Real Estate Data Interchange Standard:

Real Estate Transaction Specification
Version 1.7.2

August 29, 2008

Table of Contents

1. Introduction 1-1
Purpose ittt i e 1-1
1T el o o 1-1
Requirements 1-1

Required Features 1-1

Compatibility with Prior Versions. 1-2
Terminology 1-2
2. Notational Conventions 2-1
AugmentedBNF. 2-1
Typographic Conventions 2-1
Rules......... .. i, 2-2
Atoms and Primitive Entities. 2-2
3. Message Format 3-1
General MessageFormat 3-1

RETS HTTP/1.1 Encapsulation 3-1

RequestArguments 3-1

ResponseBodies 3-2
RequestFormat. 3-2
Required Client Request Header Fields 3-2
Optional Client Request Header Fields 3-3
ResponseFormat 3-4
Required Server Response Header Fields. 3-5
Optional Server Response Header Fields 3-6
Data Compression in RETS Transactions 3-7
GeneralStatusCodes 3-8

Computing the RETS-UA-Authorization Value. . . 3-9

4, Login Transaction 4-1
Securityo it e e e e 4-1
User Authentication 4-1
Client Authentication 4-1
DataSecurity. 4-1
AuthorizationExample 4-2
Required Request Arguments 4-2
Optional Request Arguments 4-2
BrokerCode Argument. 4-2
SavedMetadataTimestamp Argument. 4-2
Optional Response Header Fields. 4-3
Login ResponseBodyFormat 4-3
Required Response Arguments 4-3
Broker 4-3
MemberName. 4-4
Metadata Version Information 4-4
Userinformation 4-4
Capability URLList 4-5
Optional Response Arguments 4-5
Accounting Information. 4-5
Access Control Information. 4-5
Office List Information. 4-6
Well-KnownNames. 4-6
Capability URLList 4-6
ReplyCodes 4-8
Version 1.7.2

5. GetObject Transaction 5-1
Required Client Request Header Fields 5-1
Optional Client Request Header Fields. 5-2
Required Request Arguments 5-2
Optional Request Arguments 5-3
Location............. ... i, 5-3
Required Server Response Header Fields 5-3
Optional Server Response Header Fields 5-4
location.............. ... i 5-4
Description 5-4
Required Response Arguments 5-4
Optional Response Arguments. 5-5
Metadata 5-5
Resourcesoiiiiiin. 5-5
MultipartResponses 5-5
General Construction. 5-5
ErrorHandling 5-6
ReplyCodes. 5-7
6. Logout Transaction 6-1
Required Request Arguments 6-1
Optional Request Arguments 6-1
Required Response Arguments 6-1
Optional Response Arguments. 6-1
Logout Response BodyFormat 6-2
ReplyCodes. 6-2
7. Search Transaction 7-1
SearchTypes 7-1
Search Terminology. 7-2
Field Delimiter 7-2
FieldName 7-2
RecordCount. 7-2
Otherterms. 7-2
Required Request Arguments 7-2
SearchTypeandClass 7-2
Query Specification. 7-3
Optional Request Arguments 7-3
Count.o i ittt ittt e 7-3
Format............... 7-3
Limit 0 i, 7-4
Offset. . ..o v it i it e i 7-4
Select.o i i e 7-5
Restricted Indicator. 7-5
StandardNames 7-6
Required Response Arguments 7-6
Search Response Body Format. 7-6
Querylanguage i, 7-8
QuerylanguageBNF 7-8
Query parameter interpretation. 7-9
Sub-queries. i i e, 7-10
ReplyCodes. 7-11
8. Get Transaction 8-1
Required Request Arguments 8-1
Optional Request Arguments 8-1

Real Estate Transaction Specification i

Required Response Arguments
Optional Response Arguments
Status Conditions

9. Change Password Transaction

Required Request Arguments
Optional Request Arguments
Required Response Arguments
Optional Response Arguments
Reply Codes
Encryption Key Construction
ECB Padding
Effect of change

10. Update Transaction

Required Request Arguments

Optional Request Arguments
Required Response Arguments
Optional Response Arguments
Update Response Body Format

Errorblock
Warningblock.

Validation.

Lookupc0iiiiiiii,
MultiSelect Lookup.
Range i,
TestExpression
External

ReplyCodes

11. Metadata Format

Organization and Retrieval.

Metadata Organization
General Rules for Interpretation
Metadata Retrieval Hierarchy
MetadataFormat.

ForeignKeys....................
ForeignKeys Metadata Content.

Metadata Format for Class Elements.

UpdateTypeo i e

Metadata Format for Shared Elements

LookupType..........
SearchHelp.
EditMask

RETS Regular Expression Specification .
UpdateHelp
ValidationLookup
Validation Lookup Type.

Real Estate Transaction Specification

Validation Expression. 11-25
ValidationExternal 11-27
Validation External Type. 11-28

12. GetMetadata Transaction 12-1

Required Client Request Header Fields. 12-1
Required Request Arguments 12-1
Optional Request Arguments. 12-1
Required Server Response Header Fields 12-2
Required Response Arguments 12-2
Optional Response Arguments. 12-2
Metadata Response BodyFormat 12-2
ReplyCodes. 12-3
13. Compact Data Format 13-1
Overallformat 13-1
DecodedFormat. 13-1
Multivalued Fields. 13-2
Transmissionstandards 13-2
14, Session Protocol 14-1
Connection Establishment 14-1
Authorization. 14-1
SESSION . o v vttt et e e 14-2
Termination. 14-2

15. [deprecated] Serverinformation

Transaction 15-1
Required Request Arguments 15-1
Optional Request Arguments. 15-1
ResponseFormat 15-1
Well-knownnames 15-2
ReplyCodes. 15-3
16. Acknowledgments 16-1
17. Authors 17-1
18. References 18-1
DTD References A-1
Sample COMPACT Metadata ResponsesB-1
System i e B-1
Resource........... .. B-1
ForeignKeys B-2
Class. . . oottt e e B-2
Table i B-3
Update. i, B-3
UpdateType B-3
Object B-4
Lookup.ci it B-4
LookupType B-4

Version 1.7.2

SearchHelp. B-5 Summary of RETS Rep'y Codes C-1
EditMask o i B-5

UpdateHelp B-5 . . .
ValidationLookup B-6 Maximum Field Length and Dlsplay
Validation Lookup Type.o oo v ... B-6 Information D-1
Validation Expression B-6 DatatypeBoolean. D-1
ValidationExternal B-7 Datatype Character.o euuenen. D-2
Validation External Type B-7 DatatypeDecimalcouu.... D-2
Document Revision History E-1

Index of Compliance Items 1-1

Index Index-1

Version 1.7.2 Real Estate Transaction Specification iii

iv Real Estate Transaction Specification Version 1.7.2

List of Figures

11.1 MetadataStructure. 11-2

Version 1.7.2 Real Estate Transaction Specification v

vi Real Estate Transaction Specification Version 1.7.2

List of Tables

3-1 General StatusCodes. 3-8
4-1 Well-Known Names for Input Fields 4-6
4-2 Capability URL Descriptions 4-7
4-3 Valid Reply Codes for Login Transaction . . . 4-8
5-1 GetObjectReplyCodes 5-7
6-1 LogoutReplyCodes 6-2
7-1 Search Transaction Reply Codes. 7-11
9-1 Change Password Reply Codes 9-2
10-1 Update Transaction Reply Codes 10-5

11-1 MetadataSystem Compact Header Attributes11-5

11-2 System Compact Header Attributes 11-5
11-3 Metadata: SystemField 11-5
11-4 Well-Known Resource Names 11-5

11-5 Resource Metadata Compact Header Attributes11-6
11-6 Metadata: Resource Description Fields . . 11-6
11-7 ForeignKeys Metadata Compact Header Attributes
11-9
11-8 Metadata Content: Foreign Keys. 11-9
11-9 Class Metadata Compact Header Attributes11-10
11-10 Metadata Content: Resource Class ... 11-11
11-11 Table Metadata Compact Header Attributes11-12

11-12 Metadata Content-Tables. 11-12

11-13 Update Metadata Compact Header Attributes11-16

11-14 Metadata Content-Update. 11-16

11-15 UpdateType Metadata Compact Header Attributes
11-17

11-16 Metadata Content - Update Type 11-17

11-17 Well-known ObjectTypes 11-18

11-18 Object Metadata Compact Header Attributes11-18
11-19 Metadata Content: Resource Object . . 11-18
11-20 Lookup Metadata Compact Header Attributes11-19

11-21 Metadata Content: Lookup 11-19

11-22 Lookup Type Metadata Compact Header Attributes
11-20

11-23 Metadata Content: Lookup Type. 11-20

Version 1.7.2

11-24 Search Help Metadata Compact Header Attributes

11-21
11-25 Metadata Content: Search Help. 11-21
11-26 EditMask Metadata Compact Header Attributes
11-21
11-27 Metadata Content: Edit Mask 11-21

11-28 RETS Regular Expression Metacharacters11-22
11-29 Update Help Metadata Compact Header Attributes

11-23
11-30 Metadata Content: UpdateHelp 11-23
11-31 ValidationLookup Metadata Compact Header
Attributes. o L, 11-23

11-32 Metadata Content: Validation Lookup . 11-23
11-33 Validation Lookup Type Metadata Compact Header

Attributes. o L, 11-24
11-34 Metadata Content: Validation Lookup Type11-24
11-35 Validation Expression Types. 11-25
11-36 Validation Expression Operators 11-26
11-37 Validation Expression Special Operand Tokens

11-26
11-38 Validation Expression Metadata Compact Header

Attributes. o L, 11-27

11-39 Metadata Content: Validation Expression11-27
11-40 Validation External Metadata Compact Header
Attributes. o L, 11-28
11-41 Metadata Content: Validation External . 11-28
11-42 Validation External Type Metadata Compact

Header Attributes 11-29
11-43 Metadata Content: Validation External Type11-29
12-1 GetMetadataReplyCodes. 12-3
13-1 Compact Data Field Format Representation13-2
15-1 Well-Known Parameter Names 15-2
15-2 Serverinformation Reply Codes 15-3
A-1 DTDReferences A-1
C-1 Consolidated list of RETS reply codes. C-1

Real Estate Transaction Specification vii

viii Real Estate Transaction Specification Version 1.7.2

1.1 Purpose

INTRODUCTION

1.2 Scope

The Real Estate Transaction Standard (RETS) is a specification for a standard |
communication method between computer systems exchanging real estate information. It
defines a standard interface for use by applications such as agent desktop software, IDX
(Internet Data Exchange) systems, data aggregation systems, and many other systems that
store, display or operate on real estate listing, sales and other data.

This specification describes the Real Estate Transaction Standard communication
protocol. Together with the companion XML DTDs (Document Type Definitions) listed
in Appendix A, it constitutes the specification for the standard.

This specification is intended to define only the minimum a product or service must do in
order to be considered “compliant”. This specification is extensible and nothing in the
specification precludes a vendor from adding data or functionality over and above that
detailed here. However, when a function is provided or a data element is stored by a
compliant system, it must offer access to the function or mechanism in a way that
complies with the specification in order to be considered compliant.

1.3 Requirements

1.3.1 Required Features

| Version 1.7.2

This specification uses the same words as RFC 1123 [1] for defining the significance of
each particular requirement. These words are:

MUST This word or the adjective "required” means that the item is an
absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an
implementation in order to be considered compliant.

1-1

SHOULD This word or the adjective “recommended” means that there may
exist valid reasons in particular circumstances to ignore this item,
but the full implications should be understood and the case
carefully weighed before choosing a different course. A feature
that the specification states SHOULD be implemented is treated
for compliance purposes as a feature that may be implemented.

MAY This word or the adjective “optional” means that this item is truly
optional. A feature that the specification states MAY be
implemented need not be implemented in order to be considered
compliant. However, if it is implemented, the feature MUST be
implemented in accordance with the specification.

An implementation is not compliant if it fails to satisfy one or more of the MUST
requirements for the protocols it implements. An implementation that satisfies all the
MUST and all the SHOULD requirements for its protocols is said to be “unconditionally
compliant”; one that satisfies all the MUST requirements but not all the SHOULD
requirements for its protocols is said to be “conditionally compliant.”

Client and server implementations should generally follow the Internet protocol
convention of being strict in what they generate, but tolerant in what they accept.
However, in cases where tolerance of deviations from the specification could result in an

| incorrect interpretation of user data or intentions, implementers are urged to reject
transactions rather than supplying possibly-incorrect defaults.

1.3.2 Compatibility with Prior Versions

| The RETS 1.7.2 specification supersedes previous versions of the RETS specification.
There is no requirement for a client or server that advertises itself as “compliant with RETS
1.7.2” to interoperate with earlier versions. However, client and server implementers are
urged to support the prior versions, RETS 1.7 and RETS 1.5, in order to insure a smooth

transition.
1.4 Terminology

Arguments Tag/value pairs passed to a transaction as part of the Argument-
List.

Class A subset of data elements within a Resource that share common
metadata elements.

Client The system requesting data. This may well be a server seeking to
update itself from another server. The specification does not
assume any particular kind of client.

Endpoint Either a server or client.

Metadata The set of data that describes data fields in detail.

Metadata Dictionary ~ The set of data that describes the available metadata. It is used to
determine the different classes of accessible data on the server and
does not describe the fields within the those classes. It also defines

| 1-2 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

Object

Optional

Required

Resource

Resource Element

Resource Key
Server

Request ID

StandardName

SystemName

what different types of searches are available (tax, open house,
etc.).

For purposes of RETS and its GetObject transaction, a collection
of octets treated as a unit and associated with a unique resource
element.

A field or feature described by this specification but not required
for an endpoint to be considered compliant. The specification
states the action to be taken by a compliant system in the absence
of an optional field. The fact that the specification designates a
field as optional does not mean that the recipient of a transaction
that is missing optional fields is required to provide all services
that could be required if the field were present.

A compliant server or client MUST include any field designated
as required. A transaction that does not include every required
field MUST be rejected by the recipient.

A collection of data having the external appearance of belonging
to a single database and being accessible for search or update via
RETS transactions.

An individual record from a resource identified by a Resource
Key.

The unique key that identifies a resource element.
The system providing data (also referred to as the “host”).

A client-provided character string of up to 64 printable characters
which uniquely identifies a request to a client. The contents are
implementation-defined. Defined in Section 3.4, “Optional Client
Request Header Fields”.

The name of a data field as it is known in the Real Estate
Transaction Standard Data Dictionary.

The name of a data field as it is known in the metadata.

1-3

| 1-4 Real Estate Transaction Specification Version 1.7.2

NOTATIONAL CONVENTIONS

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented
Backus-Naur Form (BNF) similar to that used by RFC 2822 [4] and defined in RFC 2234
[22].

2.2 Typographic Conventions

| Version 1.7.2

Parsing constructs and examples are set in a monospaced font:
Server: Microsoft-115/4.0

In parsing constructs, textual elements that are required exactly as shown are indicated by
boldface type., while textual elements that represent placeholders for actual data are
indicated by a sfanted font.

Server: server identifier

Entities designated by a textual definition contain that definition enclosed in angle
brackets:

<any 8-bit sequence of data>
Atoms and primitive entities are indicated by /7ALIC CAPS.
1*64ALPHANUM

Two nonprinting characters also have significance in some RETS constructs. These may be
represented by special printing graphics:

- Tab character, ASCII HT, an octet with a value of 09

Space character, ASCII SP, an octet with a value of 32. The symbol is used
where needed for clarity.

Certain features of the standard may be superseded as the standard develops. These
features should be avoided and are indicated by the text [deprecated] which will follow the
first use of the feature terminology. Future releases of the standard may remove
deprecated features.

2-1

2.3 Rules

The following rules are used throughout this specification to describe basic parsing
constructs. The US-ASCII coded character set is defined by ANSI X3.4-1986 [5].

Parsed entities are constructed combinations of atoms or other entities as defined below.
Atoms may be combined and repeated to form longer constructs. When there are
constraints on the repetition of atoms, the constraints are expressed by a notation of the
form:

m*n

where both m and n are integers. m represents the minimum allowed number of
repetitions, and n represents the maximum. If m is omitted, it is presumed to be zero; if n
is omitted, it is presumed to be infinite. For example, the syntactic construct

1*64ALPHANUM
means a string of ALPHANUMs containing at least 1 and at most 64.

When a parsing construct is represented by a string of entities, some of which are optional,
the optional entities are enclosed in square brackets. For example, in the string

error-number [error-code]
the error-number entity is required, while the error-code entity is optional.
| Elements separated by the vertical bar are alternatives. The entity description
ALPHA | DIGIT

means “either an ALPHAor a DIGIT .

|2.4 Atoms and Primitive Entities

Note The definitions for ALPHA, CHAR, CTL, DIGIT, HEXDIG and OCTET are derived from RFC
2234,
ALPHA n=%x41-5A | %x61-7A
sA-Z|az
CHAR n= %x01-7F
; ANY 7-BIT US-ASCII CHARACTER,
; EXCLUDING NUL
CTL 5= %x00-1F | %x7F
; controls
DIGIT u= %x30-39
; 0-9
HEXDIG = pIGIT |"A"|"B"|"C"|"D"|"E" | "F"
OCTET = %x00-FF
; any 8-bit sequence of data

[2-2 Real Estate Transaction Specification Version 1.7.2

BOOLEAN = TRUE | FALSE
TRUE n= 17
FALSE =0
RETSID 1= 1*32ALPHANUM
RETSNAME 1= 1*641DALPHANUM
I DALPHANUM 1= ALPHANUM | “r
ALPHANUM = ALPHA | DIGIT
SQLFIELDNAME = ALPHA *31ALPHANUM <except ANSI SQL 92 reserved words>
CR ::= <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP ::= <US-ASCII SP, space (32)>
HT ::= <US-ASCII HT, horizontal-tab (9)>
<'>or" ::= <US-ASCII double-quote mark (34)>
NULL ::= <no character>
CRLFor u=CR LF
LWS w=[CRLA 1*C SP | HT)
| HEX s="A" | "B" | "C* | "D* | "ET™] "FT] ta™ | b | "c”
| “d" | “e" | “F | DIGIT
LHEX s=rat | bt | et | tde | e | “F | DIGIT
OPTNONNEGATIVENUM == NMULL | NONNEGATIVENUM
;nullor >=0
OPTPOSITIVENUM = MILL | POSITIVENUM
;nullor >=1
NONNEGAT I VENUM n= 0~ | POSITIVENUM
; also known as cardinal numbers or counting numbers
; consisting of integers greater than 0
NONZERODIGIT = %x31-39
; 1-9
PLAINTEXT u=<any OCTET except CTLs>
POSITIVENUM = NONZERODIGIT *DIGIT
;>0
SERIAL u= =17 | NONNEGATIVENUM

| Version 1.7.2 2-3

| TEXT ::= <any OCTET except CTLs, but including £wS>

Note Implementers are cautioned that the definition of the TEXT atom may conflict with
certain outputs, in particular a collision between the delimiter octet of Section 7.2.1 and
the output information when using the formats COMPACT or COMPACT-DECODED.
Further, the definition may conflict with escaping rules for well-formed XML responses.
The responsibility for resolving these conflicts lies with the transmitting party. In
particular, the responses to Search, Update and GetMetadata may have this conflict.

TOKENCHAR = <any CHARexcept CTLs or TSPECIALS>

TOKEN = 1* TOKENCHAR

TSPECIALS TSR T S B BESUN BRI CPR BCFRN I
(AN B2 R A Bt D DA B B SR B i I
| HT

QUOTED-STRING a= (<">*(ODTEXT) <">)

QDTEXT = <any TEXT except <">>

RETSDATETIME = date-time| partial-date-time

RETSTIME == full-time| partial-time

DATE ::= Date using the format defined in RFC 2616 as rfc1123-date.

Note The definitions for the date and time are derived from RFC 3339.

date-fullyear w=4DIGIT

adate-month w=201GIT ;01 -12

date-mday == 2DIGIT ;01 - 28,01-29, 01-30, 01-31, based on month/year

time-hour == 2DIGIT ;00 - 23

time-minute ==2D0IGIT ;00 - 59

time-second == 2DIGIT ;00 - 58,00 - 59, 00 - 60 based on leap second rules

time-secfrac u=“VIDIGIT

time-numoffset u= 7| 7-) time-hour 7 time-minute

time-offset u= 2" | time-numoffset

partial-time = time-hour *“:> time-minute :” time-second [time-
secfrac]

full-date w= date-fullyear “-" date-month **-> date-mday

full-time = partial-time time-offset

date-time x= full-date “T” full-time

partial-date-time .= full-date “T” partial-time

Note ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats.

Based on common usage patterns, this standard applies the following additional

constraints to improve interoperability and compatibility. The representation of the time

offset UTC character “Z’ and the date-time separator character “T” MUST be upper case.

| 2-4 Real Estate Transaction Specification Version 1.7.2

| Version 1.7.2

The time-secfrac is limited to one digit only. The date and time representations are
intended for machine processing, therefore, no whitespace is expected in any of the atoms.

Examples of the format are similar to that of the W3C note, for example, 1997-07-
16T19:20:30.4+01:00 or 1997-07-16T18:20:30.4Z. Servers and Clients MUST treat the
time-offset °Z’ and “+00:00” as identical times. Servers and Clients MAY use the
interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-
offset “-00:00” is semantically different from “+00:00” and represents a known UTC time

but unknown local time.

URI

hier-part

scheme
authority
userinfo
host

port
IP-literal
IPvFuture

IPv6address

hi6
1s32
IPv4address

dec-octet

wo»

== scheme “.” hier-part [“?” query] [“#” fragment]
::="//" authority path-abempty

| path-absolute

| path-rootless

|path-empty

n= ALPHAX(ALPHA|DIGIT|"+" |"-"|".")

::= [userinfo "@"] host [":" port]

nn

::=*(unreserved |pct-encoded |sub-delims |":")

::= [P-literal |IPv4address |reg-name
uw=*DIGIT
"[" (IPv6address |IPvFuture) "]"

="v" I*HEXDIG"." 1*(unreserved |sub-delims |":")
z=6(h16"") 1s32
":"5(h16 "") 1s32
[h16]":"4(hl6"") 1s32
[*1(h16"")h16] ":"3(hl6 ™")1s32
[*2(h16"")h16]":" 2(h16 ":") Is32
[*3(h16"")hl16] ":" hl6™" 1s32
[*4(h16™") hl6] ":" 1s32
[*5(h16":")h16]":" hl6
[*6(hl6"")hl6] ":"
w= 1¥4HEXDIG
:=(h16 ":"h16) / IPv4address

" "o "nn

::= dec-octet "." dec-octet "." dec-octet "." dec-octet
u=DIGIT ;0-9

|%x31-39 DIGIT ~ ;10-99

|'1" 2p1G61T ; 100-199

|"2" %x30-34 DIGIT ;200-249

2-5

reg-name

path

path-abempty
path-absolute
path-noscheme
path-rootless
path-empty
segment
segment-nz

segment-nz-nc

pchar

query
fragment
pct-encoded
unreserved
reserved
gen-delims

sub-delims

["25" %x30-35 ; 250-255

= *(unreserved / pct-encoded / sub-delims)

::= path-abempty ; begins with "/" or is empty

| path-absolute ; begins with "/" but not "//"
|path-noscheme ; begins with a non-colon segment
|path-rootless ; begins with a segment

|path-empty ; zero characters

==*("/" segment)

:="/" [segment-nz *("/" segment)]

= segment-nz-nc *("/" segment)

= segment-nz *("/" segment)

= 0<pchar>

::=*pchar

= 1*pchar

::= 1*(unreserved |pct-encoded |sub-delims |'@")
; non-zero-length segment without any colon ":"
::= unreserved |pct-encoded |sub-delims |":" |'@"
== *(pchar |"/"|"?")

= *(pchar |"/"|"?")

== "%" HEXDIG HEXDIG

u= ALPHA|DIGIT|"-" |"." |"_" |"~"

::= gen-delims |sub-delims

= PP T T e

= S L]

The definition for URI is derived from RFC 3986.

| 2-6 Real Estate Transaction Specification

Version 1.7.2

MESSAGE FORMAT

RETS uses HTTP version 1.1 [2] for sending messages between clients and servers. It
defines three additional HTTP headers, and some RETS transactions constrain the values
of certain headers defined by HTTP 1.1 and/or make certain headers designated as
optional in HTTP 1.1 mandatory when used for RETS. In addition, RETS requests use
HTML 4.01 [16] form encoding to encapsulate request parameters. In addition, a
compliant RETS client MUST implement cookie handling as specified in RFC 2109 [15].

The information below summarizes some of the requirements of HTTP 1.1 and
HTML 4.01 for ease of reference. However, in all cases, the underlying standards are the
normative references for message formats.

3.1 General Message Format

3.1.1 RETS HTTP/1.1 Encapsulation

RETS messages are encapsulated as the bodies of HTTP/1.1 requests and responses. The
request body may be null, depending on the request. The response body is never null

Note that, per RFC 2822, keywords in header key-value pairs are not case-sensitive. The
values, however, may be case-sensitive depending on context.

3.1.2 Request Arguments

| Version 1.7.2

RETS requests are HTML 4.01-compliant form submissions, following all of the
specifications in the HTML 4.01 recommendation. Note that the HTML 4.01 specification
provides that:

Key names in key/value pairs are not case-sensitive.

Both key names and key values MUST be encoded as specified in HTML 4.01 section
17.13.4, with + characters replacing spaces, and then reserved characters being
escaped per RFC 2396 [13], unless the client uses a content-type of multipart/form-
data.

3-1

3.1.3 Response Bodies

The body of a response to most RETS requests is a well-formed XML document; the
exceptions are the Get transaction (section 8) and the GetObject transaction (section 5).
This means that servers must construct the body in accordance with the XML specification
[17], and that clients must parse the body in accordance with that specification.

3.2 Request Format

A RETS request is either an HTTP GET request or an HTTP POST request. In the case of
the GET-request the Argument-List is appended to the Request-URI after a delimiting
question mark (“?”). For the post-request the Argument-List is sent as the first entity body

for the POST method.
get-request =:=GET-Request-URI [? Argument-List| -HTTP-Version CRLF
*message-header
CRLF
post-request =:=POST-Request-URI - HTTP-VersionCRLF
*message-header
CRLF

[Argument-L ist]

The Request-URI, HTTP-Version and message-header are defined in RFC 2616. The
detailed construction of the Argument-L istis defined in HTML 4.01.

3.3 Required Client Request Header Fields

The HTTP header of any messages sent from the client MUST contain the following

header fields:

User-Agent This header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing
of protocol violations, and automated recognition of user agents
for the sake of tailoring responses to avoid particular user agent
limitations, as well as providing enhanced capabilities to some
user-agents. All client requests MUST include this field. This is a
standard HTTP header field as defined in RFC 2616.

User-Agent = User-Agent: 1* product
product = TOKEN|[/ product-version)
product-version:= TOKEN

Example: User-Agent: CMAZilla/4.00

Product tokens should be short and to the point: use of them for advertising or other non-
essential information is explicitly forbidden. Although any token character may appear in
a product-version, this token SHOULD only be used for a version identifier (i.e.,
successive versions of the same product SHOULD only differ in the product-version
portion of the product value). For more information about User-Agent see RFC 2616.

[3-2 Real Estate Transaction Specification Version 1.7.2

A server MAY advertise additional capabilities based on the client application User-Agent,
and MAY refuse to proceed with the authorization if an acceptable User-Agent has not
been supplied. A server MAY also choose to authenticate the client application identity
cryptographically using the RETS-UA-Authorization header; see section 3.4 for
additional information.

RETS-Version The client MUST send the RETS-Version. The convention used is
a “<major>.<minor>.<release>” numbering scheme similar to the
HTTP Version in Section 3.1 of RFC 2616. The version of a RETS
message is indicated by a RETS-Version field in the header of the
message.

Cookie The client MUST implement cookie handling as specified in
RFC 2109. If any server response has included a valid Set-Cookie
header, and the cookie in that header has not expired, the client
MUST return the corresponding Cookie header. See RFC 2109
for the full specification.

3.4 Optional Client Request Header Fields

| Version 1.7.2

Authorization Authorization header field as defined in RFC 2617. See 4.1,
“Security”, as well as RFC 2617, for additional information.

RETS-Request-1D A character string of printable characters which the client can use
to identify this request. The contents are implementation-
defined. If this field is included in a request from the client then
the server MUST return it in the response.

RETS-Request-1D::= 1*64ALPHANUM

Accept-Encoding A comma-separated list of MIME types indicating the content
encoding schemes that the client is willing to accept. This is
intended to support the use of compression in data returns; see
section 3.8 for additional information.

Accept-Encoding ::= 1*64ALPHANUMI 1*64ALPHANUM *[, 1*64ALPHANUMI
1*64ALPHANUM..]

RETS-UA-Authorization A client MAY support authentication of its User-Agent value
by including the RETS-UA-Authorization header. Servers MAY
require this header with a valid value before providing services.

RETS-UA-Authorization:= ua-method ua-digest-response
ua-method::= Digest
ua-digest-response:=""*LHEX"

See section 3.10 for the method of computing the ua-digest-
response value.

The client MAY send this header under any circumstances. It
need not send this header if the server has not indicated that it

3-3

requires user-agent authentication by responding to a transaction
with a RETS error code of 20037.

In addition to the header fields listed here, the client may send any header compliant with
HTTP 1.1.

3.5 Response Format

The general server response to a request is either a well-formed XML document returning
RETS-encapsulated data or error information, or, for the Get transaction and for
successful GetObject transactions, the content of the requested object in the format given
in the response’s HTTP Content-Type header. Note that this is an ordinary HTTP
response per RFC 2616.

The more common HTTP Status-Codes are provided in Section 3.9, though any status
code defined in RFC 2616 is permissible. Servers MUST use appropriate predefined status
codes when communicating with the client.

The Status-Codeis intended to provide HTTP level errors to the client (Authorization,
URI, etc.). Software level errors (search queries, invalid argument values, etc.) should be
returned in the reply-code. If the server is unable to determine that a particular request is
in fact a RETS request, it MUST return an HTTP status code indicating the type of error.

Except in those transactions specifically stating otherwise, a RETS response body is a well-
formed XML document with the following general form:

response-body = RETS-response
RETS-response :=body-start-1ine
response

[rets-status]
body-end-I1ine |
body-start-Iine::= <RETS 1*SPReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP>
response = {key-value-body | data}

key-value-body ::= <RETS-RESPONSE>CRLF
*(key = value CRLF)
</RETS-RESPONSE>

rets-status u= <RETS-STATUS [Z*SPReplyCode=quoted-end-reply-code
1*SPReplyText=quoted-string *SP|/>

The rets-status MAY be included in the response if the ReplyCode or ReplyText given
in the body-start-1inebecomes invalid during the creation of the response. If the server
includes a rets-statusin its reply, the client MUST use the ReplyCode and ReplyText
from the rets-status rather than from the body-start-line.

body-end-Iine :=</RETS>

If a body-start-1ineis returned in the response then the boay-end-1ine MUST also be
returned.

| 3-4 Real Estate Transaction Specification Version 1.7.2

| quoted-reply-code.:=<">1*5DIGITS<">

The reply-code is included to provide a mechanism to pass additional information to the
client in the event that the request is processed OK (Status-Code = 200) but some
condition still exist that may require an action by the client. A value of '0' indicates success.
Applicable reply-codes can be found under specific transactions.

| quoted-end-reply-code:= <">1*5DIGITS<">

The end-reply-codeis included to provide a mechanism to pass additional information
to the client in the event that the request being processed by the server errors before the
request has been completed. This allows the server to start streaming out data before it has
completed processing the request. A value of 0 indicates success, however the server
SHOULD only send an end-reply-code if there is an error.

The valid <key>, <value> and <data> elements are defined in the Response Arguments
section for each transaction.

NOTE

RETS 1.7.2 requires all server responses to be well-formed XML, In addition, this specification requires that
clients parse RETS responses as XML, not as simple text streams. The response formats shown here are
normative with respect to content, but not normative with respect to form. That is, servers are free to produce
response XML in any format that complies with the W3C XML 1.0 recommendation. XML escaping of
content is implied, as is XML processing of line endings and whitespace. See the W3C XML Recommendation
1.0, Third Edition, for full information on XML.

An example server-reply where the reply body consists of key-value pairs:

HTTP/1.1 200 OK
Server: Microsoft-11S/4.0
Date: Sun, 20 Mar 2005 12:03:38 GMT
Content-Type: text/xml
Cache-Control: private

| RETS-Version: RETS/1.7.2

<RETS ReplyCode="0" ReplyText=""SUCCESS">
<RETS-RESPONSE>

Keyl=Valuel

Key2=Value2

</RETS-RESPONSE>

</RETS>

3.6 Required Server Response Header Fields

The HTTP header of any messages sent from the server MUST contain the following
header fields:

Date The server MUST send the date using the format defined in RFC
| 2616 using format rfc1123-date.

Example: Date: Sun, 20 Mar 2005 12:03:38 GMT

| As defined by rfc1123-date, the Date MUST be represented in
Greenwich Mean Time (GMT), without exception.

Cache-Control The RFC 2616 standard general-header field is used to specify
directives that MUST be obeyed by all caching mechanisms along

| Version 1.7.2 3-5

the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the
request or response. This field SHOULD be set to "private" for all
transaction in this specification.

Example: Cache-Control: private

Content-Type This is a standard HTTP header field as defined in RFC 2616. It
specifies the media type of the underlying data. The server MUST
return this field in all replies. For most replies this will be set to
"text/xml". See Section 5.5 in the GetObject Transaction for
exceptions and more information on this field.

Example: Content-Type: text/xml

RETS-Version The server MUST send the RETS-Version. The convention used
| is a “<major>.<minor>.<revision>” numbering scheme similar to
the HTTP Version in Section 3.1 of RFC 2616. The version of a
RETS message is indicated by a RETS-Version field in header of
the message.

RETS-Version

""RETS-Version:" version-info
version-info u= "RETS/" 1*DIGIT *"."™ 1*DIGIT "." 1*DIGIT
Example: RETS-Version: RETS/1.7.2

Applications sending request or response messages, as defined by this specification,
| MUST include a RETS-Version of "RETS/1.7.2". Use of this version number indicates
that the sending application is compliant with this specification.

3.7 Optional Server Response Header Fields

Content-Length The Content-Length entity-header field indicates the size of the
message-body, in decimal number of octets. This is a standard
header field defined in RFC 2616 and is required for all requests
containing a message-body not using Chunked transfer encoding.

Transfer-Encoding The Transfer-Encoding entity-header field when set to the
Chunked value, indicates the size of the message-body is in the
chunk stream. This is a standard header field defined in RFC 2616
and is required for all responses with a body not using Content-
Length or a Content-Type: Multipart response.

Content-Encoding The Content Encoding entity-header field MAY be returned by
the server if the client has included an AcceptEncoding header in
its request () indicating that it can accept one or more
compression types supported by the server. It is recommended
that servers accept at least application/gzip (see 3.8, “Data
Compression in RETS Transactions”).

Content-Encoding.:= 1*64ALPHANUM [1*64ALPHANUM

| 3-6 Real Estate Transaction Specification Version 1.7.2

RETS-Request-1D

| RETS-Request-ID ::=

Server

Example:

RETS-Server

Example:

Set-Cookie

The contents of the RETS-Request-1D header, if any, sent by the
client in the request. If a RETS-Request-1D is included in a
request from the client then the server MUST return it in the
response.

1*64ALPHANUM

The server standard response-header field contains information
about the software used to handle the request. The format of this
field specified in RFC 2616 Section 3.8.

Server: Microsoft-11S/4.0

The RETS server vendor and server-controlled version number.
This is not necessarily the same as the Server response-header
field; it will be different if the HTTP server is separate from the
RETS server. The format of this field is specified in RFC 2616
Section 3.8.

RETS-Server: AcmeRETS/1.0

The server MAY use HTTP cookies to maintain state
information. See RFC 2109 for the format of the Set-Cookie
header.

A cookie having a name of RETS-Session-1D defines the RETS
session ID, which is used in calculating the RETS User-Agent
Authentication (section 3.10). Cookies with other names have no
special meaning in RETS but MAY be used when necessary.

In addition to the header fields listed here, the server may send any header compliant with

HTTP 1.1.

3.8 Data Compression in RETS

Transactions

Clients and servers may choose to support data compression in data returned from the
server. To indicate its willingness to accept compressed data, a client includes an
Accept-Encoding header in its request. If the server supports one of the compression
methods accepted by the client, it can include a Content-Encoding header in its response
indicating the compression method it has chose.

Clients and servers choo

sing to implement compression SHOULD at least support GZip

compression. This method is implemented by freely-available source code in a number of
languages, as well as in several proprietary software development environments. A second
freely-available alternative is BZIP. Clients and servers are free to choose other encoding

methods as well.

| Version 1.7.2

3-7

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in RFC 2616) may be
returned by a server in response to any request:

Table 3-1 General Status Codes

Status Meaning
200 Operation successful.
400 Bad Request
The request could not be understood by the server due to malformed syntax.
401 Not Authorized

Either the header did not contain an acceptable Authorization or the username/
password was invalid. The server response MUST include a WWW-
Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be authorized.
403 Forbidden
The server understood the request, but is refusing to fulfill it.
404 Not Found
The server has not found anything matching the Request-URL
405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource
identified by the Request-URI.

406 Not Acceptable

The resource identified by the request is only capable of generating response
entities which have content characteristics not acceptable according to the accept
headers sent in the request.

408 Request Timeout
The client did not produce a request within the time that the server was prepared
to wait.

411 Length Required
The server refuses to accept the request without a defined Content-Length.

412 Precondition Failed

Transaction not permitted at this point in the session

413 Request Entity Too Large
The server is refusing to process a request because the request entity is larger than
the server is willing or able to process.

414 Request-URI Too Long
The server is refusing to service the request because the Request-URI is longer
than the server is willing to interpret. This error usually only occurs for a GET

method.

500 Internal server error.
The server encountered an unexpected condition which prevented it from
fulfilling the request.

501 Not Implemented

The server does not support the functionality required to fulfill the request.

503 Service Unavailable
The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol version
that was used in the request message.

| 3-8 Real Estate Transaction Specification Version 1.7.2

HTTP error status returns are only to be used for system level, transport syntax, and
invalid transaction errors. RETS error status codes are used to indicate errors in the
request arguments or the transaction processing.

| 3.10 Computing the RETS-UA-Authorization Value

The RETS User Agent Authorization digest response value is used in the RETS-UA-
Authorization header specified in section 3.4. It is computed as follows:

al x= MD5(product: UserAgent-Password)

ua-digest-response::= HEX(MD5(HEX(al) : RETS-Request-ID : session-id :
version-info))

where:

product The first product value taken from the User-Agent header
(section 3.3). Note that the product value consists of both the
product token and version.

UserAgent-Password::=7TOKEN
This value is a secret shared between the client and server.
RETS-Request-1D ::= RETS-Request-ID

This value MUST be the same as that sent with the RETS-
Request- 1D header. If the client does not use the RETS-
Request-1D header, this token is empty in the calculation.

session-id = If the server has sent a Set-Cookie header with a cookie name
of RETS-Session- 1D, session-id is the value of that cookie. If
the server has not sent a cookie with that name, or if the cookie
by that name has expired, this token is empty in the
calculation.

version-info := The value of the RETS-Version header sent by the client with
this transaction.

Each individual value in the concatenated string is included with whitespace removed
from the beginning and end of that element, that is, there is no whitespace on either side of
the delimiting colon characters.

The method of performing the MD5 calculation is given in RFC 1321.

| Version 1.7.2 3-9

| 3-10 Real Estate Transaction Specification Version 1.7.2

LOGIN TRANSACTION

A client MUST issue a login request prior to proceeding with any other request. The Login
transaction verifies all login information provided by the user and begins a RETS session.
Subsequent session control may be mediated by HT'TP cookies or any other method,
though clients are required to support at least session control via HTTP cookies. Section
14 describes the session protocol in detail.

The server’s response to the Login transaction contains the information necessary for a
client to issue other requests. It includes URLs that may be used for other RETS requests,
and may also contain identity and parameter information if required by the functions
supported by the server.

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it is permissible, for
example, to operate a publicly-accessible RETS server — most operators of RETS servers
will wish to authenticate users. A server that requires that users be authenticated MAY
implement RFC 2617, HTTP Authentication. The use of at least digest authentication is
strongly recommended.

4.1.2 Client Authentication

Client authentication may be performed through the use of the optional RETS-UA-
Authorization header (section 3.4). Prior versions of this specification used a specially-
calculated cnonce value in the Authorization header to implement this function. A server
implementing this version of the RETS specification MUST accept the RETS-UA-
Authorization header for client authentication. It MAY accept RFC 2617-style
authentication as in prior versions of the RETS specification.

4.1.3 Data Security

Needs for secure HTTP transactions cannot be met by authentication schemes. For those
needs, HTTP-over-TLS (commonly known as HTTPS) is a more appropriate protocol. A

| Version 1.7.2 4-1

compliant server MAY support only HTTP-over-SSL. In this case, the server SHOULD
listen on port 12109 rather than the standard RETS port, 6103.

4.2 Authorization Example

The following example assumes that a client application is trying to access the Login URI
on the server using the POST method, and without using client authentication. The URI is
“http://www.example.com/login”. Both client and server know that the username is
“joesmith”, and the password is “SuperAgent”. The example also assumes the use of
authentication using RFC 2617.

The first time the client requests the document, no Authorization header is sent, so the
server responds with:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="Users@example.com”,
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0"
opaque=""5ccdef346870ab04ddfe0412367fccha"

The client may prompt the user for the username and password, after which it will
respond with a new request, including the following Authorization header:

Authorization: Digest username=“joesmith”,
realm="Users@example.com”,
nonce="dcd98b7102dd2f0e8b11d0f600bFb0c0”,
opaque="5ccdef346870ab04ddfe0412367fccha”,
uri=*“/login",
response=13258d9b0bc217c9502h47e32dff8ee9”

4.3 Required Request Arguments

There are no required request arguments.

4.4 Optional Request Arguments

4.4.1 BrokerCode Argument

brokerCodeArgument - = BrokerCode = broker-code [, broker-branch]

Some servers may support the scenario where a user belongs to multiple brokerages. If this
is the case then the broker information (broker-code and broker-branch) must be input

during login. If they are not included then the list of broker codes/branches is passed back
to the client application through the response along with a “20012 Broker Code Required”

reply-code.
broker-code I = 1*24ALPHANUM
broker-brarich D= 1*24ALPHANUM

4.4.2 SavedMetadataTimestamp Argument

savedletacataTimestanp: - =SavedMetadataTimestamp = saved-timestamnp

| 4-2 Real Estate Transaction Specification Version 1.7.2

The client MAY inform the server of the timestamp associated with the version of
metadata that it has currently saved. The server MAY use this to adapt to an earlier version
of metadata than it chooses to advertise, or simply log the value to note out-of-date client
metadata, or ignore the value entirely. In particular, the server is not required to alter its
behavior in any way based on the value of this argument.

| saved-timestanp .= RETSDATETIME

4.5 Optional Response Header Fields

There are no additional optional response header fields.

4.6 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The
simplest form is when there is an error:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP />

The second case is where the user belongs to more than one broker and they have not

provided broker information as part of the login. The reply contains a list of all brokerages
the user belongs to.

<RETS ReplyCode = “20012” 1*SP ReplyText = quoted-string *SP >
<RETS-RESPONSE>CRLF

2*(Broker = broker-code [, broker-brarnch] CRLF)
</RETS-RESPONSE>

</RETS>

The third case is the normal “OK” response. In this case several arguments are passed back
to the client in the response.

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP >

<RETS-RESPONSE>

memnber-name-key

user-info-key

broker—key

metadata-ver-key

metadata-timestanp-key

min-metadata-timestanp-key

[office-list-key]

[balance-key]

[timeout-key]

[owd-expire-key]

capability-url-1ist

</RETS-RESPONSE>

[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=

quoted-string *SP1/>

</RETS> CRLF

4.7 Required Response Arguments

4.7.1 Broker

broker-key ::= Broker = broker—code [, broker-branchl CRLF

Broker information for the logged in user is returned to the client.

| Version 1.7.2 4-3

broker-code = 1*24ALPHANUM
broker-brarich D= 1*24ALPHANUM

These parameters are used in the validation routines of the Update transaction (see
Section 10 for more information).

4.7.2 Member Name

member-name-key = MemberName = member-name CRLF

The member's full name (display name) as it is to appear on any printed output, for
example “Jane T. Row”.

member-name II= 1*48TEXT
4.7.3 Metadata Version Information
The metadata version and timestamp keys indicate the current and minimum-acceptable
versions of metadata.
metadata-ver-key - := MetadataVersion = metadata-version CRLF
This is the most current version of the metadata that is available on the server.
metadata-version II=1*2DIGITS . 17*2DIGITS [1*5DIGIT$]

It uses a “<major>.<minor>.<release>” numbering scheme. The version is advisory and is
not used by the metadata currency scheme.

| metadata-timestanp-key- = MetadataTimestamp = RETSDATETIME CRLF

This is the timestamp associated with the current version of metadata on the host. If the
client has cached an earlier version of metadata, it SHOULD take whatever action is
necessary to load the current version of metadata.

| min-metadata-timestanp-key- -= MinMetadataTimestamp = RETSDATETIME CRLF
This is the earliest version of the metadata that the host will support. If the version of the
metadata being used by the client has a timestamp earlier than this time the client

SHOULD retrieve the newer metadata from the host. In any case, the client MUST NOT
send transactions using metadata older than MinMetadataTimestamp.

The definition of the minimum version of the metadata is to permit clients to ignore non-
essential changes to components such as help text and user-readable descriptions.

4.7.4 User information

user-info-key II= User = user-id , user-level , user-class ,
agent-code CRLF

This key contains basic information about the user that is stored on the server. If a server
does not support one of these fields then it MUST set the returned value to empty (a zero-

length string).
user-id I 1= I*30ALPHANUM
user-class II= I*30ALPHANUM

| 44 Real Estate Transaction Specification Version 1.7.2

user-level II= 1*5DIGIT
agent-code I I= 1*30ALPHANUM

The agent-code is the code that is stored in the property records for the listing agent,
selling agent, etc. In some implementations this may be the same as the user-id. The fields
user-class and user-level are implementation dependent and may not exist on some
systems, in which case, an empty string should be returned. These parameters are used in
the validation routines of the Update transaction (see Section 10 for more information).

4.7.5 Capability URL List

capability-url-list: -= see Section 4.10 for format information

The server MUST return a capability list that includes at least Search, Login and
GetMetadata. The server MAY in addition return any of the other types in Section 4.10. If
the server supports any of the additional functions (and the client is entitled to access the
function by virtue of the supplied login information), it MUST provide URLs for those
functions. The server MAY supply URLs in addition to those in Section 4.10 based on the
user-agent. If it does, it MUST follow the format specified in Section 4.10.

4.8 Optional Response Arguments

4.8.1 Accounting Information

balance-key : .= Balance = balance CRLF

If the server supports an active billing account then this value SHOULD represent a user-
readable indication of the money balance in the account.

balance II= I*32ALPHANUM

4.8.2 Access Control Information

timeout-key : 1= TimeoutSeconds = I*5DIGIT CRLF

The number of seconds after a transaction that a session will remain alive, after which the
server will terminate the session automatically (e.g. invalidate the session-id). This is
commonly referred to as the inactivity timeout. A server need not provide this capability;
however, if it does use session timeouts in order to prevent monopolization of resources, it
MUST inform the client of the timeout interval by returning this response field.

pwa-expire-key I I= EXpr = pwd-expire-date , pwd-expire-narn CRLF
pwa-expire-date - -= RETSDATETIME
pwd-expire-warn I := [“-7"]J1*3DIGIT

The pwd-expire-key indicates when a user password will expire. The pwd-expire-date is
the date that the current user password becomes invalid. The pwd-expire-warn is the
number of days before the expiration date that the user should be warned of the upcoming

| Version 1.7.2 4-5

password expiration. A pwd-expire-warn value of “-1” indicates that the password
expiration is disabled.
4.8.3 Office List Information

I .= OfficeList = broker-code [; broker-branch]
*(, broker-cooe [; broker-branch 1) CRLF

offfice-list-key

If the logged in user is a company owner or manager they may have rights to login to
multiple offices. The office-list-keyis an enumeration of the offices to which the server

will permit login.

broker-code tI= 1*24ALPHANUM
broker-brarnch II= 1*24AL PHANUM
4.9 Well-Kknown Names

Some fields returned from the login are considered “Well-Known” and are used in the
validation routines of the Update transaction. Those fields are as follows:

Table 4-1 Well-Known Names for Input Fields

Well-Known name Input Return Field
-USERID. user-id
-USERCLASS. user-class
-USERLEVEL . user-level
-AGENTCODE. agent-code
-BROKERCODE. broker-code
-BROKERBRANCH . broker-branch

The client MUST assume a blank value for any well-known name for which the server
does not supply an input field.

These values are used in Table 11-37, “Validation Expression Special Operand Tokens”.

4,10 Capability URL List

The capability-url-list is the set of functions or URLs to which the login grants access. A
capability consists of a key and a URL. The list returned from the server in the login reply
has the following format:

[Action action-URL CRLF]
[ChangePassword = chage-password-URL CRLF]
[GetObject = get-object-LRL CRLA

Login = Jogin-URL CRLF

[LoginComplete Iogin-complete-URL CRLF]
[Logout = Jogout-URL CRLF]

Search = search-URL CRLF

GetMetadata = get-metacata-URL CRLF

| 4-6 Real Estate Transaction Specification Version 1.7.2

[ServeriInformation = server—information-URL CRLF]
[Update = ypdate-URL CRLF]

Table 4-2 Capability URL Descriptions

Parameter Purpose

action-URL A URL on which the client MUST perform a GET immediately after
login. This might include a bulletin or the notification of email. The
client application SHOULD provide a means for the user to view
the retrieved document. A server is not required to supply an

Action URL.
change-password-URL A URL for the ChangePassword transaction.
get-metadata-URL A URL for the Get Metadata transaction.
get-object-URL A URL for the Get Object transaction.
login-URL A URL for the Login Transaction. The client software should use

this URL the next time it performs a Login. If this URL is different

from the one currently stored by the client the client, MUST update
the stored one to the new one. This provides a mechanism to move
the Login server.

login-complete-URL RESERVED

logout-URL A URL for the Logout transaction.
search-URL A URL for the Search transaction.
update-URL A URL for the Update transaction.
server-information-URL A URL for the System Information transaction

The URLs in the capability-url-list may be specified in any order. Since the list is returned
in the body, servers MAY include whitespace between the parameter, equals sign and URL.
Clients SHOULD be prepared to receive the capability-url-list either with or without
whitespace in the response. The format of each URL follows the pattern defined in the URL
atom. In addition, the table is extensible; servers may define additional transactions for
clients to access. If a transaction is offered only to particular user agents, the keys for those
additional transactions MUST begin with the user-agent token, followed by a dash “-”,
followed by an implementation-defined function name. Note that this definition does not
permit spaces in the additional-transaction definition per the ABNF rules.

additional-transaction ::=(“X” | user-agent-token) “-” function-name CRLF
user-agent-token ::= <token portion of the User-Agent (Section 3.3)>
function-name Ir= 1*ALPHA

Example: MLSWindows-special = /special_function
| Example: X-Delete = http://www.example.com:6103/deletemyrecord

A compliant client need not recognize any transaction that is not included in this
specification. If some extended transactions are offered to any user-agent, the keys for
those transactions MUST begin with an “X” followed by a dash, followed by an

| implementation-defined function name. Server implementers who implement potentially-
unrestricted extension transactions are urged to register their keys and service descriptions
on the RETS web site to encourage wider adoption.

URLs other than the Login URL may be relative URLs. The Login URL MUST be an
absolute URL. If a URL is not absolute, the client application should canonicalize it
according to the rules in RFC 2396, section 5. The “base URL” (as defined in RFC 2396,

| Version 1.7.2 4-7

section 5.1.1) for this operation is the URL used for the current login transaction, not the
new Login URL.

URLs MUST be URL-encoded per RFC 2396.

4.11 Reply Codes

Note: RETS does
not require that
aserver
maintain user
accounts.

| 4-8 Real Estate Transaction Specification

Table 4-3 Valid Reply Codes for Login Transaction

Reply Code Meaning

0 Operation successful

20003 Zero Balance
The user has zero balance left in their account.

20004 thru 20011 RESERVED

20012 Broker Code Required
The user belongs to multiple broker codes and one must be supplied as part of
the login. The broker list is sent back to the client as part of the login response
(see section 4.6).

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019 RESERVED

20022 Additional login not permitted
There is already a user logged in with this user name, and this server does not
permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037 User-agent authentication failed.
The server requires the use of user-agent authentication (section 4.1.2), and
the client either did not supply the correct user-agent password or did not
properly compute its challenge response value.

20041 User-agent authentication required.
The server requires the use of user-agent authentication (section 4.1.2), and
the client did not supply the user-agent header values.

20050 Server Temporarily Disabled

The server is temporarily offline. The user should try again later

Version 1.7.2

GETOBJECT TRANSACTION

The GetObject transaction is used to retrieve structured information related to known
system entities. It can be used to retrieve multimedia files and other key-related
information. Objects requested and returned from this transaction are requested and
returned as MIME media types. The message body for successful retrievals contains only
the objects in the specified MIME media type. Error responses follow the normal response
format (section 3.9).

5.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in Section 3.3, the
header of any messages sent from the client MUST contain the following header fields:

Accept The client MUST request a media type using the standard HTTP
Accept header field. Media-type formats (subtypes) are registered
with the Internet Assigned Number Authority (IANA) and use a
format outlined in RFC 2045 [8]. When submitting a request the
client MUST specify the desired type and format. If the server is
unable to provide the desired format it SHOULD return a “406
Not Acceptable” status. However, if there are no objects of any
subtype available for the requested object the server SHOULD
return “404 Not Found.” The format of the Accept field is as

follows:
Accept x= Accept: type/ subtype| ; parameter |
* , SPtype / subtype| ; parameter))
type z= *|<apublicly-defined type>
subtype 2= * | <A publicly-defined extension token that

has been registered with IANA>
parameter n= q =< qvaluescale from0to1>
A complete list of media types and subtypes is available at:

http://www. iana.org/assignments/media-types/

Version 1.7.2 5-1
|

The qvalue is used to specify the desirability of a given media type/subtype, with “1” being
the most desirable, “0” being the least desirable, and a range in between. The default qvalue
is “17.

Example: Accept: image/jpeg, image/tiff;q=0.5,

image/gif;q=0.1

Verbally, this would be interpreted as “image/jpeg is the preferred media type, but if that
does not exist, then send the image/tift entity, and if that does not exist, send the image/gif
entity.”
The types supported by the server are defined in the Metadata Dictionary as defined in
section 11.4.1.

5.2 Optional Client Request Header Fields

The GetObject transaction has no optional request header fields.

5.3 Required Request Arguments

Resource A resource defined in the metadata dictionary (see Section 11.2.2)

The resource from which the object should be retrieved is specified by this entry. For more
information see 5.9. The resource MUST be a resource defined in the metadata (section
11.4.1).

Type The object type as defined in the metadata (see Section 11.4.1)

The grouping category to which the object belongs. Type MUST be an ObjectType
defined in the Object metadata for this Resource. For more information see section 11.4.1.

ID A string identifying the object or objects being requested:
ID = resource-set*(, resource-set)
resource-set u= resource-entity| : object-id-Iist]
resource-entity ::= 1*ALPHANUM
object-id-list := *|object-id *(: object-id)
I object-id = I1*5DIGIT

For objects, the resource-entityis a value (e.g., MLS number, AgentID) from the
KeyField of the Resource for which the object is to be retrieved.

The object-id is the particular object to be retrieved. Objects are assumed to be stored
sequentially on the host beginning with an object-id of “1”. If the object-id is 0 (zero or
not provided), the designated preferred object of the given type is returned. If the object-id
is set to “*” then all objects corresponding to the resource-entity are returned. This
parameter can be used to specify the photo number, e.g. a value of “3” would indicate
photo number 3.

If multiple resource-entity or object-id values are sent, or if any object-id-list is “*”,
then the host MUST respond with a multipart MIME [8] response. See 5.11, “Multipart
Responses”, for more detail.

[5-2 Real Estate Transaction Specification Version 1.7.2

5.4 Optional Request Arguments

5.4.1 Location

Location 0|1

This parameter indicates whether the object or a URL to the object should be returned.
This is used to provide access to the semi-permanent storage location of information for
access outside of the transaction (e.g. for use in email to a customer). The lifetime of this
semi-permanent storage is not defined by this specification.

If Location is set to “1” the server MAY return a URL to the given object. The default is
“0”. The server MAY support this functionality (Location=1) but MUST support
Location=0. In other words, some servers may store the objects in a database or generate
them dynamically. Therefore, it may not be possible for those servers to return a URL to

| the requested object. In these cases the server MAY choose not to support Location=1.
However, all servers MUST support a method to get the object and therefore, MUST
support the case where Location=0.

When the Location=1, the message body SHOULD contain a RETS response as described
in Section 3.5.

5.5 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.6 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. Additionally, this field MUST be returned
as part of the header for each body part. This field MUST be set to
the type of media returned. See Section 5.1 for more information
on < type> and <subtype>.

Content-Type @= Content-Type: type/subtype
Example: Content-Type: image/jpeg

If the client has requested multiple IDs, the server MUST return a multipart message. If it
does, it MUST return a Content-Type of “multipart/parallel” along with a boundary
delimiter in the response header. See Section 5.11 for more information on multipart
responses.

Example: Content-Type: multipart/parallel; boundary=AAABBBCCC

Content-ID An ID for the object. This field MUST be returned as part of the
header for each body part in a multipart response. A value for this
tield MUST be returned for each body part. This value is the
resource-entity from the GetObject request and MUST match the
corresponding Resource KeyField value.

Content-1D u= Content-I1D: 1*128PLAINTEXT

Example: ~ Content-1D: 123456

| Version 1.7.2 5-3

Object-ID The object number being returned. This field MUST be returned
as part of the header for each body part in a multipart response.
Object-1ID::=0Object-ID: 1*5DIGIT |“*”

Example: ~ Object-1D: 2

Note: The Object-ID may only have the value of “*” in the response when there is an error

in the response and the request was for all objects using the wildcard request of “*”.

MIME-Version All responses MUST include a MIME-Version of “1.0” in the
response header.

Example: ~ MIME-Version: 1.0

5.6 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.7 the
following response header fields are also optional.

5.6.1 Location

Location If the client has submitted a request with “Location=1" the
header of the response MUST contain the Location header field.
If the server does not support this functionality for a specific
object, then “Location:” without a URI MUST be returned. If the
server does not support this functionality for any object, the
server should return an error type of 20414.

Location := Location: UR/
Example: Location: http://www.example.com/pic/123456.jpg

If the server is returning a multipart response, then this header MUST be included in the
MIME part headers for each object successfully requested.

5.6.2 Description

Description A text description of the object.

| Description u= Content-Description: *1024<PLAINTEXT, EXCLUDING CR/
LF>

Example: Content-Description: Front View

If the object does not have a description or if the server does not support this feature, the
header MAY not be returned. If the object has a description and the server is returning a
multipart response, then this header MUST be included in the MIME part headers for the
object.

5.7 Required Response Arguments

There are no required response arguments.

| 5-4 Real Estate Transaction Specification Version 1.7.2

5.8 Optional Response Arguments

5.9 Metadata

There are no optional response arguments.

5.10 Resources

To retrieve objects the client MAY first retrieve the metadata that describes the Resources
and Objects that are available with the GetMetadata transaction described in section 12. A
full description of the Metadata Dictionary is provided in Section 11.

RETS does not require that any particular type of object be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard.

5.11 Multipart Responses

As described in Section 5.3, in the case where the client has requested multiple resource-
entity or object-id values or if any object-id-list is “*”, the server MUST return a
multipart response. In the case of multipart responses, in which one or more different sets
of data are combined in a single body, a “multipart” media type field must appear in the
entity's header.

5.11.1 General Construction

| Version 1.7.2

RFC 2045 describes the format of an Internet message body containing a MIME message.
The body contains one or more body parts, each preceded by a boundary delimiter line,
and the last one followed by a closing boundary delimiter line. After its boundary delimiter
line, each body part then consists of a header area, a blank line, and a body area.

Example:

HTTP/1.1 200 OK

Server: Apache/2.0.13

Date: Fri, 22 OCT 2004 12:03:38 GMT

Cache-Control: private

RETS-Version: RETS/1.0

MIME-Version: 1.0

Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-1D: 123456
Object-1ID: 1

<binary data>

--simple boundary
Content-Type: image/jpeg
Content-1D: 123457
Object-1ID: 1

<binary data>

5-5

--simple boundary--

5.11.2 Error Handling

When a client requests multiple objects in a single transaction, one or more of those
objects may be unavailable. In this case, the server communicates the failure by including a
RETS return message in place of the unavailable object. In this case, the Content-Type will
be text/xml, and the content will be a RETS response:

Example:

HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 22 OCT 2004 12:03:38 GMT
Cache-Control: private
| RETS-Version: RETS/1.7.2
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-1D: 123456
Object-1D: 1

<binary data>

--simple boundary

Content-Type: text/xml

Content-1D: 123457

Object-1D: 1

<RETS ReplyCode="20403" ReplyText="There is no listing with that ListinglID”/>
--simple boundary--

| If the server is supplying an error message for a wild-card object request (Object-1D of *),
the Object-1D for the error part SHOULD be * as well.

| 5-6 Real Estate Transaction Specification Version 1.7.2

5.12 Reply Codes

Table 5-1 GetObject Reply Codes

| Version 1.7.2

Reply Code Meaning
20400 Invalid Resource
The request could not be understood due to an unknown resource.
20401 Invalid Type
The request could not be understood due to an unknown object type for the
resource.
20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.
20403 No Object Found
No matching object was found to satisfy the request.
20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.
20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the
supplied login does not grant access.
20408 Resource Unavailable
The requested resource is currently unavailable.
20409 Object Unavailable
The requested object is currently unavailable.
20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.
20411 Timeout
The request timed out while executing
20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.
20413 Miscellaneous error
The server encountered an internal error.
20414 URL Location Not Supported

The server does not support retrieving Objects by URL.

5-7

| 5-8 Real Estate Transaction Specification Version 1.7.2

LOGOUT TRANSACTION

The Logout transaction terminates a session. Except in cases where connection failure
prevents it or the user has requested an immediate shutdown of the client, the client
SHOULD send the Logout transaction. If the client sends a Logout transaction, the server
MUST attempt to send a response before terminating the session.

The server MAY send accounting information back to the client in the response to this
transaction. The client is not required to display or otherwise process the accounting
information.

6.1 Required Request Arguments

There are no required request arguments.

6.2 Optional Request Arguments

There are no optional request arguments.

6.3 Required Response Arguments

There are no required response arguments.

6.4 Optional Response Arguments

ConnectTime The amount of time that the client spent connected to the server,
specified in seconds.

connect-time = ConnectTime=1*9DIGITS CRLF

Billing If the server supports an active billing account, this is total
amount billed for this session, specified as TEXT which is
implementation-defined

billing = Billing=*<TEXT, EXCLUDING CR/LF> CRLF

SignOffMessage Any text. The client MAY display this message, if the server
includes it in the response. Servers should not expect, however,

| Version 1.7.2 6-1

that users would read or see the message, since communication
failure may make it impossible for the client to receive the Logoff
response.

sign-off-message:= SignOffMessage="<TEXT, EXCLUDING CR/LF> CRLF

6.5 Logout Response Body Format

The Logout response body is a key/value response (see section 3.5, “Response Format”).

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP >
[<RETS-RESPONSE>
[connect-time]
[billing]
[sign-off-message]
</RETS-RESPONSE>J
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=
quoted-string *SP1/>]

</RETS>
6.6 Reply Codes
Table 6-1Logout Reply Codes
Reply Code Meaning
0 Operation successful
20701 Not logged in

The server did not detect an active login for the session in which the Logout
transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional
information.

| 6-2 Real Estate Transaction Specification Version 1.7.2

SEARCH TRANSACTION

The Search transaction requests that the server search one or more searchable databases
and return the list of qualifying records. The body of the response contains the records
matching the query, presented in the requested format. The data can be returned in one of
three formats: COMPACT, COMPACT-DECODED or STANDARD-XML.

7.1 Search Types

| Version 1.7.2

Note

Searches are performed on logical groupings of records called Resources. The definition of
the grouping of records for a specific resource is determined by the server implementation.
Different server implementations may have different available resources, depending on
local rules, practises or conditions. Servers may further group the records by Class.
Different users or different client applications may be provided with different sets of
Resources and different sets of Classes. A specific value for Resource or Class is referred to
in this document as a type. For example, a type of Resource is Property using the Standard
Names definition. Another example may be a type of Resource called Appraisers, being a
collection of locally licensed real estate property value appraisers. As defined below, a
server only searches on a single Resource per request. A server MAY provide more than
one type of Resource in the metadata. The server MUST support searching at least one
type of resource. The types of resources supported by the server MUST be specified in the
metadata. Each of the resource searches may by conducted against different databases or
tables depending on the server implementation.

Some resources are specified by well-known names. If a server implementation supports
searches of any of these resources, it MUST use the well-known resource name to identify
that resource. The list of well-known resource names is provided in Table 11-4, “Well-
Known Resource Names” on page 11-5;s well-known classes for those resources are given
in Table 11-10, “Metadata Content: Resource Class”.

StandardNames for classes are given in Table 11-10, “Metadata Content: Resource Class”.

RETS does not require that a server support any specific resource type or class. The user or
maintainer of a server is responsible for deciding which resources should be made
searchable.

7-1

7.2 Search Terminology

7.2.1 Field Delimiter

A server may designate a particular OCTET to be used as a delimiter for separating entries
in both the COLUMNS list and the DATA returned using the COMPACT and
COMPACT-DECODED formats. The octet should be chosen to avoid the need to escape
data within a record

field-delimiter .= HEXHEX

7.2.2 Field Name

A field is the keyword or code that the server uses to identify a particular column in the
database table. Each field may be either a System-Name, as defined in the metadata, or a
Standard-Name, as defined in the Real Estate Transaction XML DTD. The server MUST
accept either set of names interchangeably.

7.2.3 Record Count

This value indicates the number of records on the server matching the search criteria sent
in the search query.

record-count = 1*9DIGITS

Note that this value may be greater than the number of records returned, if the server has
limited the size of the return for any reason.

7.2.4 Other terms

XML-data-record:= <A datarecord as defined by the RETS Data XML DTD>.

7.3 Required Request Arguments

7.3.1 Search Type and Class

The SearchType and Class arguments specify the data that the server is to search.

SearchType = ResourcelD

The type of search to perform as discussed in Section 7.1 and defined in the Metadata (see
section 11.2.2).

Class i1 = 1*32ALPHANUM

This parameter is set to a value that represents the class of data within the SearchType,
taken from the Class metadata (section 11.3.1). If the resource represented by the
SearchType has no classes, the Class parameter will be ignored by the server and MAY be
omitted by the client. If the client does include the Class parameter for a classless search,
the value SHOULD be the same as the ResourcelDin order to insure forward
compatibility.

[7-2 Real Estate Transaction Specification Version 1.7.2

Note that if StandardNames (Section 7.4.7) is set to 1, then both the SearchType and Class
are specified using StandardNames.

7.3.2 Query Specification

The specification consists of the query itself together with a designation of the query
language.

Query n= <The query to be executed by the server>
The query is specified in the language described in Section 7.7.
QueryType = DMQL2

An enumeration giving the language in which the query is presented. The only valid value
for RETS 1.7.2 is “DMQL2” which indicates the query language described in Section 7.7

7.4 Optional Request Arguments

7.4.1 Count

7.4.2 Format

| Version 1.7.2

The Count argument controls whether the server’s response includes a count.
Count n= 0|1]2

If this argument is set to one (“1”), then a record-count is returned in the response in
addition to the data. Note that on some servers this will cause the search to take longer
since the count must be returned before any records are received. If this entry is set to two
(“2”) then only a record-count is returned; no data is returned, but all matches are counted
regardless of any Offset or Limit parameter. If the Count argument is not present or set
to zero (“0”) there is no record count returned.

Example: Count=2

Instructs the server to return only a count of the records matching the query.

The Format argument selects one of the three supported data return formats for the query
response.

Format = COMPACT | COMPACT-DECODED | STANDARD-XML |
STANDARD-XML : dtd-version

“COMPACT” means a field list <COLUMNS> followed by a delimited set of the data
fields <DATA>. “COMPACT-DECODED” is the same as COMPACT except the data for
any field with an interpretation of Lookup, LookupMulti, LookupBitString or
LookupBitMask, is returned in a fully-decoded format using the LongValue. See Section
13 for more information on the COMPACT formats and section 11.4.3 for more
information on the Lookup types. “STANDARD-XML” means an XML presentation of
the data in the format defined by the RETS Data XML DTD. Servers MUST support all
formats. If the format is not specified, the server MUST return STANDARD-XML.

Example: ~ Format=COMPACT-DECODED

7-3

If the client requests STANDARD-XML, it MAY also append a preferred DTD version.
The server MUST support the current version and SHOULD additionally support at least
the prior version.

Example: Format=STANDARD-XML:1.0
7.4.3 Limit

The Limit argument requests the server to apply or suspend a limit on the number of
records returned in the search.

Limit z= “NONE” | 1*9DIGIT

In general, the Limit argument operates without consideration of other factors like the
settings in the system metadata or the fields selected in the Select argument. A special case
when the Limit="NONE” is described below.

If this entry is set to a number greater than zero, the server MUST not return more than
the specified number of records. If the request results in more matches than the server
returns, the <MAXROWS> tag MUST be sent at the end of the data stream, regardless of
any Limit parameter specified in the client request.

In general, if this entry is set to (“NONE”) or is not present, the server SHOULD treat this
as a request to suspend enforcement of any internal download limit. Servers that permit
the suspension of the limit MUST disable both the <MAXROWS> tag and the return code
20208, Maximum Records Exceeded when responding to a Limit="NONE” request.
Servers that do not permit the suspension of the limit MUST apply the <MAXROWS> and
return code 20208 in the cases where the query results in more rows than permitted. Client
implementers should be aware that some server implementations might not honor the
request to disable the limit or may restrict the request to the selection of certain fields as
described below; the server operator’s business rules take precedence over the request to
waive the system download limit.

A server may only support the suspension of the limit for a certain scenario of requests.
When a server has Classes with a HasKeyIndex value of TRUE in the Class Metadata the
server MUST suspend enforcement of the download limit for such a Class when the
Limit="NONE” and the Select argument contains only field names that have the
InKeylIndex value of TRUE in the Table Metadata. A server SHOULD support
HasKeyIndex for each Class and MUST have the InKeyField value of TRUE for at least the
KeyField of the Class when the HasKeyIndex is TRUE for that Class. A server MAY have
more than one field with the InKeyField value of TRUE for any Class.

Any request that sets a numeric Limit disables support for unlimited key index results as
described in section 7.4.5 Select.

7.4.4 Offset

The client may specify that a retrieval start at other than the first record in the set of
| records matching the query by specifying the Offset argument.

Offset n= 1*9DIGIT

| 7-4 Real Estate Transaction Specification Version 1.7.2

7.4.5 Select

This argument indicates to the server that it SHOULD start sending the data to the client
beginning with the record number indicated, with a value of “1” indicating to start with
the first record. This can be useful when requesting records in batches, however, client
implementers should be aware that data on the server MAY change as they iterate through
the batches and it is possible that some records may be missed or added. In other words,
the server is not required to maintain a cursor to the data.

Any time an Offset argument is supplied, the resulting data SHOULD be returned in a
consistent order based on an ordering of the KeyField of the Resource. This ordering
should be applied to the entire data set and not just the returned data which may be less
that the total number of records matching the criteria. It is a recommended practice that
an ascending order be used as the ordering scheme when the KeyField value is a
sequentially increasing unique identifier, however, servers MAY choose to implement
some other ordering scheme. This practice will help to ensure subsequent requests will not
contain duplicate records. Ascending order of the KeyField in this case will also provide
assurance that newly added records will be more reliably contained in the final Offset
record set.

Clients iterating over the entire record set on systems that implement this practices MUST
provide Offset=1 in the first request to assist the server to order the results.

The offset value of ‘0’ is not defined in this standard.

By default, the server MUST return all fields accessible to the client. The client may select a
subset of those fields by specifying the Select argument.

Select x= field*(, Field)

This parameter is used to set the fields that are returned by the query. If this entry is not
present then all allowable fields for the search/class are returned. The server MAY return
an error when there are unknown fields in the select list. The server MUST NOT return
more fields than are specified in the Select argument when the client requests COMPACT
or COMPACT-DECODED data. It MAY return fewer if some of the field names are
invalid or if a requested field is unavailable to the user based on security or other
restrictions.

|7.4.6 Restricted Indicator

| Version 1.7.2

In some instances, the server may withhold the values of selected fields on selected records.
When business rules withhold the value but the field is returned as part of a response, a
RestrictedIndicator MUST be used in place of the value.

RestrictedlIndicator ::=1*9T