not to support this type of query are not affected at all.LookupType

RCP 70 - Metadata Role Support

Original document: RCP 70 Metadata Role Support

Author Matthew McGuire

Organization MarketLinx

E-mail: mmcguire at marketlinx dot com

Submitted Date: July 27, 2007

Originating Workgroup:

RETS Version: 1.8.0

Status: Adopted

1. Synopsis

This proposal attempts to eliminate Metadata versioning issues with regard to users that fall into multiple roles or other arbitrary groupings.
Presently the specification does not provide an identity for the current metadata beyond the version numbering. This proposal resolves this issue
by defining a Metadata ID or name that can be used to persistently cache metadata related to a given role or grouping.

2. Rationale

The specification presently states the Metadata version must be increased anytime there is a change regardless of the identity that has logged in.
As a result server hosts must increment the version number anytime the metadata has changed, regardless of the session context of the prior
user. The end result is an ever increasing version number so long as any two users who have different metadata log in to the server in alternating
sequence. This artificially increases the version, forces a RETS client application to retrieve metadata inefficiently, and prevents effective
metadata version caching on the client side. This proposal attempts to resolve this issue using a persistent Metadata ID or name associated to the
Metadata version that can be used by a RETS client for the purpose of caching metadata versions in an efficient and reliable manner.

3. Proposal

3.1 Specification Changes

The following sections detail each area of the existing specification that needs to be changed or clarified and provides reasoning related to each
change. Each are of the change will be listed according to the section of the specification using the specification numbering in italics. For example
changes to the METADATA-SYSTEM response format would look like the following: “ ”.Section 11.2.1
Section 4.6 Login Response Body Format

This section defines the information returned to a client during the login process. This response sets up session information for the RETS
connection and can be used to know if the client metadata cache is up to date. The current response format is defined as follows.

Note: This RCP Affects the Following Sections:
Section 4.7 Required Response Arguments
Section 11.2.1 System

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+70+-+Metadata+Role+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 183 of 232

<RETS 1*SP ReplyCode=quoted-reply-code 1*SP
ReplyText=quoted-string *SP >
<RETS-RESPONSE>
member-name-key
user-info-key
broker-key
metadata-ver-key
metadata-timestamp-key
min-metadata-timestamp-key
[pendingrcps: office-list-key]
[pendingrcps: balance-key]
[pendingrcps: timeout-key]
[pendingrcps: pwd-expire-key]
capability-url-list
</RETS-RESPONSE>
[<RETS-STATUS [pendingrcps:1*SP ReplyCode=quoted-end-reply-code 1*SP
ReplyText=quoted-string * SP]/>
</RETS> CRLF

Here the metadata version number and dates are advertised based on the login data of the user. Unfortunately this ties the metadata versioning
to the ID of the user, which can be a problem for RETS client applications that need to cache metadata for multiple users. As a result multi-user
RETS client applications must cache metadata for each user, which on a large system is neither scalable nor maintainable. To produce a scalable
solution the Metadata System ID (see changes to below) can be reused to represent the current metadataSection 11.2.1 System Metadata
model as defined for that session. By doing this a given metadata system ID can be used to cache a specific metadata model on the server. This
will permit the multi-user client application to cache only the unique or separate metadata models as advertised by the server. On the server side,
the server MUST manage metadata versioning relative to the unique System ID. By doing this the server may host multiple metadata roles
without the need to increment the metadata version artificially as described above. To accomplish this, the above Login response format is
changed to the following.

<RETS 1*SP ReplyCode=quoted-reply-code 1*SP
ReplyText=quoted-string *SP >
<RETS-RESPONSE>
member-name-key
user-info-key
broker-key
[pendingrcps:metadata-id-key]
metadata-ver-key
metadata-timestamp-key
min-metadata-timestamp-key
[pendingrcps: office-list-key]
[pendingrcps: balance-key]
[pendingrcps: timeout-key]
[pendingrcps: pwd-expire-key]
capability-url-list
</RETS-RESPONSE>
[<RETS-STATUS [pendingrcps:1*SP ReplyCode=quoted-end-reply-code 1*SP
ReplyText=quoted-string * SP]/>
</RETS> CRLF

This version adds a new response argument, metadata-id-key, which provides the necessary ID for efficient metadata caching. Since this ID must
represent a persistent Metadata model for versioning the ID is directly related to the System metadata defined in Section 11.2.1 System

. As a result the next change defines this key as needed.Metadata
Section 4.7.3 Metadata Version Information

This section defines the existing metadata version keys defined in the Login response body format. Since the changes to Section 4.6 add a new
required key, the following additional text for section 4.6 defines how this key is correctly used.

The metadata id key designates a persistent ID associated with the metadata applied to the current user session. This ID is defined in BNF as
follows.

metadata-id -key ::= MetadataID = metadata-id CRLF

metadata-id ::= 1*128(ALPHANUM | “_”)

The metadata-id -key advertised by the server MUST match the Metadata ID attribute defined in . ThisSection 11.2.1 System Metadata
requirement explicitly binds the metadata advertised by the Login response to the metadata advertised by the Get Metadata response. This
relationship is necessary to eliminate confusion and assist metadata updates. If following a Login response the Metadata ID does not match the
Login response metadata-id -key value, the client MUST recognize that the metadata for the current session has changed and properly update
the client metadata.

The additional language attempts to define the exact use of this login response information in relationship to the Metadata ID. Since the key
defined above is a new string the Metadata ID is defined later in this proposal.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 184 of 232

Section 11.2.1 System Metadata

The existing System Metadata response defines the System element with the following text.

System Description

code-name ::= 1*10ALPHANUM

long-name ::= 1*64PLAINTEXT

comments ::= TEXT

This definition sets the code name to a maximum of 10 characters. Since the Metadata ID will represent a persistent ID it needs more characters
to facilitate uniqueness. To that effect the above text is changed to the following by this proposal.

System Description

code-name ::= 1*128(ALPHANUM | “_”)

long-name ::= 1*128PLAINTEXT

comments ::= TEXT

metadata-id ::= 1*128(ALPHANUM | “_”)

Here both the code and long name definitions have been increased to reflect the necessary detail. Note that the proposal defines the code name
so that the underscore character is legal. This was done to improve readability of the code names advertised by the server.

Compatibility

Since this proposal adds new metadata (the Metadata ID) and adds new information to the Login response it is reasonable to expect backwards
compatibility issues with client applications that do not adhere to the changes.

RCP 74 - Location Availability in Object Metadata

Original document: RCP 74 Location Availability in Object Metadata

Author Libor Viktorin

Organization MarketLinx

E-mail lviktorin at marketlinx dot com

Submitted Date July 28, 2008

Originating Workgroup Standards Committee

RETS Version 1.8.0

Status Adopted 2009-04-07

1. Synopsis

This proposal recommends adding a flag to the Object metadata, revealing whether the server supports the Location=1 request.

2. Rationale

Retrieving objects’ URL by specifying Location=1 is an option in the GetObject request, that may not be honored by the server. Currently, if the
server does not support this functionality, it SHOULD respond with an error 20414.

The problem is, a client have no means of detecting if this functionality is supported before it sends a real request, and even then (since the error
20414 is optional) may not know for sure. Servers which do not support the Location=1 option, will send the full object data, which makes for a lot
of data that the client did not ask for.

This document proposes a simple method for the server to advertize its support for Location=1.

3. Proposal

Note: This RCP Affects the Following Sections:
Section 11.4.1 Object

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+74+-+Location+Availability+in+Object+Metadata

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 185 of 232

Add a line to table 11-16 (Metadata Content: Resource Object) in chapter 11.4.1:

LocationSupport BOOLEAN When true, indicates that the server will honor the
Location=1 parameter at least for some objects.
When false, indicates that the server does not
support the Location=1 functionality

Modify the rets-metadata-content-1_7_2.dtd accordingly by

adding to the DTD<!ELEMENT LocationSupport [#PCDATA]>
adding , to the Object element definitionLocationSupport?

4. Impact

This proposal updates the DTD by adding an optional element. Any previously existing metadata will be valid. Validation of new metadata using
an old DTD would fail due to an unknown element, however this situation will be avoided by correct usage of the RETS Version.

4. Compatibility

This change modifies the DTD.

RCP 75 - Offset Availability in the Metadata

Original document: RCP 75 Offset Availability in the Metadata

Author Libor Viktorin

Organization MarketLinx

E-mail lviktorin at marketlinx dot com

Submitted Date: July 28, 2008

Originating Workgroup Standards Committee

RETS Version 1.8.0

Status Adopted 2009-04-07

1. Synopsis

This proposal recommends adding a flag to the Resource metadata, revealing whether the server supports the Offset parameter in the Search
transaction.

2. Rationale

The Offset parameter in the Search transaction is used by many clients to iterate thru large blocks of data. However, there are many servers that
do not support this functionality. With such servers, the clients keep requesting with increasing offset number, but getting the same data all the
times. The specification does not give any way to let the client know whether the Offset feature is supported or not.

This document proposes a simple addition to the metadata which will show the server’s support for the Offset feature on a per-class level.

3. Proposal

Add a line to table 11-7 (Metadata Content: Resource Class) in chapter 11.3.1:

OffsetSupport BOOLEAN When true, indicates that the server will honor the
Offset parameter when searching this class. When
false, indicates that the server does not support the
Offset functionality for this class.

Modify the rets-metadata-content-1_7_2.dtd accordingly by

adding to the DTD<!ELEMENT OffsetSupport [#PCDATA]>
adding to the Class element definitionOffsetSupport?,

Note: This RCP Affects the Following Sections:
Section 11.3.1 Class

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+75+-+Offset+Availability+in+the+Metadata

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 186 of 232

4. Impact

This proposal updates the DTD by adding an optional element. Any previously existing metadata will be valid. Validation of new metadata using
an old DTD would fail due to an unknown element, however this situation will be avoided by correct usage of the RETS Version.

5. Compatibility

This change modifies the DTD.

RCP 76 - GetPayloadList

Original document: RCP 76 GetPayloadList

Author Steve Clarke

Organization MarketLinx

E-mail sclarke at marketlinx dot com

Submitted Date February 26, 2009

Originating Workgroup Standards Committee

RETS Version 1.8.0

Status Adopted 2009-04-07

1. Synopsis

The objective is to define a discovery mechanism for predefined XML payload documents that can optionally be accessed via RETS 1.x queries.
This proposal defines a new transaction that advertises the available payloads on a RETS 1.x server and describes how these payloads would be
accessed from a RETS 1.x query request.

2. Rationale

There has been a longstanding desire to be able to access standardized search results (payloads) via a RETS 1.x query request. Most urgently,
the RESO community is looking for a way to provide a transport mechanism to support the Syndication XSD. This RCP satisfies that need.

3. Proposal

3.1 Login Response

Add new transaction definition to login response.GetPayloadList

Example:

Note: This RCP Affects the Following Sections:
Section 11.3.1 Class

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+76+-+GetPayloadList

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 187 of 232

<RETS ReplyCode="0" ReplyText="Success.">
<RETS-RESPONSE>
Info=MEMBERNAME;Character;MarketLinx Sys Config
Info=USERID;Character;866424041
Info=USERLEVEL;Int;90
Info=USERCLASS;Character;!P
Info=AGENTCODE;Character;sys_config
Info=BROKERCODE;Character;GEAC
Info=BROKERBRANCH;Character;GEAC01
Info-METADATAID;Character;303_65_47_BRC
Info=METADATAVERSION;Character;17.73.76591
Info=METADATATIMESTAMP;DateTime;Tue, 12 Feb 2008 23:16:31 GMT
Info=MINMETADATATIMESTAMP;DateTime;Tue, 12 Feb 2008 23:16:31 GMT
Info=BOARD;Character;X
Info=BROKERRECIPFLAG;Boolean;Y
Info=MAINOFF;Character;GEAC
Info=OFFICE;Character;GEAC01
Info=SUL;Int;90
Info=UC;Character;!P
Info=USER;Character;sys_config
ChangePassword=/ChangePassword.asmx/ChangePassword
GetObject=/GetObject.asmx/GetObject
Login=/Login.asmx/Login
Logout=/Logout.asmx/Logout
Search=/Search.asmx/Search
GetMetadata=/GetMetadata.asmx/GetMetadata
Update=/Update.asmx/Update
PostObject=/PostObject.asmx/PostObject
GetPayloadList=/GetPayloadList.asmx/GetPayloadList
</RETS-RESPONSE>
</RETS>

3.2 GetPayloadList Transaction

The GetPayloadList transaction is used to retrieve a list of available payloads supported on the RETS Server. Payloads are defined as a subset of
the “RESO schema” vocabulary.
Required Client Request Header Fields

There are no additional required client header fields.
Required Request Arguments

None.
Optional Request Arguments

ID
The ID argument in the GetMetadata transaction reflects the metadata hierarchy as shown in Figure 11.1. For any metadata element, the ID
argument is a list of the names of the parent elements for the desired element, separated by colons. For example, to retrieve the payload list for a
given named Resource, the argument is simply the ResourceID.

/GetPayloadList?ID=Property

To retrieve the payload list for a specific class within a resource:

/GetPayloadList?ID=Property:RES

Format
The format option does not apply to the request because the response is always considered to be in COMPACT format. SeeGetPayloadList
below.
Required Server Response Header Fields

None.
Required Response Arguments

There are no required response arguments.
Optional Response Arguments

There are no optional response arguments.
GetPayloadList Response Body Format

Example COMPACT reply:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 188 of 232

 <RETSPayloadList Resource="Property" Class="2" Version="1.00.000" Date= "2009-02-11T12:17:12-05:00" >
 <COLUMNS>PayloadNameResourceClassDescriptionURIMetadataEntryID</COLUMNS>

 <DATA>RESO SyndicationProperty1RESO Standard Syndication Payloadhttp://rets.org/xsd/Syndication.xsd1x123</DATA>
 <DATA>RESO SyndicationProperty2RESO Standard Syndication Payloadhttp://rets.org/xsd/Syndication.xsd2x123</DATA>
 <DATA>RESO SyndicationProperty3RESO Standard Syndication Payloadhttp://rets.org/xsd/Syndication.xsd3x123</DATA>

</RETSPayloadList>

Note: If there are multiple versions of a payload, the URI for the payload be the for the version of the schema that is supported.Namespace URI
For example, one of the syndication versions is .http://rets.org/xsd/Syndication/2008-03
Reply Codes

RETS 1.7 requires all server responses to be well-formed XML, and additionally requires responses to be valid XML. In addition,GetPayloadList
RETS requires that clients parse server responses as XML, not as simple text streams. The response formats shown here are normative with
respect to content, but not normative with respect to form. That is, servers are free to produce response XML in any format that complies with the
W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD. XML escaping of content is implied, as is XML
processing of white space and line endings. See the W3C , for full information on XML.XML Recommendation 1.0, Third Edition

Table X-X Reply CodesGetPayloadList

Reply Code Meaning

0 Operation successful.

20500 Invalid Resource The request could not be understood due to an unknown resource.

20503 No Metadata Found No matching metadata of the type requested was found.

20511 Timeout The request timed out while executing.

20513 Miscellaneous error The server encountered an internal error.

3.3 Search Transaction

/Search?SearchType=Property&Class=2&Query=(ListPrice=300000-

)&QueryType=DMQL2&Count=0&Payload=RESO Syndication

Note, a search request that specifies a include the and arguments. The payload itself defines the desired&Payload MUST not &Select &Format
data elements and the format of the response.

Additional Reply Codes:
(ReplyCodes tbd because these should be maintained centrally by document manager)

• Payloads not supported at all.
• Invalid Payload for this Resource/Class
• Cannot combine &Select with &Payload.
• Cannot combine &Format with &Payload.

4. Impact

Compatible with 1.7.2 and above. This is a new transaction which is self-contained. A server can simply leave this out of their capabilities URL list
in the Login response. If no Payloads are advertised, then none need to be supported in the search request/response.

5. Compatibility

RCP 77 - Maximum Field Length

Original document: RCP 77 Maximum Field Length

Author Matthew McGuire

Organization MarketLinx

E-mail mmcguire at marketlinx dot com

Note: This RCP Affects the Following Sections:
Section 11.3.2 Table
Appendix D

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://rets.org/xsd/Syndication.xsd
http://rets.org/xsd/Syndication.xsd
http://rets.org/xsd/Syndication.xsd
http://rets.org/xsd/Syndication/2008-03
http://members.reso.org/display/RCP/RCP+77+-+Maximum+Field+Length

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 189 of 232

Submitted Date February 26, 2009

Originating Workgroup Standards Committee

RETS Version 1.8.0

Status Adopted 2009-04-07

1. Synopsis

This proposal recommends clarification of the meaning of the element in the metadata. This proposal doesMaximumLength METADATA-TABLE
not change the meaning of the element.MaximumLength

2. Rationale

The current specification defines the field as the ‘maximum possible un-encoded length of a value’ of the field. The definitionMaximumLength
refers to HTTP encoding specifically since RETS uses the HTTP transport for communication. Since this definition includes the term un-encoded
it is possible that some developers interpret this with regard to a Lookup Value to Long Value encoding. The definition refers to Appendix D for
examples in an attempt to clarify this. In Appendix D the examples show that the max length for string values applies to the Lookup Value not
Lookup Long Value. Since this is not explicit developers have found this language to be ambiguous or confusing. This proposal attempts to clarify
how the metadata value should be calculated based on the data type of the field.MaximumLength

3. Proposal

To solve this ambiguity define a formula of calculating the maximum character length of a given field using existing metadata information. A
formula is defined for each of the appropriate RETS Data Types in the appendix. This will provide clear guidelines for how each data type should
use the metadata information.MaximumLength

It is the responsibility of the client to accurately calculate storage requirements locally, based on the metadata provided by the RETS server.
However, server vendors should adhere to the formulas presented here so there is consistent functionality using the metadataMaximumLength
information.

Example: The maximum storage length for a multi-valued lookup field is calculated with the following formula.

(MaxSelect * (MaxValueLength + 3)) -1

The following variables are used in this calculation:

MaxSelect - The MaxSelect element (METADATA-TABLE). If MaxSelect is not provided, then we assume it is 1. This is a factor because if a field
allows multiple selections, then the data storage will require space for the maximum number of instances of the data, potentially enclosed in
quotes and separated by commas.

Example: “HW”,”WWC”,”CT”

MaxValueLength - The length of the longest Value entry (METADATA-LOOKUP_TYPE) that applies to the field being stored. The length of the
Lookup Value is used in this formula assures that clients can handle any and all of the possible lookup values in the result data.

Note that both Lookup and LookupMulti fields can use the same calculation formula defined above.
3.1 Specification Changes

Clarify the definition and properly refer to the updated appendix D. Then add the maximum length calculation formulas to theMaximumLength
Maximum Length appendix D.
Section 11.3.2 – Table

This section defines the Table Metadata used to define Field information. Table 11-12 defines the property of a field. ThisMaximumLength
definition will change to the following:

The maximum possible character length of the value of the field after all Transport layer encoding. Transport layer encoding includes both HTTP
and XML based encoding, but does not include RETS Lookup Value to Lookup Long Value encoding. See Appendix D for a definition and
examples of how a RETS server should calculate the MaximumLength of a field based on the RETS data type.
Appendix D – Maximum Length

The language of this appendix will change to the following:

Opening:
This appendix defines formulas used to determine the maximum character length of field data based on the data type of the field. These formulas

 describe how the RETS server should calculate the MaximumLength for reliable use by RETS client applications.
Appendix D.1 – Maximum Length - Boolean

Any field with the Boolean data type should represent the MaximumLength as ‘1’. The definition of the Boolean data type requires a single
character representation of the data.
Appendix D.2 – Maximum Length - Characters

Fields designated as the Character data type with an interpretation of Lookup or LookupMulti should calculate the MaximumLength according to
the following:

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 190 of 232

(MaxSelect * (MaxValueLength + 3)) -1

Multiply the Max Select of the field (or 1 if not provided) by the character length (plus 3 for delimiters and quotes) of the longest Lookup Value in
the Lookup metadata defined by the Lookup Name of the field. Finally subtract 1 to represent one less delimiter.

Example: The Field ‘Appliances’ has 10 Lookup items and has a Max Select of 4 lookup items. The longest Lookup Value character length is 6 for
the Value ‘FRIDGE’ used for the Long Value ‘Refrigerator’. (4 X (6 + 3)) – 1 = 35
Appendix D.3 – Maximum Length - Integers

Fields designated as Integer numbers include the Tiny, Small, Int, and Long data types. These numbers are limited in size by their respective
binary representations. Therefore a Tiny number is 8 bits and has a maximum value of 256. This results in a Maximum Character Length of 3.
This can also be called the maximum Decimal Precision of the number. The Maximum Length of the field if advertised should be equal to or
greater than the maximum Decimal Precision of the number. For ease of use each are provided here:

Tiny – ±4 – 2 characters
Small – ±32786 – 6 characters
Int – ±2147483648 – 11 characters
Long – ±9223372036854775808 – 20 characters
Appendix D.4 – Maximum Length - Decimal

Fields designated as Decimal only include numbers represented using a Decimal point. The Precision of the field determines the maximum
number of decimal characters following the decimal point of the number. However, the maximum decimal precision of the data includes the
decimal spaces before the decimal as well. For a decimal number the Maximum Character Length should match the maximum decimal precision
of the value plus one to represent the decimal point itself. So that a signed 16 bit floating point number with a precision of 3 is a maximum value of
±32.786 which is 7 characters. The RETS standard does not define Decimal numbers by binary size so the server should advertise the Maximum
Length as appropriate to the data exposed via the RETS server interface.

The Currency interpretation follows the same rules as a Decimal number with 2 decimal points of precision.

4. Impact

None

5. Compatibility

This change proposal strictly defines the Maximum Length property of the Metadata which may be interpreted differently by older applications.
However, the previous language of the specification implies the same meaning so these changes should be backward compatible.

RCP 78 - Specification Errata Changes

Original document: RCP 78 - Specification Errata Changes

Author Paul Stusiak

Organization Falcon Technologies Corp.

E-mail pstusiak at falcontechnologies dot com

Author Ryan Bonham

Organization Transparent Technologies Corp.

E-mail ryan at transparent-tech dot com

Submitted Date April 6, 2009

Originating Workgroup Specification Review Workgroup

RETS Version 1.8.0, 1.7.2, 1.5

Status Adopted 2009-04-07

Synopsis

The Board of Directors approved an exception to the Change Proposal Process to provide an omnibus proposal, each section to be voted on

Note: This RCP Affects the Following Sections:
Section 11.3.2 Table
Section 11.4.2 Lookup
Section 15.4 Transmission standards

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+78+Specification+Errata+Changes

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 191 of 232

separately, to address issues discovered during 1.7.2 implementations requiring immediate attention. Adopted issues will be collected as errata to
the appropriate document, 1.7.2 or 1.5. The errata will over-rule the specification document text.

Rationale

Several minor issues have been discovered by various parties during the implementations of 1.7.2 compliant servers and the compliance tool.
Since many vendors and the compliance tool are currently being work on to meet the 1.7.2 specification and the next meeting of the RETS
workgroup is not until September 2009, a group of resolutions to create an errata document so that the intended behavior is documented and can
be implemented during this development cycle.

Proposal

A. Modify the specification document for 1.7.2, Table 11-21 Metadata Content Lookup element Version to LookupTypeVersion and Date to
LookupTypeDate to match the DTD.
B. Update the 1.7.2 BNF to support NULL in metadata. There are many places where the content of a metadata element may be empty as a
practical matter. This is common in current implementations. The existing descriptions of many fields do not permit the field to be empty in Section
11 of the document. Those elements that can be NULL will have their BNF representation modified to permit this, reflecting current practice.
C. Update the 1.5 BNF to support NULL in metadata. This has the same rational as issue B.
D. Change the document rets-metadata-content-1.7.2.dtd, line 330 under the !ATTLIST METADATA-TABLE, from CLASS CDATA #IMPLIED to
CLASS CDATA #REQUIRED
E. Modify the specification document for 1.5, Table 11-21 Metadata Content Lookup element Version to LookupTypeVersion and Date to
LookupTypeDate to match the DTD and instruct the compliance tool implementation to be lenient in the interpretation of this clause, to accept
both LookupTypeVersion and Version and LookupTypeDate and Date and to provide a warning or information statement in the detail report that
"1.7.2 uses LookupTypeVersion and LookupTypeDate rather than Version and Date" or similar language.
F. Modify the specification document for 1.7.2, Table 11-12, Content-Type DataTime from "full-date" to "RETSDATETIME".
G. Modify the specification document for 1.7.2, Table 11-12, Content-Type Date from RETSDATE to full-date and Table 13-1 Type Date from
"full-date RETSDATE" to "full-date".

Impact

This will require changes to existing implementation to bring them into compliance.

Compatibility

1.7.2 or 1.5 as appropriate.h3.Document History

Date Version Author Description

06/04/09 1.0.0 P Stusiak Initial Release

07/04/09 1.0.0 P Stusiak Add changes F and G.

RCP 79 - Add Preferred Flag to GetObject Responses

Original document: RCP 79 Optional Query

Author Troy Davisson

Organization FBS Data Systems, Inc.

E-mail tdavisson at fbsdata dot com

Submitted Date July 13, 2009

Originating Workgroup RETS 1.7.1 Document

RETS Version 1.8.0

Status Adopted 2009-09-23

1. Synopsis

Note: This RCP Affects the Following Sections:
Section 5.6.3 Preferred

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+79+-+Add+Preferred+Flag+to+GetObject+Responses

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 192 of 232

This proposal recommends adding a flag to GetObject responses that indicates if the given object is the preferred or primary object for the
requested record.

2. Rationale

GetObject currently allows a RETS client to request back an object with an object-id of 0 (zero) which will return the “preferred object” for that
record, and it supports the ability for the preferred object to be an object other than object-id 1; however, no other indicator about the preferred
object is currently provided back to the user unless they specifically request an object-id of 0.

A popular use of RETS involves RETS clients replicating available data and objects to their own systems. In these scenarios, RETS clients are
requesting back all available objects for specific records, but due to the lack of a preferred object flag, they are unable to determine which of the
objects is deemed preferred for that record without making an additional request for the 0 object-id.

In some MLS software systems, the ability for photos to be uploaded also allows for a particular photo to be marked as the “preferred” or “primary”
photo for that record (without it necessarily being the first photo uploaded or moved as first in the list of photos) which indicates that this photo
should be used on reports and other displays when only a single photo is shown.

4. Proposal

Add Section 5.6.3 under :5.6 Optional Server Response Header Fields
5.6.3 Preferred

Preferred If the requested object is determined by the server to be the preferred object
for the requested record, the server MAY return the “Preferred:” header with a
value of 1 (true). If the server does not support this funtionality or if the
requested object is not the preferred object, the server MUST return either
“Preferred:” with a value of 0 (false) or not provide the “Preferred:” header.

Preferred ::= Preferred: BOOLEAN

Example: Preferred: 1

If the server is returning a multipart response, this header MAY be included in the MIME part headers for each object it applies to and MUST NOT
be included in the MIME part headers for objects it doesn't apply to.

If the client is sending a request with an object-id of 0, the server SHOULD only include a “Preferred” header if the server further supports
identifying preferred or primary objects when not using an object-id of 0.

4. Impact

Since providing the “Preferred” header is optional for the server for both single object responses and multipart responses, servers may choose to
not implement this functionality and will still be compliant. RETS clients that don't recognize the header will simply ignore it. Any RETS clients that
are able to recognize the “Preferred” header can provide additional information back to the end user or backend system. Because of this, there
shouldn't be any compatibility issues.

5. Compatibility

No known compatibility issues.

RCP 80 - Optional Query

Original document: RCP 80 Optional Query

Author Troy Davisson

Organization FBS Data Systems, Inc.

E-mail tdavisson at fbsdata dot com

Submitted Date August 17, 2009

Originating Workgroup

RETS Version 1.8.0

Status: Adopted 2009-09-23

Note: This RCP Affects the Following Sections:
Section 7.3.2 Query Specification(moved)
Section 7.4.9 Query Specification (new)

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+80+-+Optional+Query

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 193 of 232

1.
2.
3.
4.

1. Synopsis

This proposal recommends changes to RETS to allow the Search transaction Query and QueryType parameters to be optional.

2. Rationale

A large percentage of RETS usage in production environments is made up of 3rd party programs or vendors connecting to an MLS server and
downloading all available property data. This is often referred to as “replicating” which allows the client system to contain the same information
available from the source RETS server.

Currently, the DMQL2 query language used by RETS requires that a search contain at least 1 query condition in order to pull records back. For
example, a client is able to send “Query=(ListingOfficeId=123456)” to retrieve back only records available from a specific listing office.

In a scenario where replicating the MLS data is desired, a “filler” query is often sought in order to provide the required single condition but must be
done in a generic way as to not limit the returned results in order to successfully replicate a full dataset. For example, a client may send
“Query=(ListingPrice=0+)” in order to return all records where the ListingPrice is $0 or greater. When a “filler” query isn't immediately obvious,
other creative solutions often soon follow. For example, “Query=(YearBuilt=1700+)” or “Query=(Remarks=)|(Remarks=)|(Remarks=)|(Remarksa e i
=)|(Remarks=)”.o u

On the client side, users are forced to investigate field definitions prior to being able to see any records from the RETS server. Once a field has
been identified and a generic query condition has been thought up, the idea must then be translated into proper DMQL2 syntax. These additional
steps make it much harder for someone to begin downloading and using data.

On the server side, users are generating queries that may work against optimizations made to the storage of data. For example, a server may not
respond as quickly to a vowel search on the Remarks field as it would a YearBuilt field. As a result, the required query condition is adding burden
to the end users and forcing them to do something that may not be efficient for the server to handle.

By making the Query and QueryType parameters optional, users only need to provide 2 required parameters (SearchType and Class) and are
able to instruct the server to return all records available to their account without the need to:

interrogate field data types and possible lookup values,
learn DMQL2 syntax for one-time use,
generate inefficient queries, and
generate additional support requests (to MLS staff, vendor support staff, open source software mailing lists, etc.).

A server is able to handle an absent query condition in a way that makes the most sense to that implementation.

In the same way that by not providing a 'Select' parameter instructs the server to return all available fields, not providing a 'Query' parameter
would instruct the server to return all available records.

3. Proposal

Under , add the following text at the end of the Query paragraph:7.3.2 Query Specification

Clients are not required to provide a Query parameter unless one or more fields in the requested Class are marked as Required (see Table
11-12) in which case an error type of 20203 MUST be returned if the server is refusing to accept this request. If the server accepts this request, it
MUST interpret the absence of a Query parameter as a request by the client to forfeit it's option of filtering records past the filters that may be
automatically applied by the server.

Under , add the following sentence at the end of the QueryType paragraph:7.3.2 Query Specification

Clients MUST provide the QueryType parameter if the Query parameter is also sent.

Move to s .7.3.2 Query Specification ection 7.4 Optional Request Arguments

Reassign section number as needed.

4. Impact

Currently, servers are expecting to receive Query and QueryType parameters and must be modified to make these parameters optional and to
interpret this request correctly.

Clients will need to be modified to allow for Query and QueryType to be optional if a query isn't given but continuing to provide Query and
QueryType parameters does NOT break their compliance. The ability for a client to request all available, allowed records using this technique is
optional.
Compatibility

For versions of RETS prior to the version this is adopted for, a server CAN implement this functionality without affecting users; however, RETS
clients can only expect to be able to use this functionality in the adopted version and therefore can only expect results consistent with the
requirements set forth in this proposal for the adopted version.

RCP 82 - LookupMulti Quoting Rule

Original document: RCP 82 LookupMulti Quoting Rule

http://members.reso.org/display/RCP/RCP+82+-+LookupMulti+Quoting+Rule

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 194 of 232

1.
2.

Author Matthew McGuire

Organization MarketLinx Inc.

Email mmcguire at marketlinx dot com

Status Adopted

Submission Date October 3, 2008

Version 1.8.0

1 Synopsis

This proposal corrects an omission in the LookupMulti metadata definition.

2 Rationale

The description of Interpretation = LookupMulti states the following:
The character strings MAY be quoted text following the rules for Value of section 11.4.3 Lookup Type.
Unfortunately there are no rules in section 11.4.3 for this reference.

3 Proposal

3.1 Specification Changes

The following text can be added to the end of section 11.4.3 to correct this omission.

In a search response the values of a LookupMulti field may include comma characters. Any values of a LookupMulti field that contains the comma
character MUST be quoted as a string-literal.
Examples:
"Value1","Value2","Comma,Value"
"Value1",Value2,"Comma,Value"
Any code that is quoted MUST be interpreted without the quotes when referencing the Lookup value in the metadata.

4. Compatibility

As a clarification this proposal poses no backwards compatibility concerns.

RCP 87 - RETS 1.7.2 Errata Document

Original document: RCP 87 RETS 1.7.2 Errata Document

Note: This RCP Affects the Following Sections:
Section 11.4.3 Lookup Type

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

Note: This RCP Affects the Following Sections:
Section 3.3 Required Client Request Header Fields
Section 3.5 Response Format
Section 3.8 Data Compression in RETS Transactions
Section 3.10 Computing the RETS-UA-Authorization Value
Section 11.2.2 Resources
Section 11.3.2 Table
Section 11.4.2 Lookup
Section 11.4.8 Validation Lookup Type DEPRECATED
Appendix B.3 Foreign Keys
Appendix B.8 Object
Appendix B.18 Validation External Type
Section 15.1 Overall format
Section 15.4 Transmission standards

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+87+-+RETS+1.7.2+Errata+Document
http://members.reso.org/pages/createpage.action?spaceKey=RETS180a&title=11.4.8+Validation+Lookup+Type+DEPRECATED&linkCreation=true&fromPageId=13468567

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 195 of 232

Author Paul Stusiak

Organization Falcon Technologies Corp

Email: pstusiak at falcontechnologies dot com

Workgroup: Standards Committee

Submission Date 2010-01-21

Status: Adopted, 2010-03-24

Version: 1.8.0

Synopsis

Several errata have been discovered in the 1.7.2 document and RCPs. They have been collected into an errata document to assist users in
implementing the 1.7.2 standard correctly.

This document incorporates the critical errata.
Rationale

Several problems that may be major or critical have been identified within the 1.7.2 standard and may impede interoperability between client and
server and between server systems.
Proposal

The document "RETS 1.7.2 Errata 2010-04" contains the known major and critical errata to the 1.7.2 standard. Adoption of this document is
recommended to assist developers in implementing 1.7.2.

The document is provided in-line for convenience.

Introduction

In general, the specification document body text represents the correct information. This is not true in all cases. This document describes several
problems with the 1.7.2 document.

Erratum 1

Table 11-40, Validation External refers to a Field called ValidationExternalName. This is correct. Table 11-42, Validation External Type refers to a
Field called ValidationExternalName. This is correct. The example in B.18, ValidationExternalType has a field tag of ValidationExternal. This is not
correct. It should be replaced by ValidationExternalName.

Reported by Paul Stusiak

Reported by Libor Viktorin

Reported by Phillip Paulson

Erratum 2

Table 11-12, METADATA-TABLE the 'Date' data type is RETSDATE. There is no RETSDATE defined in 'Section 2.3, Atoms and Primitives'. The
 correct value for any reference to this atom is full-date.Using the atom full-date matches the format from the 1.5 specification document.

Table 13-4 also has a reference to RETSDATE. This should readfull-date.

Reported by Paul Stusiak

Reported by Joshua Vosper

Reported by Mark Klein

Reported by Troy Davisson

Erratum 3

Table 11-12, METADATA-TABLE the 'DateTime' data type is full-date.The correct value for this data type is RETSDATETIME. Using the atom
full-date matches the format of the Time RCP. This is different from the 1.5 specification document.

Reported by Mark Klein

Reported by Troy Davisson

Erratum 4

In section 11.4.8, Table 11-34 Validation LookupType refers to a tagPARENTFIELDS that is not defined in the document or the DTD. By

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 196 of 232

 inference, the correct information is PARENTFIELD1 andPARENTFIELD2, described in Table 11-32 of section 11.4.7 previous section.

Reported by Libor Viktorin

Erratum 5

In section 3.3, the term RETS-Version describes the version as a three element value of the form "<major>.<minor>.<release>" and discusses it
in terms of RFC 2616. RFC2616 only has a two element version described. The intent is to make sure that the version is treated numerically
instead of alphabetically when comparing versions.

The relevant section of RFC 2616 is section 3.1

HTTP uses a "<major>.<minor>" numbering scheme to indicate versions

of the protocol. The protocol versioning policy is intended to allow

the sender to indicate the format of a message and its capacity for

understanding further HTTP communication, rather than the features

obtained via that communication. No change is made to the version

number for the addition of message components which do not affect

communication behavior or which only add to extensible field values.

The <minor> number is incremented when the changes made to the

protocol add features which do not change the general message parsing

algorithm, but which may add to the message semantics and imply

additional capabilities of the sender. The <major> number is

incremented when the format of a message within the protocol is

changed. See RFC 2145 [36] for a fuller explanation.

The version of an HTTP message is indicated by an HTTP-Version field

in the first line of the message.

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Note that the major and minor numbers MUST be treated as separate

integers and that each MAY be incremented higher than a single digit.

Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is

lower than HTTP/12.3. Leading zeros MUST be ignored by recipients

and MUST NOT be sent.

The meaning of this is that the version should have the following BNF representation:

RETS-Version = 1*DIGIT "." 1*DIGIT "." 1*DIGIT

While in general, this should be a sufficient definition, the use of theRETS-Version as a maker for versioning metadata may require additional
 digits to correctly represent the version of metadata. Specifically, implementers should be permissive in the use ofRETS-Version and should

accept values where there are more than a single digit for the release or minor positions.

Reported by Mark Klein

Erratum 6

In the specification document, on page 11-19 in 'Table 11-21 Metadata Content: Lookup' the field names include 'Version' and 'Date'. This is
incorrect. The document values should be changed to LookupTypeVersion and LookupTypeDate.

The 1.7.2 DTD set has the correct values, 'LookupTypeVersion' and 'LookupTypeDate'.

Reported by Ryan Bonham

Erratum 7

The METADATA BNF does not allow for empty fields. This contradicts the descriptions next to the BNF, that often states that the field is optional
and the DTD that states that they are not required. Common practice also has implementations that permit empty fields. The BNF is incorrect and

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 197 of 232

the BNF for metadata should be revised to allow for NULL values. People implementing RETS systems should be aware that many server
systems may permit empty fields.

Reported by Ryan Bonham

Erratum 8

The Foreign Key Metadata element has an inconsistency in the 1.7.2. The tag label for the metadata content is referenced in three places.

METADATA-FOREIGN_KEYS is specified on page 11-9 of Section 11.2.3

METADATA-FOREIGN_KEYS is specified in the RETS 1.7.2 DTD on page 6 in line 273

METADATA-FOREIGNKEYS is specified on page B-2 of Appendix B-2

It is also referenced in Table 11-12, Metadata Content, Field ForeignKeyName in the Description column as METADATA-FOREIGNKEYS.

The correct use is METADATA-FOREIGN_KEYS.

Reported by Mark Klein.

Erratum 9

The BNF definition of RETS-Response has a missing character '['. It should read

RETS-response::=body-start-line

response

[rets-status]

[body-end-line]

Reported by Gary Little

Erratum 10

The text of Section 3.5, reply codes is confusing. In 1.7.2, it reads

Applicable reply-codes can be found under specific transactions.

A revised version of this sentence is

reply-codes are specific to a transaction. Please refer to the applicable transaction for the meaning of the reply-code or refer to Appendix C of this
document for a consolidated list.

Reported by Gary Little

Erratum 11

The last sentence of the first paragraph of Section 3.8 should read

If the server supports one of the compression methods accepted by the client, it can include a Content-Encodingheader in its response indicating
 the compression method it has chosen.

Reported by Gary Little

Erratum 12

In Table 11.6 of the METADATA-RESOURCE section, the KeyField is currently defined as a RETSID. This should be replaced byRETSNAME to
make it consistent with the later reference to SystemName in Table 11-12.

Reported by Mark Klein

Erratum 13

The multipart example on page 43 under section 5.11.1 General Construction and again under 5.11.2 contains a very minor formatting error.

In a multipart response, all boundaries need to appear as "CRLF--boundary" which means that every boundary will have a CRLF in front of it.

Every HTTP response needs to contain a blank line between the HTTP header and HTTP body. As a result, the first boundary needs to be 2
blank lines away from the HTTP headers. On servers that don't send the "2" CRLF's, RETS clients miss the first boundary and discard it (since
they treat it as the preamble) and start processing at the 2nd boundary for the 2nd photo. As the document is right now, the example is sharing
the blank line between the HTTP and boundary divider.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 198 of 232

The work around on the client-side (unless the developer thinks that putting in this "hack" is too dirty): automatically pad the HTTP body with
CRLF's since everything before the first boundary and everything after the last boundary is ignored by default. If the server already has this
correctly, the extra line breaks are ignored anyway. If the server doesn't have this correctly, the padding makes the response good automatically.

Reported by Troy Davisson

Erratum 14

Table 11-12 has a field named ModTimeStamp. The description is incorrect. It currently reads

When true, indicates that changes to this field update the class’sModTimeStamp field.

There is no ModTimeStamp field in the Class metadata. It should read

When true, indicates that changes to this field will cause the Class header field and the Class body field to have the value of theDate TableDate
date and time of the change.

Reported by Joshua Vosper

Erratum 15

The improvements to LookupMulti require the change proposal LookupMulti Quoting Rule, adopted at the December 2008 meeting in Scottsdale,
Arizona.

Reported by Matt McGuire

Reported by Ryan Bonham

Erratum 16

Section 13.1 requires revision to "... if a particular field for some record is undefined or is suppressed for authorization reasons, the value MUST
be represented by two delimiters with no intervening space unless the restricted indicator is set. In that case, the value MUST be represented by
the restricted indicator."

Reported by Ryan Bonham

Erratum 17

Section 3.10 describes the calculation of the User Authorization digest. This description conflicts with the definition described in Section 3.4.
Specifically, section 3.10 defines the calculation as HEX while section 3.4 defines the product of section 3.10 as LHEX. Since this is based on the
digest authentication scheme of RFC 2617 which uses LHEX, it is suggested that section 3.10 be changed to refer to LHEX rather than HEX.
Thus, the product term should read:

ua-digest-response::= LHEX(MD5(LHEX(a1):RETS-Request-ID:session-id:version-info))

Reported by Rob Overman

Erratum 18

The example in Section B.8, METADATA-OBJECT includes a field called StandardName. This field is not described in the definition for
METADATA-OBJECT in Table 11.19 and should be removed from the example.

Reported by Sergio Del Rio

Erratum 19

The definition of MIMEType for METADATA-OBJECT in Table 11.19 implies that only a single mime type may be expressed for a specific object
type. This is not how RFC 2616 and RFC 2045 describe the Accept parameter. It should be possible for a single ObjectType to have more than
one mime-type, for example, a Photo may have image/jpg and image/gif as mime-types. The correct Content Type for this field should read "A
comma separated list of MIME type/subtype per 2045". The correct Description for this field should read "The mime-type/subtypes of the object
type. This is the collection of object media encodings available for the objects on this system. Objects may have one or more mime-type of those
listed in this field. This list is the mime-types that can be passed by the client in the "Accept" parameter in the GetObject transaction. All objects
can return a mime-type of text/xml as an error code/error reply when a fault occurs in the GetObject transaction."

Reported by Paul Stusiak

Clarification 1

The Compliance Workgroup requested that a note be added to Figure 11.1 Metadata Structure. This note should identify that the box labels are
not the header tag values used in a GetMetadata request. The suggested working is "The names of the metadata provided in the figure are not
indicative of the header tag values that should be used in a GetMetadata transaction Request or Response. For the proper metadata-id value
please refer to the RETS 1.7.2 DTD."

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 199 of 232

Reported by the Compliance Workgroup
 Impact Compatibility

This change proposal is only compatible with the 1.7.2 standards document

RCP 90 - Deprecate CommonInterest Class Well-Known Name

Original document: RCP 90 - Deprecate CommonInterest Class Well-Known Name

Author Paul Stusiak

Organization Falcon Technologies Corp

Email: pstusiak at falcontechnologies dot com

Workgroup: Data & Schema

Submission Date 2010-01-21

Status: Adopted, 2010-03-24

Version: 1.8.0

Synopsis

The well-known Class name CommonInterest is not widely used in implementations of RETS. Many implementations treat the CommonInterest
property as either a sub-type or as an ownership type. It is recommended that the well-known name CommonInterest be deprecated.
Rationale

During the revision to the StandardNames data dictionary, the workgroup found that the participants did not use the well-known Class name
CommonInterest. The participants were concerned that having this name was causing confusion in the industry, since the standards body names
a Class that is not commonly used in the industry.

After discussion it was recommended that the Class name CommonInterest be deprecated as a well-known name in the standard.
Proposal

The well-known class name CommonInterest should be marked as deprecated in the standards documents.
Impact

Updates to the standards documents will be required. There should be no impact to system users.
Compatibility

1.7.2 and later.

RCP 91 - StandardNames Version Information in Login Transaction

Original document:RCP 91 - StandardNames Version Information in Login Transaction

Organization: Falcon Technologies Corp

Name: Paul Stusiak

Email: pstusiak@gmail.com

Version: 1.8.0

Status: Adopted

Adopted Date: September 28, 2010

Synopsis

Note: This RCP Affects the Following Sections:
Section 11.3.1 Class

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

Note: This RCP Affects the Following Sections:
4.7.5 Session Information Tokens

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+90+-+Deprecate+CommonInterest+Class+Well-Known+Name
http://members.reso.org/display/RCP/RCP+91+-+StandardNames+Version+Information+in+Login+Transaction

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 200 of 232

Different versions of StandardNames exist. This change proposal provides a method to express which version of StandardNames is used by a
specific instance of a RETS server.
Rationale

Client vendors are not currently able to determine which set of StandardNames a specific instance of server has using the standard. This
determination is currently done by contacting the operator and asking. This means that the client vendor cannot simply deploy their software and
must manually configure the software to identify the version of the StandardNames that are used.
Proposal

The change proposal will add an optional body response line that will provide the version information of the set of StandardNames that this server
uses. This will use the format described in RCP 65 - Session information tokens and described in ,Section 4.6, Login Response Body Format
response "OK" of the RETS 1.8.0 document.

A new section will be created and will read;

< >new-text

Section 4.7.5 Session Information Tokens

Add to Table 4-1 Well-Known Information Tokens

StandardNamesVersion Character standard-names-version

standard-names-version ::= 1*128TEXT CRLF

The indicates the date version of StandardNames that this system supports. A system is only expected to support astandard-names-version
single version of the StandardNames and, in most cases, this will be the current version.

Server systems that do not provide this optional field make no representation about the version of StandardNames that they support, therefore,
client applications should not assume any specific version of the StandardNames.

Server systems that do provide this optional field return a value for the standard-names-version that matches one of the values from theMUST
Adopted StandardNames List from Real Estate Transaction Standard website.

The format of the is a string where is the year of adoption and is the month of adoption. Forstandard-names-version YYYY-MM YYYY MM
example, a version of the StandardNames is 2010-04

< >/new-text
Impact

No impact
Compatibility

Forward compatibility with 1.8 and higher versions of the Standard.

RCP 92 - RESO Payload Transport-Level Metadata Support

Original document:RCP 92 - RESO Payload Transport-Level Metadata Support

Organization: Falcon Technologies Corp

Name: Paul Stusiak

Email: pstusiak@gmail.com

Version: 1.8.0

Status: Adopted

Adopted Date: September 28, 2010

Synopsis

Add to Section 7.6 an example response body for Payload=<RESO schema name> and modify the rets-xml-search-response-1_8_0.xsd to
provide responses for each of the adopted RESO schemas.
Rationale

RCP 76 added a GetPayloadList Transaction to the standard that permits the use of RESO schema as a response format on a Search

Note: This RCP Affects the Following Sections:
7.5 Search Response Body Format

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+92+-+RESO+Payload+Transport-Level+Metadata+Support

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 201 of 232

Transaction.

RCP 76 is silent on the response body format that using this argument will produce. This change proposal resolves that question.
Proposal

Correct the structure of Section 7.6 Search Response Body Format to place the elements with the appropriate format type and place the common
elements at the bottom of the section.

Modify Section 7.6 to add an example of the response body when the Payload=<RESO Schema Name> is used on a SearchTransaction.

<new text>

The body of the search response has the following format when replying to a payload request for a RESO schema:
<?xml version="1.0" ?>
[doctype]
<RETS 1*SP ReplyCode= quoted-reply-code 1*SP ReplyText= quoted-string *SP >
[count-tag]
*({{ RESO-data-record)}}
[max-row-tag]
[<RETS-STATUS [rcpdropbox:1*SP ReplyCode= quoted-end-reply-code 1*SP
ReplyText= quoted-string *SP]/>]
</RETS> CRLF

RESO-data-record ::= <A record structure as defined in the rets-xml-search-response-1_8_0.xsd document>

</new text>

Update the rets-xml-search-response-1_8_0.xsd to provide for the response of each of the root RESO Schema: Listings, Media, Members,
Offices, Properties, PublicRecords, Syndication, Teams.
Impact

None.
Compatibility

Compatible with 1.8

RCP 93 - Add Content-Sub-Description to GetObject

Original document:RCP 93 - Add Content-Sub-Description to GetObject

Organization: FBS Data Systems

Name: Troy Davisson

Email: tdavisson@fbsdata.com

Version: 1.8.0

Status: Adopted

Adopted Date: September 28, 2010

Synopsis

This proposal recommends changes to RETS to add a "Content-Sub-Description" header to GetObject responses.
Rationale

The RETS specification currently supports sending a "Content-Description" header within GetObject responses to help describe the object being
returned. While this description is often very helpful for those users retrieving objects, it often doesn't include all of the descriptive data that's
saved with those objects. For example, when photos are posted within an MLS system, agents can often enter a description and separate caption
for the pictures. Delivering both text descriptions within RETS is not currently possible using the single "Content-Description" header currently
supported.
Proposal

Under , add the following sub-section:5.6 Optional Server Response Header Fields

5.6.X Sub-Description

Note: This RCP Affects the Following Sections:
5.6 Optional Server Response Header Fields

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+93+-+Add+Content-Sub-Description+to+GetObject

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 202 of 232

Sub-Description A secondary description of the object.

Sub-Description ::= Content-Sub-Description: *1024<PlainTEXT,
excluding CR/LF>

Example: Content-Sub-Description: Enjoy the evening sunsets from the front porch

If the object does not have a sub-description or if the server does not support this feature, the header MAY not be returned. If the
object has a sub-description and the server is returning a multipart response, then this header MUST be included in the MIME
part headers for the object.

Impact

Slightly larger GetObject response sizes to accommodate the new information.
Compatibility

Including this header in prior versions of RETS servers should not cause issues for clients parsing GetObject responses correctly, but clients can
only expect to see this optional field when using this version of RETS or higher.

RCP 94 - Improved Error Handling in GetObject

Original document:RCP 94 - Improved Error Handling in GetObject

Organization: FBS Data Systems

Name: Troy Davisson

Email: tdavisson@fbsdata.com

Version: 1.8.0

Status: Adopted

Adopted Date: September 28, 2010

Synopsis

This proposal recommends changes to RETS to better report errors within GetObject responses.
Rationale

The RETS specification allows a RETS server to deliver all kinds of object types through GetObject responses including image/jpeg, text/html,
image/png and text/xml. When a RETS server returns a text/xml object in a GetObject response (as either a single object or part of a multipart
response), a RETS client is unable to determine if the object itself represents a wanted XML document or if the XML describes a RETS error
simply by parsing the HTTP response. The RETS client must go further and parse the actual XML response to determine if the XML document
describes a RETS error to determine what further steps might be needed.

By making the changes outlined in this proposal, a RETS client is able to determine if a GetObject response describes an error or not prior to
parsing the response body.
Proposal

Under , add the following sub-section:5.6 Optional Server Response Header Fields

5.6.X RETS-Error

RETS-Error If a server is unable to deliver a requested object which generates an
error, "RETS-Error" MUST be included and have a value of 1 (true).
Otherwise, RETS-Error MUST NOT be included as a header.

RETS-Error ::= RETS-Error: BOOLEAN

Example: RETS-Error: 1

If the server is returning a multipart response, this header MUST be included in the MIME part headers for each object it applies
to and MUST NOT be included in the MIME part headers for objects it doesn't apply to.

Under , the entire section should read (text changes marked in red):5.11.2 Error Handling

Note: This RCP Affects the Following Sections:
5.6 Optional Server Response Header Fields

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+94+-+Improved+Error+Handling+in+GetObject

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 203 of 232

When a client requests multiple objects in a single transaction, one or more of those objects may be unavailable. In this case,
the server communicates the failure by including a RETS return message in place of the unavailable"RETS-Error" header and
object. In this case, the Content-Type be text/xml, and the content will be a RETS response:MUST

Example:

HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 22 OCT 2004 12:03:38 GMT
Cache-Control: private
RETS-Version: RETS/1.7.2
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
Object-ID: 1

<binary data>
--simple boundary
Content-Type: text/xml
Content-ID: 123457
Object-ID: 1
RETS-Error: 1

<RETS ReplyCode="20403" ReplyText="There is no listing with that
ListingID"/>

--simple boundary--

If the server is supplying an error message for a wild-card object request (Object-ID of *), the Object-ID for the error part
SHOULD be * as well.

Impact

Improves clients ability to detect errors while adding minimal size to error responses
Compatibility

Clients that support prior versions of RETS will continue to need to parse text/xml responses to determine if the server reported an error and
cannot expect servers to send a "RETS-Error" flag for older versions of RETS.

RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login

Original document:RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login

Organization: Falcon Technologies Corp

Name: Paul Stusiak

Email: pstusiak@falcontechnologies.com

Version: 1.8.0

Note: This RCP Affects the Following Sections:
4.7 Required Response Arguments
11.2 System-Level Metadata

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+98+-+Additional+Information+Fields+in+METADATA-SYSTEM+and+Login

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 204 of 232

Status: Adopted

Adopted Date: September 28, 2010

Synopsis

To correct the use of META-SYSTEM, several fields should be added for the Foreign Keys and the Filters. To assist Client developers, additional
information fields would be useful in the during the login transaction.
Rationale

Minor variations exist between the operation, behavior and information presented in different locations and different Server vendors. To assist
Client developers to manage their code, the metadata and data, adding information about the vendor, the operator (MLS) and some other
information would make such management simpler.

The addition of ForeignKey and Filter at the same level as that of Resource (see Figure 11-1 in the Standards Document), should have caused
additional version and date information to be included in the METADATA-SYSTEM information to allow queries of only METADATA-SYSTEM to
compare the current metadata information against that of any cached information.
Proposal

Add to Table 4-1, Section 4.7.5 the following information tokens:

Token name Data type Deprecated argument

VendorName Character none

ServerProductName Character none

ServerProductVersion Character none

OperatorName Character none

RoleName Character none

SupportContactInformation Character none

VendorName is the name of the product vendor. It is required.

ServerProductName is the name of the server product provided by the vendor. It is required.

ServerProductVersion is the version of the server product. It is required.

OperatorName is the name of the MLS or Association operating the system. It is required.

RoleName is the name of the role restriction where the metadata may be restricted. It is optional.

SupportContactInformation is free text that provides a contact email, phone or website for development support. It is optional.

To the METADATA-SYSTEM Body add:

Field Content Type Description

ResourceVersion resource-version

ResourceDate resource-date

ForeignKeyVersion foreignkey-version

ForeignKeyDate foreignkey-date

FilterVersion filter-version

FilterDate filter-date

 resource-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

resource-date ::= RETSDATETIME

 foreignkey-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

foreignkey-date ::= RETSDATETIME

 }}{{{} filter-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

filter-date ::= RETSDATETIME
Impact

The structure of the Login transaction remains the same. The metadata for SYSTEM will have additional information and may have impact.
Compatibility

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 205 of 232

This change is not backward compatible.

RCP 99 - Mixing StandardNames and SystemNames

Original document:RCP 99 Mixing StandardNames and SystemNames

Organization: Falcon Technologies Corp

Name: Paul Stusiak

Organization: FBS Data Systems

Name: Troy Davisson

Version: 1.8.0

Status: Adopted

Adoption Date: September 28, 2010

Synopsis

This proposal recommends a clarification to the RETS specification to allow a client to receive both fields with StandardNames and fields without
StandardNames in a single response.
Rationale

Currently, RETS clients must choose between sending Search requests with either StandardNames=0 or StandardNames=1. With
StandardNames=0, a server will reply with all available fields since all fields must have a StandardName assigned. When a client issues a Search
request with StandardNames=1, the specification is conflicted and unclear on exactly what can happen.

Because of the ambiguity, many RETS servers have implemented StandardNames functionality in a strict way that would prevent the mixing of
StandardNames and SystemNames in a single response. As a result, if a client is issuing a Search request with StandardNames=1, a server often
will only reply with field values for fields that have a StandardName mapped. If a client has a specific use case or business need for a particular
field that does NOT have a StandardName mapped, they must revert to using SystemNames and re-do any mappings that might currently be
configured. This limitation greatly reduces the effectiveness of StandardNames and renders it useless for many applications that rely on the
mappings of a large collection of fields.
Proposal

Under , modify the last paragraph to instead read as:7.3.1 Search Type and Class

Note that if StandardNames (Section 7.4.7) is set to 1, both the SearchType and Class arguments can be specified using either
the SystemName or StandardName. If no StandardName is mapped to a specific Resource or Class, the server MUST accept
the Resource and Class parameters by their SystemName even when StandardNames is set to 1.

Under , add the following paragraph below the paragraph that begins with “This parameter is used to set the fields....”:7.4.5 Select

In requests where the StandardNames argument is set to 0 and values are given within the Select argument, the client and
server MUST reference fields by their SystemName. In requests where the StandardNames argument is set to 1 and values are
given within the Select argument, the client SHOULD reference fields by their StandardName when StandardName labels exist
but MAY send SystemNames. In the response, the server MUST reference fields by their StandardName when StandardName
labels exist and by their SystemNames where no StandardName label exists.

Under , modify the last paragraph to instead read as:7.4.7 StandardNames

If this argument is set to 0 (zero) or is not present, the field names passed in the search are the SystemNames, as defined in the
metadata. If this argument is set to 1 (one), the client SHOULD reference fields by their StandardName when StandardName
labels exist but MAY send SystemNames. In the response, the server MUST reference fields by their StandardName when
StandardName labels exist and by their SystemNames where no StandardName label exists. The StandardName designation
applies to all names used in the , , and arguments.SearchType Class Query Select

Under , directly below the “column-tag” definition, change the descriptive paragraph to instead read as:7.6 Search Response Body Format

If a “COMPACT” or “COMPACT-DECODED” format is specified in the request then a “<COLUMNS>” tag is also included
containing a delimited list of the names of all of the fields being returned. If the StandardNames argument was set to 0 (zero) or

Note: This RCP Affects the Following Sections:
7.3 Required Request Arguments
7.4 Optional Request Arguments
7.5 Search Response Body Format
7.6 Query language

The above sections have been updated or modified since the previous RETS version. Click the links above to go to sections having
changes adopted in this version.

http://members.reso.org/display/RCP/RCP+99+-+Mixing+StandardNames+and+SystemNames

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 206 of 232

not provided, these fields MUST be the SystemName reference for every field returned. If the StandardNames argument was set
to 1, these fields MUST reference the StandardName label where they exist and the SystemName label when no StandardName
label exists. A server MUST NOT return the SystemName for a field that has a StandardName label.

Under , the paragraph directly following the one that starts with “The special value .EMPTY. Is to be7.7.2 Query parameter interpretation
interpreted...” should instead read as:

Each field MUST be a SystemName, as defined in the metadata, when the StandardNames argument is set to 0 (or not given) in
the request. When the StandardNames argument is set to 1, the client SHOULD reference the StandardName when
StandardName labels exist but MAY reference SystemNames.

Impact

For clients that are requesting StandardNames against a server with a strict StandardNames implementation, the proposed change would allow
the server to deliver more fields in the response. Servers with this type of implementation must be modified to accept and deliver a hybrid of
StandardNames and SystemNames when the optional StandardNames argument is set to 1 in Search requests.
Compatibility

For clients already making compliant StandardNames requests to the server, no compatibility issues exist; however, clients cannot expect a
server to handle and deliver responses in the way outlined in this change proposal using prior versions of RETS.

RCP 100 - Alternate Standard Names

Submitter Name Matthew McGuire

Submitter Organization CoreLogic Inc.

Submitter Email mpmcguire@corelogic.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name RETS 1.8.0

Document Version 1.8.0

Date Submitted 2013-05-06

Status ADOPTED

Status Change Date 2015-04-10

Synopsis

The current RETS specification only allows Standard Names from the REData DTD as last defined for 1.8. This does not permit servers or
clients to use the newly adopted Data Dictionary 1.0 standard released by RESO. The new dictionary does not share the same Standard
Names so neither server or client vendor can use the names.

Rationale

The following itemizes the rationale for each of the necessary changes.

Expose the standard names and version using GetPayloadList transaction This permits the server to advertise alternate standard name
spaces.

Designate the standard names and version shown in Metadata for field information This permits the server to include alternate standard
names in the metadata.

Designate the standard names and version used for Search Query argument
This permits the client to request data using alternate standard name spaces.

Designate the standard names and version shown in Search Response formats
This permits the server to return data using alternate standard name spaces.

Extend the Search Payload argument to accept the same as the Format argument
This permits the client to use the Payload argument including the payload version.

RETS Change Proposal-Alternate Standard Names.pdfProposal

Specification Changes

In order to support extensible standard names the following changes need to be applied to the specification.
Add Version to GetPayloadList response data in Section 14.5

The current GetPayloadList transaction permits the server to list the supported payloads but does not provide version information. To supply

http://members.reso.org/download/attachments/18448860/RETS%20Change%20Proposal-Alternate%20Standard%20Names.pdf?version=1&modificationDate=1429016347000&api=v2

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 207 of 232

version information change the GetPayLoadList transaction response columns to the following format:

column-tag ::= <COLUMNS> PayloadName Resource Class Description URI MetadataEntryID Version</COLUMNS> CRLF

Additionally assure that the format has tab delimiters between the column names in the column-tag. This will permit the server to expose the
version of the supported payload and associated standard name space. Then add the following text and table below the column-tag table:

The following table defines each column returned by the transaction.

Column Name Content Type Description

PayloadName RETSNAME Name of the payload

Resource RETSID The ResourceID of a resource that supports the payload

Class RETSNAME The ClassName of a class that supports the payload

Description 1*256PLAINTEXT Description of the payload

URI URI Valid location of DTD or Schema defining the payload format

MetadataEntryID RETSID A value that does not change as long as the semantic meaning of the Payload record does not
change

Version dtd-version |
1*64PLAINTEXT

A string representing the version of the payload. If the payload name is “STANDARD-XML” the
version MUST be in dtd-version format as defined in section 7.5 Search Response Body Format

Add New GetMetadata Optional Argument: StandardNames

Following Section 11.1.4 Metadata Format add a new section with the following text: 11.1.5 Metadata StandardNames

In order to support alternate or changing standard names, the server MAY support the optional StandardNames argument for the
GetMetadata transaction. This argument declares the name space of the Standard Names shown in the RETS
metadata. The server MUST not change other metadata when supporting this parameter. Such that a client requesting
‘StandardNames=Standard-XML: RETS- 20080829.dtd’ will receive metadata containing Standard Names from the Standard-XML
RETS-20080829.dtd version of the data standard. The following table defines the representation of the StandardNames argument in BNF
form.

StandardNames ::= STANDARD-XML | payload-name “:” version

payload-name ::= RETSNAME

version ::= dtd-version | 1*64PLAINTEXT

Example cases:

If the StandardNames argument is not submitted or empty then return standard names from the default STANDRD-XML format in the
StandardName metadata.

If StandardNames=STANDARD-XML is submitted then return standard names from the default STANDRD-XML format in the StandardName
metadata.

If StandardNames=STANDARD-XML: RETS-20080829.dtd is submitted then return standard names defined by the default STANDRD-XML
format in the StandardName metadata.

If StandardNames= DataDictionary:1.0 is submitted then return standard names defined by the DataDictionary 1.0 payload format in the
StandardName metadata.

Edit Description for StandardName in table 11-15

Change the text of the Description for StandardName to the following:

The name of the field as it is known in the XML DTD or Schema designated by the StandardNames argument or the name of the field as it is
known in the RETS STANDARD-XML DTD.
Extend Search Optional Argument: StandardNames

To support alternate standard names in DMQL consistently within the Search transaction modify the optional StandardNames argument to
support declaring the payload format and version. To do this, change the definition of the argument in Section 7.4.7 StandardNames to the
following:
7.4.7 StandardNames

Queries may use either standard names from a declared payload or system names in the query (Section 7.6.) If the client chooses to use

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 208 of 232

standard names then the client MUST indicate this using the StandardNames argument.
The StandardName designation applies to all names used in the SearchType, Class, Query and Select arguments of the transaction.

If the argument is set to zero or not present, then all names used in the request MUST use the SystemName of the field.

If the argument is set to 1, then all names used in the request MUST use the StandardName of the field as declared by the metadata for the
default STANDARD-XML format or use the SystemName of the field as declared by the metadata.

If the argument is set to STANDARD-XML, then all names used in the request MUST use the StandardName of the field as declared by the
metadata for the default STANDARD-XML format or use the SystemName of the field as declared by the metadata.

If the argument is set to STANDARD-XML: RETS-20080829.dtd, then all names used in the request MUST use the StandardName of the
field as declared by the metadata for the STANDARD-XML at dtd-version RETS-20080829.dtd or use the SystemName of the field as
declared by the metadata.

If the argument is set to DataDictionary:1.0, then all names used in the request MUST use the StandardName of the field as declared by the
metadata for the DataDictionary payload at version 1.0 or use the SystemName of the field as declared by the metadata.

Extend Search Optional Argument: Format

Format=COMPACT
Return normal COMPACT results

Format=COMPACT-DECODED
Return normal COMPACT-DECODED results

Format=STANDARD-XML

StandardNames ::= 0 | 1 | STANDARD-XML | payload-name “:” version

payload-name ::= RETSNAME

version ::= dtd-version | 1*64PLAINTEXT

The StandardName designation applies to all names used in the SearchType, Class, Query and Select arguments of the transaction.

If the argument is set to zero or not present, then all names used in the request MUST use the SystemName of the field.

If the argument is set to 1, then all names used in the request MUST use the StandardName of the field as declared by the metadata for the
default STANDARD-XML format or use the SystemName of the field as declared by the metadata.

If the argument is set to STANDARD-XML, then all names used in the request MUST use the StandardName of the field as declared by the
metadata for the default STANDARD-XML format or use the SystemName of the field as declared by the metadata.

If the argument is set to STANDARD-XML: RETS-20080829.dtd, then all names used in the request MUST use the StandardName of the
field as declared by the metadata for the STANDARD-XML at dtd-version RETS-20080829.dtd or use the SystemName of the field as
declared by the metadata.

If the argument is set to DataDictionary:1.0, then all names used in the request MUST use the StandardName of the field as declared by the
metadata for the DataDictionary payload at version 1.0 or use the SystemName of the field as declared by the metadata.

Extend Search Optional Argument: Format

Format=COMPACT
Return normal COMPACT results

Format=COMPACT-DECODED
Return normal COMPACT-DECODED results

Format=STANDARD-XML
Return normal standard xml results

Format=DataDictionary:1.0
The server returns data using the RETS response body format containing a RESO

DataDictionary XML format. This is designated using the extended format of the argument as follows:

Format=[PayloadName][:VERSION]

So that the first part is an identifier of the namespace and the second part is a version for the name space. Note the payload name may
match payload names provided by the GetPayloadList Transaction.

Extend Search Optional Argument: Payload

To simplify usage modify the Payload argument to accept the same content as the Format argument.

Payload=DataDictionary:1.0

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 209 of 232

The server returns data using the RETS response body format containing a RESO

DataDictionary XML format. This is designated using the extended format of the argument as follows:

Payload=[PayloadName][:VERSION]

So that the first part is an identifier of the namespace and the second part is a version for the name space. Note the payload name may
match payload names provided by the GetPayloadList Transaction. With this proposal the Payload argument becomes superfluous and may
be deprecated in a future version.

Impact

Compatibility

The additional arguments and metadata should only be available for a 1.8 server. If the client uses any additional arguments and declares
RETS Version lower than 1.8 then the server MUST return a Search or GetMetadata error as appropriate.

RCP 101 - Child Rows Support

Submitter Name Ivaan Nazaroff

Submitter Organization CoreLogic Inc.

Submitter Email inazaroff@corelogic.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name RETS 1.8

Document Version 1.8.0

Date Submitted 2014-02-18

Status ADOPTED

Status Change Date 2015-04-10

Synopsis

See the attached document under the tools menu for the original submission, including the diagrams. We are working to resolve the issue
with adding images to this form.

This proposal add support for Child Rows to the RETS Update Transaction.

Rationale

By allowing Child Rows to be submitted along with their Parent’s Data RETS will provide a more transactional approach to inserts and
updates where logically singular operations performed over more than one class can be submitted in one transaction. A child row goes
beyond the notion of a one-to-many relationship. The intent is for Child Rows to describe data that is dependent on its parent. A room is a
property of a house and cannot exist without it. It also doesn’t make sense to move a room from one listing to another.

Proposal

Modify the Introduction section of the Update Transaction.

The current introduction to the Update Transaction section doesn’t describe the expected behaviour of a server in the case where a parent
record’s data is valid but a child’s is not. The proposal will replace the first paragraph with the following:

Section 10 – Update Transaction

The update transaction is used to modify data on the server. The client submits information describing the update to perform. The

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 210 of 232

information is validated by the server. If there are any errors in the primary data or any child row data, the server returns an error reply
and no changes are persisted. That is, the server MUST return to a state as if the failed Update Transaction was not attempted. If
there are no errors, the record(s) as it was inserted/updated on the server will be returned. The record is returned in the same manner
as a record is returned from a search.

Add Child Record support to the Update Transaction Optional Request Arguments

The current Update Transaction only supports data for the primary record. To facilitate adding/updating child rows add the following section to
the standard.

10.2.6 ChildRecord

If the Update metadata (11.3.3) describes Child_Action metadata (11.3.5) then the client can submit updated child data with the
ChildRecord parameter in the same transaction.

ChildRecord ::= "ChildAction=" ChildActionID field-delimiter "ChildRequestID=" ChildRequestID field-delimiter "Sequence=" ProcessOrder
field-delimiter field_name"="field-value *(field-delimiter field_name "=" field-value)

The ChildRecord provides details for child rows of the class being updated. This MUST include the ChildActionID, the
ChildRequestID, Sequence and fields that are to be changed. Multiple ChildRecord parameters may be specified both for the same
ChildActionID and for different ChildActionIDs if the server describes multiple ChildActions for this UpdateAction. For example, a client
can choose to update a room in one ChildRecord, remove a room in a second, and add an Open House with a third ChildRecord
parameter, provided the server supports these three ChildActions, in the same Update Transaction.

ChildActionID ::= RETSID

The ChildActionID describes both the relationship between the parent row and this child row and the UpdateAction to apply for this
child row. This is the ChildActionID as defined in section 11.3.5.

ChildRequestID ::= RETSID

The ChildRequestID is a means for the client to identify a particular child row to the server. The server will reference this ID when
communicating errors, warnings, and success back to the client. These ids SHOULD be unique within a request.

ProcessOrder ::= POSITIVENUM

The ProcessOrder describes to the server in what order child rows are to be processed. The server MUST process child rows in
ascending ProcessOrder order. ProcessOrder values need not be contiguous. Coincident ProcessOrder values (i.e. two child rows
within the same Update Transaction with the same ProcessOrder) may lead to undetermined behaviour. It is at the server’s discretion
to continue processing child rows after a data validation error has been encountered.

field-name ::= RETSNAME

The name of the field to be updated, as specified in the meta-data. This is SystemName as defined in Section 11.3.2.

field-delimiter ::= OCTET

The octet that will separate the fields in the record. This is as defined for Delimiter in Section 10.2.

field-value ::=<varies depending on the field>

The text representation of the field value as defined by the meta-data subject to the business rules.

Add ChildSelect Update Transaction Optional Request Argument

The current Update Transaction only supports describing the current state of the primary record. To facilitate describing child rows or row
sets add the following section to the standard.

10.2.7 ChildSelect

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 211 of 232

ChildSelect ::= “ForeignKey="ForeignKeyID "," field-name *("," field-name)

The ChildSelect specifies a list of fields that should be returned in the response. Server MUST return current (updated) values for all
fields in this list. If this argument is omitted, no child sections will be returned. Multiple ChildSelect parameters may be specified for
additional child table data. Each ChildSelect parameter MUST specify a different ForeignKeyID.

Add Child Data content to Update Response Body

The current Update Response format only supports data from the primary record. To facilitate describing updated child record data in the
Update Transaction responses adjust section 10.5 in the standard to read as follows.

10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:

<RETS1*SP ReplyCode= quoted-reply-code 1*SP

ReplyText= quoted-string *SP > CRLF

[lock-tag]

[lock-key]

[delimiter-tag]

column-tag

compact-data

*(child-data)

[<RETS-STATUS 1*SP ReplyCode=quoted-end-reply-code1*SP

ReplyText=quoted-string *SP/>

</RETS> CRLF

The body of the update response has the following format when there are errors or warnings:

<RETS1*SP ReplyCode=quoted-reply-code1*SP

ReplyText=quoted-string *SP > CRLF

transaction-id-tag

[lock-tag]

[lock-key]

[delimiter-tag]

column-tag

compact-data

[error-block]

[warning-block]

*(child-data)

</RETS> CRLF

child-data ::= open-childdata-tag [column-tag] *(child-row) close-childdata-tag

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 212 of 232

An element including the child rows of primary rows given a particular Foreign Key.

open-childdata-tag ::= <ChildData ForeignKey="ForeignKeyID">

Opening tag for a Child Data section. The Foreign Key attribute describes the relationship between the rows in this section and the
row in the primary table.

close-childdata-tag ::= </ChildData>

Closing tag for a Child Data section.

ForeignKeyID ::= RETSID

Describes the relationship between this child row and the parent row.

child-row ::= open-childrow-tag compact-data [error-block] [warning-block] close-childrow-tag

Contains the updated child row along with related error and warning blocks.

open-childrow-tag ::= <ChildRow ChildRequestID="ChildRequestID">

Opening tag for a Child Row section. The ChildRequestID attribute refers to the ChildRequestID specified by the client in the
ChildRecord request argument.

close-childrow-tag ::= </ChildRow>

Closing tag for a Child Row section.

Add Child_Action to the Metadata Structure diagram

The current Metadata Structure diagram needs to grow a Child_Action node as a child of the Update node.

Figure 11.1 – Metadata Structure

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 213 of 232

Add Child Row related metadata to Metadata-Update

The current Update Metadata does not describe which Update Actions are valid as child rows and which Update Actions MUST be submitted
as child rows. To provide a means for servers to communicate these details to clients add the following to Metadata-Update.

11.3.3 Update

Table 11-17 Meta-data Content -Update

Meta-data Field Content
Type

Description

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 214 of 232

IsChildActionOnly BOOLEAN When true indicates this UpdateAction MUST be performed as a child (ChildRecord) of a parent's
UpdateAction

The optional IsChildActionOnly flag is used to indicate that this UpdateAction must be performed as a child of a parent's
UpdateAction. If not specified the default is false. If true then rows must exist in Child_Action metadata describing valid child actions.
If true the client MUST submit this data in a ChildRecord parameter of a parent’s update action.

Add Child Metadata-Child_Action section

11.3.5 Child Action

A given update action may have multiple permitted child actions. Child Actions describe actions that can be performed on related
classes during an update. The child class is designated by specifying the RETSID of the Foreign Key in the ForeignKeyID column and
the child’s update action in the Update column.

Table 11-n Child Action Metadata Compact Header Attributes

Attribute Content

Version This is the version of the Update Type metadata. The convention

used is a "<major>.<minor>.<release>" numbering scheme. Every

time any contained metadata element changes the version number

MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the Resource that this metadata table applies.

Class The ClassName for the Class to which this metadata table applies

Update The UpdateAction for the Update that this metadata table applies.

Table 11-m Metadata Content Child Action

Metadata
Field

Content Type Description

ChildActionID RETSID The value used to identify this child action for the specified parent’s update action. This is the first
token in a ChildRecord parameter.

ForeignKeyID RETSID The ForeignKeyID (Table 11-8) that describes the relationship between parent and child. The indicated
ForeignKey metadata MUST have ParentResourceId and ParentClassId that match the Resource and
Class header attributes of this Child Action. The ChildResourceID and ChildClassID then designate the
child’s Resource and Class. The OneToManyFlag MUST be true.

Update 1*24ALPHANUM The UpdateAction (Table 11-17) of the child class.

 RETS Change Proposal-ChildRows.docx

Impact

http://members.reso.org/download/attachments/18448862/RETS%20Change%20Proposal-ChildRows.docx?version=1&modificationDate=1429016410000&api=v2

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 215 of 232

Compatibility

The intention is that these additional parameters have no effect in environments where child rows don’t play a role. Servers that do not
support child records should not provide the additional metadata. The additional metadata is an extension over previous RETS versions,
which should be ignored by clients not supporting this feature. The extended metadata format may break some clients that are not prepared
to ignore unknown metadata parts.

RCP 102 - GetObject URL as Default Location

Submitter Name Mike Wurzer

Submitter Organization FBS

Submitter Email mwurzer@flexmls.com

Co-submitter Name Troy Davisson

Co-submitter Organization FBS

Co-submitter Email tdavisson@fbsdata.com

Document Name GetObject URL as Default
Location

Document Version RETS 1.8.0

Date Submitted 2014-11-23

Status ADOPTED

Status Change Date 2015-04-10

Synopsis

This proposal modifies the expected behaviour of a GetObject request to default to returning a URL for the object.

Rationale

Common practice with static resources on the web is to use content delivery networks or other systems to reduce network bandwidth for
objects that change infrequently. These systems default to delivering binary data like images by URL that is then used when the resource is
demanded rather than delivering the object as the response. Returning a URL should be the preferred practice because it allows more flexible
and efficient delivery of the information.

Proposal

Specification Changes
The following sections detail each area of the existing specification that needs to be changed or clarified and provides reasoning related to
each change. Each area of the change will be listed according to the section of the specification using numbering in italics.

This proposal modifies the GetObject Transaction and affects server support.

1. Section 5.4.1 Location

The following paragraph is modified from:

If Location is set to "1" the server return a URL to the given object. The default is " ". The server support thisMAY 0 MAY
functionality (Location=1) but support Location=0. In other words, some servers may store the objects in a databaseMUST
or generate them dynamically. Therefore, it may not be possible for those servers to return a URL to the requested object. In
these cases the server MAY choose not to support Location=1. However, all servers MUST support a method to get the
object and therefore, MUST support the case where Location=0

To:

If Location is set to "1" the server return a URL to the given object. The default is " ". The server support should 1 SHOULD
this functionality (Location=1) but support Location=0. In other words, some servers may store the objects in aMAY
database or generate them dynamically. Therefore, it may not be possible for those servers to return a URL topermanent
the requested object. In these cases the server MAY choose not to support Location=1. However, all servers MUST support
a method to get the object and therefore, MUST support the case where Location=0 or . either Location=1 Client vendors
should be prepared to handle HTTP 410 responses when the URL expires or is removed and should not depend on the URL

 existing for all time.

2. Section 5.13 Error Codes

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 216 of 232

An additional error code will be added.

Reply
Code

Meaning

20415 Objects in the response body, Location=0 is not supported. The server does not support retrieving Objects in the response
body, only by URL

Compatibility

RETS 1.8.0 and higher.

Document History

Date Version Author Description

October 23, 2014 1 Michael Wurzer Initial Release

April 9, 2015 2 Paul Stusiak Clarification and additional changes

Version 1.9.0

Change proposals that were added to the RETS 1.9.0 version:

RCP 103 - Geospatial Search

Submitter Name Matthew McGuire

Submitter Organization CoreLogic Inc

Submitter Email mpmcguire@corelogic.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name Geospatial Search

Document Version 1.8.0

Date Submitted 2015-04-12

Status ADOPTED

Status Change Date 2015-04-12

Synopsis

The current RETS 1.8.0 specification does not provide a means to search geographical areas using geospatial coordinates or shapes.

This proposal resolves this by adding a new field data type to represent a geospatial location. This proposal also adds new standard name to
identify a geospatial location field that can be used to search geospatial areas. Finally this proposal details how to search geospatial data using
polygon and radial search criteria data.

Rationale

http://members.reso.org/display/~matthew.mcguire

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 217 of 232

Geospatial Search means searching for properties located in an area specified by geographical coordinates. With the growth of mobile and
widespread use of geospatial data in the mobile space, RETS needs a means to represent geospatial data and criteria within metadata and
search criteria respectively. This also needs to be discoverable so that data vendors may control access to geospatial functionality. This proposal
attempts to resolve these needs by adding a new field data type and interpretation to metadata, adding a new standard name to identify a
geospatial location field, and details how to search geospatial data using polygon and radial search criteria data.

Proposal

In order to support geospatial data and search features the following changes are needed in the specification.

New Data Type and Interpretation for geospatial field metadata

In Table 11-15 (Metadata Content – Tables), add following line to the list of Data Types:

Point Geospatial coordinates represented as a space-delimited pair of
decimal numbers, showing first the longitude then the latitude of a
point on the Earth’s surface.

In the same table, add following line to the list of Interpretations:

Location A Point value representing the longitude and latitude of a point on the
Earth’s surface.

New Search Criteria DMQL for representing geospatial search criteria

In section 7.6.1 (Query language BNF), modify the definition of field-value by adding an area token:

field-value ::= lookup-list | string-list | range-list | area | period | number |
string-literal | .Empty.

In the same section, add following definitions before the definition of ‘period’:

area ::= circle-by-radius | circle-by-points | rectangle | polygon

circle-by-radius ::= map-point “:“ number [length-unit]

circle-by-points ::= map-point “:” map-point

rectangle ::= map-point “, ” map-point

polygon ::= map-point 2*(“, ” map-point)

map-point ::= number “ ” number

length-unit ::= “M” | “K”

In section 7.6.2 Query parameter interpretation add following text above the description of the string field:

An value represents an area in which a Point value should be searched for. The area may be shaped as a circle or aarea
polygon.

A circular area may be described by its center point and a length of radius, which can be specified in miles (if M is used, default)
or kilometers (if K is used). A circular area may also be described by its center and an arbitrary point on the circle’s
circumference.

A polygonal area is described by a list of points. Each pair of adjacent points defines a side of the polygon. If the last point in the
list is not the same as the first one, another side is defined by the first and last point in the list. Any two sides of the polygon
MUST NOT intersect. A special case of a polygonal area is a rectangle, which can be defined by just two points where the points
MUST be opposite vertices of the rectangle.

Client and Server implementations SHOULD use Spherical Mercator for search criteria content and return results using WGS84
if possible.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 218 of 232

This text describes the query functionality for geospatial areas and how to use the search criteria format for all of the supported geospatial search
features.

New “Location” Standard Name for indicating a standard geospatial field

In the Real Estate Transaction XML DTD (as mentioned in the Description of the StandardName field in Table 11-15), add a StandardName
“Location” to represent the location of the property using the Point type.

Validation Expressions are not supported

This change proposal does not specify any changes in the Validation expression syntax (11.4.9.1). That means, ultimately, that without other
changes Point fields cannot be used in the validation expressions.

Impact

<<blank>>

Compatibility

This proposal adds functionality that is only available if the server provides matching metadata. This new metadata may break older clients so the
following rules are applied.

Servers MUST NOT present fields of the Point data type to any client with RETS Version 1.8 or lower.

Servers MUST NOT present fields of the Location interpretation to any client with RETS Version 1.8 or lower.

If a server does expose geospatial metadata an older client may not recognize the new data type and therefore may not submit accurate criteria
for the advertised geospatial field. In this case the server MUST return an Invalid Search Criteria error to the client.

RCP 104 - StandardValue for Enumerations

Submitter Name Gregory Lemon

Submitter Organization RESO

Submitter Email GregL@reso.org

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name Real Estate Transaction Specification

Document Version 1.8.1

Date Submitted 2015-06-24

Status ADOPTED

Status Change Date 2015-07-09

Synopsis

This proposal adds an additional Metadata element for enumerations. StandardValue is a new element for the Metadata LookupType. The value
of StandardValue MUST match a value from the Data Dictionary enumerations or MUST be empty.

Rationale

The existing Metadata LookupType does not provide a place for the Data Dictionary enumerations on a RETS 1.x server. An implementation must
use a non-standard way to show the value, for example using the enumeration LongValue to match a Data Dictionary defined enumeration.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 219 of 232

Adding the field StandardValue will allow existing LongValue, ShortValue, and Value enumeration descriptions to be used for their current defined
meaning while providing for the Data Dictionary values.

Proposal

A new element will be added and the LOOKUP_TYPE definition will be modified to include this element.

11.4.3 Lookup Type

A new row will be added to Table 11-27 Metadata Content: Lookup Type as described below.

Field Name Content Type Description

StandardValue 1*128PLAINTEXT The value of the field as it is known in the RESO Data Dictionary.

This value SHOULD be used for a COMPACT-DECODED or STANDARD-XML format
response when StandardName=1 is used in the RETS Query. If this value is empty, then the LongValue
MAY be used in the response.

 If the system does not support the Data Dictionary, the StandardValue will be the empty string.

The following paragraphs describe the behaviour where the system supports the Data Dictionary.

If the LOOKUP is not in the Data Dictionary, the StandardValue will be the empty string.

If the LOOKUP is in the Data Dictionary, if the LOOKUP_TYPE is not in the Data Dictionary,
the StandardValue will be the empty string.

If the LOOKUP and the LOOKUP_TYPE are in the Data Dictionary, the StandardValue will match that of
the Data Dictionary.

A special case exists where the LOOKUP as defined in the Data Dictionary has a 'closed' enumeration.
That is, all values of the enumeration are defined in the Data Dictionary and no additional values are
permitted. In this case, if the LOOKUP is in the RESO Data Dictionary, the StandardValue MUST match
a value in the Data Dictionary and CANNOT be empty. Please consult the appropriate Data Dictionary
version to determine the set of 'closed' enumerations.

rets-metadata-content-1_8_1.dtd

< LookupType MetadataEntryID LongValue ShortValue Value StandardValue, EXTENSION PROPRIETARY >!ELEMENT (, , , , * , *)

< StandardValue >!ELEMENT (#PCDATA)

Compatibility

This change is not compatible with previous versions.

This additional method of describing the enumerations will allow existing RETS 1.x implementations to maintain LongValue,ShortValue, andValue
enumeration descriptions. Those who previously consumed the RETS data may choose to use an existing LongValue or the new StandardValue
based on their query preferences.

RCP 105 - Update Transaction Response Format Correction

Submitter Name Paul Stusiak

Submitter Organization Falcon Technologies Corp

Submitter Email pstusiak@gmail.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name Real Estate Transaction Standard

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 220 of 232

Document Version 1.8.1

Date Submitted 2015-07-08

Status ADOPTED

Status Change Date 2015-07-08

Synopsis

This proposal changes the order of the RETS-STATUS, ERROR block and WARNING block on the Update Transaction response body.

Rationale

The existing DTD for this transaction places the ERROR and WARNING block of responses where there are errors or warning on an update after
the RETS-STATUS tag. This is different from any other transaction. Placing the ERROR and WARNING block before the RETS-STATUS will
make the Update response match the form of the other transactions.

Proposal

The Update transaction DTD will be modified to re-order the ERROR and WARNING block elements to occur before the RETS-STATUS.

rets-update-1_8_1.dtd

The element RETS will be changed to

< RETS TRANSACTIONID DELIMITER COLUMNS DATA RETS-STATUS >!ELEMENT (, ?, , *,ERRORBLOCK?,WARNINGBLOCK?,CHILDDATA*, ?)

Compatibility

This change is not compatible with previous versions. This change affects RETS 1.8.1 and later.

Vendors who have implemented the Update transaction will need to modify their implementation to reorder the response body.

RCP 106 - Client cookie support for RFC 6265

Submitter Name Steve Martin

Submitter Organization MRIS

Submitter Email steve.martin@mris.net

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name Real Estate Transaction Standard

Document Version 1.8.1

Date Submitted 2015-07-22

Status ADOPTED

Status Change Date

Synopsis

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 221 of 232

The RETS Message Format requires that clients support cookie handling per RFC 2109. This cookie RFC has been superseded twice, by RFC
2965 and most recently by RFC 6265. The language should be adjusted to permit and encourage a client to support RFC 6265.

Rationale

Most client API's provide support for RFC 2109 and now many support RFC 6265. Some implementations of RETS may have an individual
requirement for clients to use RFC 6265. This is most commonly seen when a security appliance is in place and requires implementation of the
current RFC 6265 for cookie handling. Changing the requirement for clients to implement the most recent cookie RFCs may cause an undo
burden on these clients and client API's. It is suggested that the language in Section 3 Message Format is modified to permit clients to support
RFC 6265 if an implementation requires it.

Proposal

It is suggested that the language is changed to the following:

A compliant RETS client MUST implement cookie handling as specified in RFC 2109. Although not required, a client may choose to implement
the latest cookie RFC 6265 so that it is compatible with servers that may choose to require it.

Impact

This change would provide a suggestion over a required change and would therefore have no impact on any existing RETS clients.

Compatibility

This change proposal is intended to provide full backwards compatibility with previous RETS versions.

RCP 107 - IETF HTTP RFC Updates to references in the RETS specification

Submitter Name Geoff Rispin

Submitter Organization Templates 4 Business, Inc.

Submitter Email grispin@t4bi.com

Co-submitter Name Paul Stusiak

Co-submitter Organization Falcon Technologies Corp.

Co-submitter Email pstusiak@falcontechnologies.c
om

Document Name IETF HTTP RFC Updates

Document Version 1.9.0

Date Submitted 2016-05-02

Status ADOPTED

Status Change Date 2016-08-25

Synopsis

The RESO standards should encourage the adoption of current internet standards at the time of release. The RETS1x Document references
obsolete RFC standards documents. This change proposal replaces the references to the obsolete HTTP IETF documents with references to
the current IETF RFC standards.

The updated IETF RFC standards include errata, language clarifications, updated security, bug fixes and backwards compatible feature
enhancements.

Rationale

The RESO community is building its standards on top of those standards already in use on the internet. The RESO standards should reflect
that in our documentation by using those standards that are actively in use. Most RETS implementations that use current external libraries
and frameworks may already meet these IETF RFC standards since those external libraries have adopted these IETF standards some time

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 222 of 232

ago. However, to improve interoperability and clarify the RETS document, the RETS document should reference the newer IETF RFC
documents so those implementing custom libraries know to update their implementations.

Proposal

Updates all HTTP RFC references in the WebAPI transport document to their latest specification

HTTP/1.1 RFC 2616 -> RFC 7230-7237
HTTP/1.1 RFC 2617 -> RFC 2617 + RFC 7235
HTTP/2 (Not Referenced) -> RFC 7540

Changes:

Changed text is in .blue

Section 3 - Message Format

3.1 General Message Format
3.1.1 RETS HTTP Encapsulation

RETS messages are encapsulated as the bodies of HTTP/1.1 requests and responses. The request body may be null, and optionally newer
depending on the request. The response body is never null

Note that, per the , keywords in header key-value pairs are not case-sensitive. The values, however, may beHTTP Specifications [2], [23]
case-sensitive depending on context.

3.2 Request Format
A RETS request is either an HTTP GET request or an HTTP POST request. In the case of the GET-request the Argument-List is appended to
the Request-URI after a delimiting question mark ("?"). For the post-request the Argument-List is sent as the first entity body for the POST
method.

get-request ::= [] GET Request-URI ? Argument-List HTTP-Version CRLF
 *message-header

CRLF

post-request ::= POST Request-URI HTTP-Version CRLF
 *message-header

 CRLF
[]Argument-List

The , and are defined in . The detailed construction of the Request-URI HTTP-Version message-header HTTP Specifications [2], [23] Ar
 is defined in HTML 4.01.gument-List

3.3 Required Client Request Header Fields
The HTTP header of any messages sent from the client MUST contain the following header fields:

User-Agent This header field contains information about the user agent originating the request. This is for statistical purposes,
the tracing of protocol violations, and automated recognition of user agents for the sake of tailoring responses to
avoid particular user agent limitations, as well as providing enhanced capabilities to some user-agents. All client
requests MUST include this field. This is a standard HTTP header field as defined in .HTTP Specifications [2], [23]

User-Agent ::= 1* User-Agent: product

product ::= []token / product-version

product-version ::= token

Example: User-Agent: CMAZilla/4.00

Product tokens should be short and to the point: use of them for advertising or other non-essential information is explicitly forbidden. Although
any token character may appear in a product-version, this token SHOULD only be used for a version identifier (i.e., successive versions of the
same product SHOULD only differ in the product-version portion of the product value). For more information about User-Agent see HTTP

.Specifications [2], [23]

A server MAY advertise additional capabilities based on the client's User-Agent, and MAY refuse to proceed with the authorization if an
acceptable User-Agent has not been supplied. A server MAY also choose to authenticate the client's identity cryptographically using the
RETS-UA-Authorization header; see for additional information.section 3.4

http://members.reso.org/pages/viewpage.action?pageId=8716380

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 223 of 232

RETS-Version ::= 1*DIGIT "." 1*DIGIT "." 1*DIGIT
The client MUST send the RETS-Version. The use of the RETS-Version s a maker for versioning metadata may requirea
additional digits to correctly represent the version of metadata. Specifically, implementers should be permissive in the

 use of RETS-Version and should accept values where there are more than a single digit for the release or minor
The convention used is a numbering scheme similar to the HTTP Version in . Thepositions. HTTP Specifications [2], [23]

version of a RETS message is indicated by a RETS-Version field in the header of the message.

Cookie The client MUST implement cookie handling as specified in RFC 2109. Servers and clients are encouraged to
implement cookie handling as specified in RFC 6265 and MAY implement cookie handling as specified in RFC[15]
6265. Future versions of this standard will obsolete the use of 2109 as permitted. If any server response has included a
valid Set-Cookie header, and the cookie in that header has not expired, the client MUST return the corresponding
Cookie header. See RFC 2109 for the full specification. , 6265 [15]

3.4 Optional Client Request Header Fields

Authorization Authorization header field as defined in . See 4.1, "Security", as well as the HTTP Specifications [2], [23] the
 , for additional information. HTTP Specifications [2], [23]

RETS-Request-ID A character string of printable characters which the client can use to identify this request. The contents are
implementation-defined. If this field is included in a request from the client then the server MUST return it in
the response.

RETS-Request-ID ::= 1*64ALPHANUM

Accept-Encoding A comma-separated list of MIME types indicating the content encoding schemes that the client is willing to
accept. This is intended to support the use of compression in data returns; see for additionalsection 3.8
information.

Accept-Encoding ::= 1*64ALPHANUM/1*64ALPHANUM *[,1*64ALPHANUM/1*64ALPHANUM...]

RETS-UA-Authorization A client MAY support authentication of its User-Agent value by including the RETS-UA-Authorization
header. Servers MAY require this header with a valid value before providing services.

RETS-UA-Authorization ::= ua-method ua-digest-response

ua-method ::= Digest

ua-digest-response ::= "*LHEX "

See for the method of computing the value. section 3.10 ua-digest-response
The client MAY send this header under any circumstances. It need not send this header if the server has not
indicated that it requires user-agent authentication by responding to a transaction with a RETS error code of
20037.

In addition to the header fields listed here, the client may send any header compliant with the HTTP Specification [2], [23] in use.

The general server response to a request is either a well-formed XML document returning RETS-encapsulated data or error information, or,
for the transaction and for successful transactions, the content of the requested object in the format given in the response'sGet GetObject
HTTP Content-Type header. Note that this is an ordinary HTTP response per RFCs . [2],[23]

The more common HTTP are provided in , though any status code defined in RFC is permissible.sStatus-Code Section 3.9 [2],[23]
Servers MUST use appropriate predefined status codes when communicating with the client.

3.7 Optional Server Response Header Fields
Example: RETS-Server: AcmeRETS/1.0

Set-Cookie The server MAY use HTTP cookies to maintain state information. See RFC for the format of the he 6265 [15] Set-Cookie
ader. A cookie having a name of defines the RETS session ID, which is used in calculating the RETSRETS-Session-ID
User-Agent Authentication (). section 3.10

Cookies with other names have no special meaning in RETS but MAY be used when necessary.

In addition to the header fields listed here, the server may send any header compliant with .HTTP Specifications [2],[23]

3.5 Response Format

http://members.reso.org/pages/viewpage.action?pageId=8716350
http://members.reso.org/pages/viewpage.action?pageId=8716357
http://members.reso.org/pages/viewpage.action?pageId=8716354
http://members.reso.org/pages/viewpage.action?pageId=8716357

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 224 of 232

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in) may be returned by a server inthe HTTP Specifications [2], [23]
response to any request:

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it is permissible, for example, to operate a publicly-accessible RETS server —
most operators of RETS servers will wish to authenticate users. A server that requires that users be authenticated MAY implement RFC 7235

, HTTP Authentication. The use of at least digest authentication is strongly recommended.[2]

4.1.2 Client Authentication

Client authentication may be performed through the use of the optional RETS-UA-Authorization header . Prior versions of this(section 3.4)
specification used a specially-calculated cnonce value in the Authorization header to implement this function. A server implementing this
version of the RETS specification MUST accept the RETS-UA-Authorization header for client authentication. It MAY accept RFC styl7235 [2]
e authentication as in prior versions of the RETS specification.

Section 8 - Get Transaction
Gets an arbitrary file from the server or performs an arbitrary action, specified by URI. This is a standard HTTP GET, per the HTTP

. The file to get is passed as part of the Request-URI.Specifications [2], [23]
RETS servers need not support the GET transaction to any greater extent than is necessary to implement the functionality of the Action URL
(see). If a RETS server does not intend to include an Action URL in its login responses, it need not support the4.10, "Capability URL List"
GET transaction.

Section 19 - References
Number Reference

[1] Braden, R., "Requirements for Internet Hosts — Communication Layers" STD 3, RFC 1123, IETF 1989.

[2] R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests", RFC 7232, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June 2014
R. Fielding, "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014
J. Reschke, "Initial Hypertext Transfer Protocol (HTTP) Authentication Scheme Registrations", RFC 7236, June 2014
J. Reschke, "Initial Hypertext Transfer Protocol (HTTP) Method Registrations", RFC 7237, June 2014

[3] Rivest, R., "The MD5 Message Authentication Algorithm", RFC 1321, April 1992

[4] Crocker, D., "Standard for ARPA Internet Text Messages", RFC 2822, IETF 2001

...

[14] Kaliski, "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, IETF 1998

[15] A. Barth, "HTTP State Management Mechanism", RFC 6265, April 2011

[16] W3C, "HTML 4.01 Specification", W3C Recommendation 24 December 1999 ()http://www.w3.org/TR/html401/

...

[21] Klyne, G. and Newman, C., "Date and Time on the Internet: Timestamps", RFC 3339, IETF 2002

[22] Crocker, D. and Overell, P., "Augmented BNF for Syntax Specification: ABNF", RFC 2234, IETF 1997

[23] M. Belshe, "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, May 2015

http://members.reso.org/pages/viewpage.action?pageId=8716380
http://members.reso.org/pages/viewpage.action?pageId=8716369
http://www.w3.org/TR/html401/

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 225 of 232

Impact

The impact should be minimal since most implementers are using common third party libraries and frameworks to implement the HTTP
transport within their software. Implementations that have custom HTTP libraries will need to update their libraries to implement the current
IETF RFC documents noted in this change proposal.

The HTTP/2 includes a separate handshake method that will not impact those that have not implemented it and downgrade gracefully.

Compatibility

The new IETF RFCs are backwards compatible with the old ones except where contradictions or ambiguity exists in the older RFCs. This
change is not intended to be compatible with previous versions of the RETS standard, however, many implementations of previous versions
may work with the updated IETF RFC documents and libraries.

RCP 108 - Migrate RETS specific HTTP Headers to HTTP User Space headers (X-*)

Submitter Name Geoff Rispin

Submitter Organization Templates 4 Business, Inc.

Submitter Email grispin@t4bi.com

Co-submitter Name Paul Stusiak

Co-submitter Organization Falcon Technologies Corp

Co-submitter Email pstusiak@falcontechnologies.c
om

Document Name HTTP User Space Headers

Document Version 1.9

Date Submitted 2016-05-02

Status ADOPTED

Status Change Date 2016-08-01

Synopsis

The RETS specific headers should be changed to the use the prefix "X-" to conform to best practices and make the adoptionindustry/Internet
of security appliances easier for implementators.

Rationale

The current RETS specific headers are in the root name space within the HTTP header space. While this is allowed by the IETF RFC
specifications, it has become accepted practice that all headers not explicitly defined in the HTTP RFC specifications should start with a "X-"
to allow for the future expansion of the protocol and to keep the root namespace under the control of the IETF.

Many of the vendors of deep packet inspection solutions (Application Firewalls, denial of service prevention, etc.) follow this accepted practice
and enforce only RFC defined HTTP root name space defined headers and only permit application specific headers that conform to the X-*
naming convention be allowed to pass through the security appliance. The RETS 1X custom headers make adoption of these types of
solutions more complex as exception rules must be written or security threshold decreased to allow RETS traffic to pass through the security
appliance if that appliance supports exception rules.

Proposal

Prefix all RETS specific headers with the "X-" string so that they are in the HTTP Header user name space.

The following sections have replacement text as shown.

3.3 Required Client Request Header Fields

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 226 of 232

RETS-VersX-
ion

::= 1*DIGIT "." 1*DIGIT "." 1*DIGIT
The client MUST send the RETS-Version. X- The use of the X-RETS-Version as a maker for versioning metadata may
require additional digits to correctly represent the version of metadata. Specifically, implementers should be permissive

 in the use of X-RETS-Version and should accept values where there are more than a single digit for the release or minor
The convention used is a numbering scheme similar to the HTTP Version in Section 3.1 of RFC 2616. Thepositions.

version of a RETS message is indicated by a RETS-Version field in the header of the message.X-

3.4 Optional Client Request Header Fields

RETS-RequestX-
-ID

A character string of printable characters which the client can use to identify this request. The contents are
implementation-defined. If this field is included in a request from the client then the server MUST return it in the
response.

RETS-RequestX-
-ID

::= 1*64ALPHANUM

RETS-UA-AuthorizatX-
ion

A client MAY support authentication of its User-Agent value by including the RETS-UA-AuthorizationX-
header. Servers MAY require this header with a valid value before providing services.

RETS-UA-AuthorizatX-
ion

::= ua-method ua-digest-response

3.10 Computing the RETS-UA-Authorization Value
The RETS User Agent Authorization digest response value is used in the X- header specified in . It isRETS-UA-Authorization section 3.4
computed as follows:

a1 ::= MD5()product ":" UserAgent-Password

ua-digest-response ::= LHEX(MD5(LHEX(a1)))":” RETS-Request-IDX- ":" session-id ":" version-info

where:

product The first value taken from the User-Agent header (). Note that the value consistsproduct section 3.3 product
of both the product token and version.

UserAgent-Password ::=TOKEN
This value is a secret shared between the client and server.

RETS-Request-IDX- ::= RETS-Request-IDX-
This value MUST be the same as that sent with the X- header. If the client does not use the RETS-Request-ID

RETS-Request-ID header, this token is empty in the calculation.X-

session-id ::= If the server has sent a header with a cookie name of , isSet-Cookie RETS-Session-ID session-id
the value of that cookie. If the server has not sent a cookie with that name, or if the cookie by that name has
expired, this token is empty in the calculation.

version-info ::= The value of the header sent by the client with this transaction.X-RETS-Version

13.1 Required Request Header Fields

X-UpdateAction ::= 1*24ALPHANUM

 Add Add a new Object

 Replace Change an existing Object

 Delete Delete an existing Object

X-Resourc
e

::= RETSI
D

The ResourceID for the Resource that this Object belongs as defined in Table 11-6 Metadata: Resource
Description Fields

http://members.reso.org/pages/viewpage.action?pageId=8716380
http://members.reso.org/pages/viewpage.action?pageId=8716377
http://members.reso.org/pages/viewpage.action?pageId=8716413
http://members.reso.org/pages/viewpage.action?pageId=8716413

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 227 of 232

X-ResourceID <value from the KeyField> A value from the KeyField of the Resource for which the Object is to be uploaded.

X-ObjectID ::= 1*5DIGIT

X-OrderHint ::= 1*5DIGIT See Section 13.2 for further information.

X-UID ::= TOKEN A string identifying the single Object being posted

Section 13.2 Optional Request Headers

13.2.1 OrderHint

OrderHintX- ::= 1*5DIGIT

Impact

Both Clients and Servers would need to be updated to accept the new headers. The change would be a small code change but it would
require a release and the client and server must run the same version using the "X-" headers.

Compatibility

This change is not backwards compatible. The header name change will limit this to forward versions of RETS1 starting with RETS1.9.

RCP 109 - Update TLS specification references to current Internet/Industry Standards

Submitter Name Geoff Rispin

Submitter Organization Templates 4 Business, Inc.

Submitter Email grispin@t4bi.com

Co-submitter Name Steve Ledwith

Co-submitter Organization Black Knight Financial Services

Co-submitter Email stephen.ledwith@bkfs.com

Co-submitter Name Paul Stusiak

Co-submitter Organization Falcon Technologies Corp.

Co-submitter Email pstusiak@falcontechnologies.c
om

Document Name Update TLS references to
current IETF RFC

Document Version 1.9.0

Date Submitted 2016-05-02

Status ADOPTED

Status Change Date 2016-08-01

Synopsis

The RESO RETS specification should enforced the use of the current internet/industry standards and best practices for cryptography. The
current specification contains the HTTP over TLS specification, RFC2818 (superseded by RFC7230) but does not include a specification for
the implementation of TLS or any best practices around implementation or operation. Using obsolete standards and libraries presents
complications with interoperability as cryptography is usually not backward compatible due to vulnerabilities in ciphers, implementations and
algorithms found over time. Also as computational power increases, this weakens the strength of cryptography and larger keys or new
cryptographic algorithms must be used to protect data.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 228 of 232

Rationale

With the large number of vulnerabilities and weaknesses found in SSL and TLS that underpin the HTTPS standard, its very easy to have
traffic sent encrypted but be completely un-secure as the transport, algorithm or implementation has been compromised. These
announcements happen regularly for example, POODLE, HEARTBLEED, BEAST, etc.

There needs to be a common base line for implementors to target. Without a standard someone could use the SSLv2 standard and meet the
letter of the implementation but no up-to-date client would be able to talk to that solution since SSLv2 has been compromised for over 10
years. The TLS/SSL specifications can create communication problems as the handshake is a lowest common denominator approach and
will choose the highest transport and security of the lower of the two parties in the conversation. This can default to poor choices for
protection or communications being rejected as no common approved ciphers exist.

For security minded implementations or those organizations with other security standards to meet, it is common to have a hardened security
policy in place to disable all ciphers and transports that are deemed compromised or weak. This prevents communication from those that do
not meet the standard but also protects against data compromise as well.

Proposal

Add the current standard cryptographic RFCs for HTTPS communication to the specification.

TLS 1.2 -> RFC5246 https://www.ietf.org/rfc/rfc5246.txt

Add a references to security vendor best practices for the use of Encryption

RFC 7525 Best Practices - https://www.rfc-editor.org/rfc/rfc7525.txt
OWASP TLS implementation guide - https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf

Include security in the certification process. This step should be a requirement of validating a secure OAuth2 communication for the current
specification as strong security is a requirement of the underlying authentication protocol. Extending it to the Transport protocol make sense
Users get a false sense of security when they see a secure connection but the implementation is poor or flawed.

Server test (free service) - https://www.ssllabs.com/ssltest/

The following section changes are recommended:

4.1.3 Data Security

The need for secure HTTP transactions cannot be met by authentication schemes. Vendors MAY require authentication or all transport to be
For those needs, HTTP-over-TLS (commonly known as HTTPS) is a more appropriate protocol . A compliant server MAY supportsecured. [23]

only HTTP-ove . In this case, the server SHOULD listen on port 12109 rather than the standard RETS port, 6103.r-TLS

16.1 Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any mutually agreed TCP port, with the default being 6103
for unencrypted connections, and port 12109 for encrypted connections . When the TCP connection has entered the EstablishedTLS- [23]
state, the session proceeds to the start of the Authorization phase.

16.3 Session

Once the Authorization phase has been completed, both endpoints enter the Session phase. During the Session phase, clients may issue
any combination of requests for which they are authorized. The first of these MUST be to issue a GET requests for the "Action" URL, if any,
included in the Login response (). After this, clients may issue other transactions.Section 4.10 Note that the transport level security
requirements will determine the protocol (HTTP/HTTPS), the port (6103/12109) and the version of the protocol for a specific implementation.
Vendors using transport level security SHOULD use the most current version of the transport standard and the supporting libraries to
minimize security risks.

Section 19 - References

[23] Dierks, T. "The Transport Layer Security (TLS) Protocol." . Internet Society. , IETFThe Internet Engineering Task Force RFC 5246
2008 < >.https://www.ietf.org/rfc/rfc5246.txt

: This RFC may be obsoleted by the IETF. Implementations where this standard applies (HTTP-over-TLS) MUST use theNOTE
most recent Standards Track version of the IETF standard.

Impact

https://www.ietf.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc7525.txt
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
https://www.ssllabs.com/ssltest/
http://members.reso.org/display/RETS180Final/16.1+Connection+Establishment
http://members.reso.org/display/RETS180Final/16.3+Session
http://members.reso.org/pages/viewpage.action?pageId=8716369
https://www.ietf.org/rfc/rfc5246.txt

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 229 of 232

Depending on the age of the library, the impact should be minimal for those implementors tracking the common TLS libraries and
frameworks. That is, those implementors who regularly rebuild their client or server using current libraries or frameworks. For implementors
who have implemented a custom TLS stack, the library will need to be updated to the current standard.

All of the major software implementations (Mozilla NSS, Java SSE, OpenSSL, Microsoft SChannel/CryptAPI, GnuTLS, etc.) provide regular
security updates for all issues and implement the latest feature sets. For those that are using out-of-date or un-patched software or custom
cryptographic implementations, they will have more work involved to bring them up to a reliable state but their security is already
compromised and they should be tracking the updates to their security libraries in their services.

There may be many clients using older libraries that have not been updated they should be encourage to move to non-encrypted
communications or update as their implementation are providing no security benefit and making the providers less secure.

Implementations will still need validate their configurations secure their systems properly. The cryptographic software does allow for weak
configurations as there are places that they are still valid. This is where the best practices references can help with giving the specification a
target for MUST implement and SHOULD implement behaviours.

Compatibility

For those solutions that are maintaining patch levels of their software and frameworks, there is little or no impact.

The compatibility problem come from unmaintained solutions and the frequent security updates that happen. Due to the nature of
cryptographic vulnerabilities and their announcement, those using un-secure methods would be broken by strict enforcement but those same
solutions are have a false sense of security and are gaining no crpytograhic benefits in their implementation. This includes such software as
librets.

RCP 110 - Deprecate and Replace GetPayloadList

Submitter Name Matthew McGuire

Submitter Organization CoreLogic Inc.

Submitter Email mpmcguire@corelogic.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name Deprecate and Replace
GetPayloadList

Document Version 1.9.0

Date Submitted 2016-05-28

Status ADOPTED

Status Change Date 2016-08-25

Synopsis

This proposal removes the GetPayloadList transaction in favor of adding Payload information to the RETS Metadata as a shared metadata
element.

Rationale

The GetPayloadList Transaction currently returns information that mimics the RETS metadata structure and describes potential metadata that
the server supports. Rather than include a separate Transaction for this information, this proposal adds the Payload information to the RETS
metadata as shared content so that RETS clients can discover and use it from the overall system metadata model.

Proposal

Add Payloads as a shared element below System metadata after Filter metadata in the metadata hierarchy diagram.

Add section 11.2.6 Metadata Payloads and move content from section 14.5 Payload Response Format to this new section. Reformat the
response content to match the general RETS metadata structure.

Impact

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 230 of 232

Removes GetPayload Transaction in lieu of shared payload metadata.

Compatibility

This proposal explicitly moves content from one transaction to another so it is not backward compatible with previous versions.

RCP 112 - RETS Metadata Version Header

Submitter Name Matthew McGuire

Submitter Organization CoreLogic Inc.

Submitter Email mpmcguire@corelogic.com

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name RETS Metadata Version
Header

Document Version 1.9.0

Date Submitted 2016-05-28

Status ADOPTED

Status Change Date 2016-08-01

Synopsis

This proposal provides an additional HTTP header to communicate the current RETS metadata identity and version for client applications.

Rationale

Current RETS clients must use the GetMetadata transaction in order to discover the current metadata identity and version that applies to the
connection. For client systems that serve multiple users or groups, this is inefficient as it requires additional requests of GetMetadata to
maintain the correct metadata version in use. Adding a RETS metadata version header to the general response header allows the client to
immediately detect changes to metadata and act accordingly for the system. This removes the need to request GetMetadata repeatedly and
reduces overall transaction costs for both the RETS Client and Server.

Proposal

3.1 Specification Changes

In Section 3.7 Optional Server Response Header Fields add the following optional header definition.

X-RETS-MetadataVersion ::= Identity:1*128ALPHANUM;Version: ;rets-version-type

Add the following text to define the usage of the header:

The X-RETS-MetadataVersion header permits the server to communicate to the client what metadata identity and version is applied to the
response of the transaction. This is primarily intended to communicate metadata change to the client in an immediately discoverable manner.

Impact

None

Compatibility

This is an additional header with no impact on the existing standard, therefore there are no backward compatibility concerns.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 231 of 232

RCP 113 - Search Transaction Optional Format Argument - Add JSON

Submitter Name Paul Stusiak

Submitter Organization Falcon Technologies Corp

Submitter Email pstusiak@falcontechnologies.c
om

Co-submitter Name

Co-submitter Organization

Co-submitter Email

Document Name RETS Standard

Document Version 1.9.0

Date Submitted 2016-05-31

Status ADOPTED

Status Change Date 2016-08-25

Synopsis

This change proposal adds an optional format type to the optional FORMAT search parameter.

Rationale

The Data Dictionary workgroup supports the JSON format as a work item. Those systems that would like to use this work have no way to
express this format in the existing standard

Proposal

Section 7.4.2 will have the additional argument values added of

Format ::= | | |COMPACT COMPACT-DECODED STANDARD-XML
| | | :STANDARD-XML dtd-version JSON JSON:dd-version JSON-DECODED | JSON-DECODED:dd-version | p

 | ayload-name payload-name":"payload-version

And the body text will read

"COMPACT" means a field list <COLUMNS> followed by a delimited set of the data fields <DATA>.

"COMPACT-DECODED" is the same as COMPACT except the data for any field with an interpretation of Lookup, LookupMulti,
LookupBitString or LookupBitMask, is returned in a fully-decoded format using the LongValue. See Section 13 for more information on the
COMPACT formats and section 11.4.3 for more information on the Lookup types.

"STANDARD-XML" means an XML presentation of the data in the format defined by the RETS Data XML DTD. Optionally, a dtd-version may
be added to the literal "STANDARD-XML:" to indicate a specific version of the DTD.

"JSON" means a JSON presentation of the data in the format defined by the METADATA-TABLE information. This allows legacy systems to
Data Dictionary represent their metadata as JSON. The intent of the change is to allow the to be used within existing RETS1

 implementations. Optionally, a version may be added to the literalwhere the implementation supports multiple versions of the data dictionary,
"JSON:" to indicate a specific version of the data dictionary.

A Server that supports Data Dictionary names does not have to support all valid Data Dictionary payload-name values for a specific
payload-version.

Servers MUST support COMPACT, COMPACT-DECODED and Data Dictionary formats. A Server MAY support STANDARD-XML. A Server
 MAY support JSON, JSON-DECODED, Payloads, data dictionary versions or any valid combination of them. If the format is not specified, the

server MUST return the Data Dictionary response body for the Resource/Class combination.

Servers MUST support COMPACT, COMPACT-DECODED and Data Dictionary formats. A Server MAY support STANDARD-XML.

Example: Format=COMPACT-DECODED

If the client requests STANDARD-XML, it MAY also append a preferred DTD version. Where the server supports STANDARD-XML, the
server MUST support the current version and SHOULD additionally support at least the prior version.

Real Estate Transaction Specification Version: 1.9.0

Copyright 2016 RESO Page 232 of 232

Example: Format=STANDARD-XML:1.0

If the client requests a payload from the Data Dictionary, if MAY also append a preferred version of the Data Dictionary. Where the server
supports Data Dictionary names, the server MUST support the current version and SHOULD additionally support at least the prior version.

A Client MUST only request the Format argument, and optionally the Select argument OR the Payload argument.

A Server MUST return an error code 20216 Invalid Argument Combination, Format and Payload when a Client submits a request with both
Format and Payload optional arguments.

A Server MUST return an error code 20219 Invalid FORMAT when a Client submits a request with an optional format that is not supported on
this Server.

 7.7 Reply Codes
Table 7-1 Search Transaction Reply Codes

20219 Invalid FORMAT - The selected optional Format argument is not supported by this implementation.

20220 Requested Data Dictionary version unavailable - The selected optional Format argument data dictionary version is not supported
by this implementation.

Impact

None.

Compatibility

RETS 1.9

	RETS 1.9 Specification
	Section 1 - Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Requirements
	1.4 Terminology

	Section 2 - Notational Conventions
	2.1 Augmented BNF
	2.2 Typographic Conventions
	2.3 Rules
	2.4 Atoms And Primitive Entries

	Section 3 - Message Format
	3.1 General Message Format
	3.2 Request Format
	3.3 Required Client Request Header Fields
	3.4 Optional Client Request Header Fields
	3.5 Response Format
	3.6 Required Server Response Header Fields
	3.7 Optional Server Response Header Fields
	3.8 Data Compression in RETS Transactions
	3.9 General Status Codes
	3.10 Computing the RETS-UA-Authorization Value

	Section 4 - Login Transaction
	4.1 Security
	4.2 Authorization Example
	4.3 Required Request Arguments
	4.4 Optional Request Arguments
	4.5 Optional Response Header Fields
	4.6 Login Response Body Format
	4.7 Required Response Arguments
	4.8 Optional Response Arguments
	4.9 Well-Known Names
	4.10 Capability URL List
	4.11 Reply Codes

	Section 5 - GetObject Transaction
	5.1 Required Client Request Header Fields
	5.2 Optional Client Request Header Fields
	5.3 Required Request Arguments
	5.4 Optional Request Arguments
	5.5 Required Server Response Header Fields
	5.6 Optional Server Response Header Fields
	5.7 Required Response Arguments
	5.8 Optional Response Arguments
	5.9 Multipart Responses
	5.10 ObjectData Classes
	5.11 Reply Codes

	Section 6 - Logout Transaction
	6.1 Optional Response Arguments
	6.2 Logout Response Body Format
	6.3 Reply Codes

	Section 7 - Search Transaction
	7.1 Search Types
	7.2 Search Terminology
	7.3 Required Request Arguments
	7.4 Optional Request Arguments
	7.5 Search Response Body Format
	7.6 Query language
	7.7 Reply Codes

	Section 8 - Get Transaction
	Section 9 - Change Password Transaction
	9.1 Required Request Arguments
	9.2 Optional Request Arguments
	9.3 Required Response Arguments
	9.4 Optional Response Arguments
	9.5 Reply Codes
	9.6 Encryption Key Construction
	9.7 ECB Padding
	9.8 Effect of change

	Section 10 - Update Transaction
	10.1 Required Request Arguments
	10.2 Optional Request Arguments
	10.3 Required Response Arguments
	10.4 Optional Response Arguments
	10.5 Update Response Body Format
	10.6 Record Locking
	10.7 Validation
	10.8 Reply Codes

	Section 11 - Metadata Format
	11.1 Organization and Retrieval
	11.2 System-Level Metadata
	11.3 Metadata Format for Class Elements
	11.3.1 Class
	11.3.2 Table
	11.3.3 Update
	11.3.4 Update Type
	11.3.5 Child Action

	11.4 Metadata Format for Shared Elements
	11.4.1 Object
	11.4.2 Lookup
	11.4.3 Lookup Type
	11.4.4 Search Help
	11.4.5 Edit Mask
	11.4.6 Update Help
	11.4.7 Validation Expression
	11.4.7.1 Validation Expression Types and Data Types
	11.4.7.2 Validation Expression BNF Representation
	11.4.7.3 Validation Expression Special Operand Tokens
	11.4.7.4 Validation Expression Functions and Operators

	11.4.8 Validation External
	11.4.9 Validation External Type

	11.5 Metadata Format for Presentation Elements
	11.5.1 Column Group Set
	11.5.2 Column Group
	11.5.3 Column Group Control
	11.5.4 Column Group Table
	11.5.5 Column Group Normalization

	Section 12 - GetMetadata Transaction
	12.1 Required Request Header Fields
	12.2 Required Request Arguments
	12.3 Optional Request Arguments
	12.4 Required Response Header Fields
	12.5 Required Response Arguments
	12.6 Optional Response Arguments
	12.7 Metadata Response Body Format
	12.8 Reply Codes

	Section 13 - PostObject Transaction
	13.1 Required Request Header Fields
	13.2 Optional Request Header Fields
	13.3 Request Body
	13.4 PostObject Response Body Format
	13.5 Reply Codes

	Section 14 - **DEPRECATED** GetPayloadList Transaction
	14.1 Required Request Arguments
	14.2 **DEPRECATED** Optional Request Arguments
	14.3 Required Response Arguments
	14.4 Optional Response Arguments
	14.5 **DEPRECATED** Payload Response Body Format
	14.6 **DEPRECATED** Reply Codes

	Section 15 - Compact Data Format
	15.1 Overall format
	15.2 Decoded Format
	15.3 Multivalued Fields
	15.4 Transmission standards

	Section 16 - Session Protocol
	16.1 Connection Establishment
	16.2 Authorization
	16.3 Session
	16.4 Termination

	Section 17 - Update Response Blocks
	Section 18 - Authors
	Section 18 - Acknowledgments
	Section 19 - References
	Section 20 - Appendices
	Appendix A - XML Schema References
	Appendix B - Sample Compact Metadata Response
	Appendix C - Summary of RETS Reply Codes
	Appendix D - Maximum Field Length and Display Information
	Appendix E - Approved RCPs
	Version 1.7.2
	RETS Change Proposal 64 - Omnibus Adopted Schemas Revisions and Errata
	RETS Change Proposal 66 - Deprecate Lookup Types LookupBitmask and LookupBitstring
	RETS Change Proposal 71 - Time Zone Data
	RETS Change Proposal 72 - LookupType String Length

	Version 1.8.0
	RCP 59 - Revised Update Transaction
	RCP 60 - Metadata Changes for Update
	RCP 61 - Validation Expression Replacement
	RCP 63 - Object Data and Upload
	RCP 65 - Session information tokens
	RCP 68 - Search Has Key Index Support
	RCP 69 - LookupType Value
	RCP 70 - Metadata Role Support
	RCP 74 - Location Availability in Object Metadata
	RCP 75 - Offset Availability in the Metadata
	RCP 76 - GetPayloadList
	RCP 77 - Maximum Field Length
	RCP 78 - Specification Errata Changes
	RCP 79 - Add Preferred Flag to GetObject Responses
	RCP 80 - Optional Query
	RCP 82 - LookupMulti Quoting Rule
	RCP 87 - RETS 1.7.2 Errata Document
	RCP 90 - Deprecate CommonInterest Class Well-Known Name
	RCP 91 - StandardNames Version Information in Login Transaction
	RCP 92 - RESO Payload Transport-Level Metadata Support
	RCP 93 - Add Content-Sub-Description to GetObject
	RCP 94 - Improved Error Handling in GetObject
	RCP 98 - Additional Information Fields in METADATA-SYSTEM and Login
	RCP 99 - Mixing StandardNames and SystemNames
	RCP 100 - Alternate Standard Names
	RCP 101 - Child Rows Support
	RCP 102 - GetObject URL as Default Location

	Version 1.9.0
	RCP 103 - Geospatial Search
	RCP 104 - StandardValue for Enumerations
	RCP 105 - Update Transaction Response Format Correction
	RCP 106 - Client cookie support for RFC 6265
	RCP 107 - IETF HTTP RFC Updates to references in the RETS specification
	RCP 108 - Migrate RETS specific HTTP Headers to HTTP User Space headers (X-*)
	RCP 109 - Update TLS specification references to current Internet/Industry Standards
	RCP 110 - Deprecate and Replace GetPayloadList
	RCP 112 - RETS Metadata Version Header
	RCP 113 - Search Transaction Optional Format Argument - Add JSON

