AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

$¢ RESO

RESO Web APIv1.0.3

SECHON 1 - ProPOSal . ..ot e 4

L L PUINPOSE . oot 5
L2 S0P o ittt 6
L 3 AP PIOACN . e 6
SecCtion 2 - SPECIfiCAtIONo 6
2.1 TermMINOIOgY . . .ot e 7
2.2 HTTP ProtoCol e e 8
2.2.1Version Header 8
2.2.2 X-HTTP-Method-Override Header i e 8
2.3 URL FOrmMatting . .. oottt e e e e e e 8
2.3 L HOSINAME .. o e 9
2.3 2 URI St L 9

2.3.3 Data Systems ENAPOINtot 10

2.3.4 Metadata ENAPOINto e 10

2.3.5 ReS0UIrCe ENAPOINto e 10

2.4 SarC L 11

241 Search by Unique 1D . ..o 11

2.4.2 QUETY SUPPOI . o ittt ettt e e e e e 11

2.4 3 DAA TP DS . o ittt e e e e 11

2.4.4The $filter Option 13

2.4.5 Lambda OpEratorSttt et e e e e e 14

2.4.6 LIterals ... 14

2.4.7 Geospatial Search Implementation Details 14

2.4.8 ANNOTALIONS . ..ot 14

2.4.9 Single Valued LOOKUPSot 17

2.4.10 Multi Valued LOOKUPDSo e e 17

2.4.10.1 Multi Valued Lookups - Bitmap Fields 17

2.4.10.2 Multi Valued Lookups - Collections of Enumerationsttt 21

2.5 Response Message BoOies i 22

252 HTTP RESPONSE COUBSttt ittt ettt e e e e e e e e e e e e e e 22

2.5.3 Error Message BoOIes 23

2.6 Standard RESOUICESottt e et e e 24

2.6.1 Data SYStemM RESOUICEottt e ettt e e e et e e e e 24

2.6.2 Data Dictionary RESOUICESottt e et e e e e e e e e e 25

SECHON 3 - SECUILY . . ottt ettt et e e e e e e e e e e e e 29

SECHON 4 - AUINOIS . . o 31

SECHON 5 - REIBIENCES 32

Section 6 - List of Tables & FigUIeS e e e 33

Section 7 - ReVISION LISt 34

SECHON 8 - APPENAICES . . .t ittt et e e e 36

APPENAIX 1 - USE CaSES . ..t ittt e ittt et e e e e e e e 37

Appendix 2 - BasiC QUery EXamples 39

1 - Request the list Of Data SyStemMSt e 40

2-Selectasingle data SYStEM 40

3 - How do | look at the metadata for a SPecific SEIVICE? i e 42

4 - How do | retrieve data using this metadata? 43

B - Geta SiNgle PrO eIty . .ot e 44

6 - Select specific field Values 45

7-Filter by field value 45

8 - Filter by multiple field values 45

9 - Getthefirstfive MEMDEIS 45

10 - Get the second five Members 45

11 - Get the top ten Residential properties within 1 mile of a specific point ordered by distance 45

12 - Get all the properties with a price range of $250k to $500k within a specific area drawn on map (polygon) 46

13 - Get all the properties with a price range of $250k to $500k within the map on the screen (polygon) 46

14 - Get all properties with price range of $250k to $500k within a complex drawn area on map (multi-polygon) ... 46

15 - Get all the Residential properties within a half mile of a specific road (linestring) 46

16 - ReqUESE ONIY IDS . ..o 46

17 - Get all the properties with a listing price less than $300K 46

18 - Get all the properties with a listing price greater than $300K e 46

19 - Get all the properties with a listing price of $300K 46

20 - Query using boolean to find all properties that are shortsales 46

21 - Combine multiple criteriain @ search 46

22 - Getrecords back inacertain Order 46

23 -Getacount Of FECOIOS 46

24 - Get all members whose first name starts with ‘Joh’ 47

25 - Get all members whose last name ends with ‘ith® 47

26 - Get all members whose last name contains the string ‘'ohns’ 47

27 - Get all members whose first name is ‘James’ or ‘Adam’ and who are active 47

28 - Get all properties that were listed in the year 2013 47

29 - Get all properties that were listed in May 0f 2013 47

Appendix 3 - Advanced QUery EXamples 47

Copyright 2015 RESO

Appendix 4 - DataSystem XML SChemao 47

AppPendix 5 - APProved RCPS 52
RCPs Approved for VErsion 1.0.3 53
RCP - WEBAPI-001 Odata Property Facet Attribute MaxLength, Precision and Scale Errata 53
RCP - WEBAPI-002 Remove TimeZoneOffSet e 54
RCP - WEBAPI-003 Update HTTP specification references to current Internet/Industry Standards 55
RCP - WEBAPI-004 Include SSL RFC to ensure secure implementationvuu... 56
RCP - WEBAPI-005 Revise Section 2.6.2 - Data Dictionary Resourcesouiiieinenn... 57
RCP - WEBAPI-006 Modify 2.6.1 Data System Resource from Must Implement to May Implement 60
RCP - WEBAPI-007 Section 2.4.4: Remove required filter function time() (Copy) 61
RCP - WEBAPI-008 Web API Version 1.0.2 Specification Errata (COpY)o ovii i 61
RCP - WEBAPI-009 Collections of Enumerations (COPY) v vt e i e 66

Copyright 2015 RESO

RESO Web API v1.0.3

Copyright 2018 RESO. By using this document you agree to the
RESO End User License Agreement (EULA) posted here.
(http://reso.org/eula)

Chapters

Section 1 - Proposal

Section 2 - Specification

Section 3 - Security

Section 4 - Authors

Section 5 - References

Section 6 - List of Tables & Figures
Section 7 - Revision List

Section 8 - Appendices

Copyright 2015 RESO Page 4

http://reso.org/eula
http://reso.org/eula

Section 1 - Proposal

1.1 Purpose
1.2 Scope

1.3 Approach

1.1 Purpose

The RESO transport workgroup has been tasked with recommending a new industry-wide standard for real-time access to real estate data
{directly from Web and Mobile applications}. The goal of this new standard is to provide a more open approach to data access using
widely-adopted technology standards in use across industries, including the real estate industry. Specifically, the approach focuses on the use of
the REST (REpresentational State Transfer) architectural approach documented by Roy Thomas Fielding and adopted by tens of thousands of
developers worldwide.

The goal driving the move toward a RESTful standard for the real estate industry is to encourage and promote access to real estate information
directly from Web, mobile, social and other HTTP-based applications. Using a RESTful transport will enable web applications to directly interact
with RESO enabled data services. (note: more information on RESTful can be found here)

This workgroup sought to find an approach that does not deviate from either the solid foundations already employed from past RESO
accomplishments or the existing technology standards that set out to solve similar problems for other industries.

The goals of this group were to:

1. Honor existing data service capabilities from RETS 1[1].x
2. Adopt existing standard technologies in use across industries
3. Leverage existing production-ready software toolkits

As such the group proposes the use of an existing standard that was designed specifically for data transport. The standard, Open Data Protocol
or “OData” (http://www.odata.org/) serves as a set of fundamental building blocks for what the group is proposing.

The group chose OData for the following reasons:

® Well-established and robustly documented existing standard.

® Significant community adoption including “Open Government Data Initiative.”

* Well-defined functionality supports most significant RESO use cases.

® Existing open source technology implementations to support community adoption.
® Extensibility to handle specific use cases as needed.

As a standards body, we will follow the OData standard and will extend, where needed, to fulfill our industry’s needs. We will not, however,
deviate from the RESTful principles, standard capabilities or query syntax that is inherent to the OData standard.

.2

OData Overview

The Open Data Protocol (OData) is an application-level protocol for interacting with data via RESTful web services. The protocol supports the
description of data models and the editing and querying of data according to those models. It provides facilities for:

Metadata: a machine-readable description of the data model exposed by a particular data provider.

Data: sets of data entities and the relationships between them.

Querying: requesting that the service perform a set of filtering and other transformations to its data, then return the results.
Editing: creating, updating, and deleting data.

Operations: invoking custom logic.

Vocabularies: attaching custom semantics.

The OData Protocol provides a uniform way to describe both the data and the data model. This improves semantic interoperability between
systems and allows an ecosystem to emerge.

Towards that end, the OData Protocol follows these design principles:

Prefer mechanisms that work on a variety of data stores. In particular, do not assume a relational data model.

Extensibility is important. Services should be able to support extended functionality without breaking clients unaware of those extensions.
Follow REST principles unless there is a good and specific reason not to.

OData should build incrementally. A very basic, compatible service should be easy to build, with additional work necessary only to
support additional capabilities.

® Keep it simple. Address the common cases and provide extensibility where necessary.

Further details pertaining to OData may be found at the below link: OData Version 4.0

Copyright 2015 RESO Page 5

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.odata.org/
http://www.odata.org/documentation/

Y RETS 1xis a legacy protocol produced by RESO and still in use today
) Source: © Copyright OASIS Open 2013.

1.2 Scope

The initial scope of this standard is to support read only searching of data resources that have been defined by the Data Dictionary Workgroup
and other RESO data providers.

Explicitly in scope in this initial release will be:

1. Metadata Representation

2. Read Access / Standard Search
3. Geospatial Search

4. Hypermedia Representation

Explicitly out of scope in this initial release will be:

. Create, Update, Delete resource content
. A Data Replication Framework

. Requesting Binary Media Resources

. Updating Binary Media Resources

. Saved Searches and Resources

b wWNBE

Explicitly out of scope for the transport specification will be:

1. Authentication and Authorization

a. Please See the "RETS Web API Security" document.
2. The underlying Data Dictionary and Resource definitions

a. Please see the latest "Data Dictionary" files for details.

1.3 Approach

The RESO OData Transport standardizes access to Real Estate data over the Internet using a Representational State Transfer (REST) style
interface. Compatible RESO OData Transport client and server applications MUST be implemented according to the OData V4 standard
specification. All further references to OData in this document refer to the OData V4 standard. Compatible server and client applications MUST
send or receive data in JSON or ATOM/XML format. In keeping with OData both the client and server applications will use the standard HTTP
methods GET and POST to perform the operations outlined by this document.

A compatible server takes action based on the HTTP method called by a compatible client. The following HTTP methods must be honored as
follows.

® GET - gets the requested item or collection data in JSON or ATOM/XML format.
® POST - used in conjunction with X-HTTP-Method-Override header.

For POST Usage: While this is a non-standard approach, HTTP request header is the "de facto" standard for instructing a server to
override the method requested with the value supplied in the header (if supported).The approach is being taken to fully leverage the
existing capabilities within OData for our industry’s needs.

Where possible, we will leverage existing syntax that may be augmented. Where this is not possible, new extensions will be created and may be
proposed back to the OData standards group for inclusion in future releases.

In all cases, where an extension is made, a reference implementation will also be created and shared with the community.
The initial focus will be on HTTP GET for search.
The service output MUST support one of the following:

1. ATOM (XML)
2. JSON

The response format is defined by use of Content Negotiation (http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec12.html) and the Accept Header
may be used to define the desired data output. If Accept: */* is used the default response format is expected to be JSON. Additional formats may
be supported.

Copyright 2015 RESO Page 6

http://members.reso.org/display/AUTHSS/RETS+Web+API+Security+v1.0
http://members.reso.org/display/DD/DD+Files
http://www.odata.org/documentation/odata-version-4-0/
http://www.odata.org/documentation/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

Section 2 - Specification

This specification outlines the current, minimum set of functionality required by RESO as a subset of the OData V4 specification.

There is currently no reference implementation that we can go to for examples. For that reason, we highly recommend anyone not familiar with
OData to use the reference implementation provided by the OData community. Their resource list can be found here: OData Community Service

Endpoint.

Additionally, you can view the metadata of this reference implementation here: OData Community Reference Metadata.

The reference implementation is very useful to try out features and functionality of the OData specification even though it is not Real Estate

specific.

There are also some more advanced services which can be found here: OData Services

Finally, there are some excellent examples using the TripPinService using the PostMan application which can be found here: OData PostMan

Collection

2.1 Terminology

2.2 HTTP Protocol

2.3 URL Formatting

2.4 Search

2.5 Response Message Bodies

2.6 Standard Resources

2.1 Terminology

Table 1 -

Term
REST
Resource
RESO
Data
Dictionary

Standard
Resource

Custom
Resource

Metadata

Payload

Schema

MUST

Ter mi nol ogy
Definition
Representational State Transfer. For more information see: http://en.wikipedia.org/wiki/Representational_state_transfer

In a RESTful API a resource is an object with a type, associated data, relationships to other resources, and a set of methods that
may operate on it.

A uniform set of field names and data type conventions that set a baseline across the real estate industry for how real estate data
will be defined. See http://www.reso.org/data-dictionary.

A data source or collection of data that is represented using the definitions found in the RESO Data Dictionary.

A data source or collection of data that is represented using the something other than the RESO Data Dictionary. This may also be
localized data such as language localization.

Descriptive information about a data set, object or resource that helps a recipient understand how the data is formatted.

For purposes of the RESO community the term “payload” is synonymous with the OData term “resource.” A resource refers to the
object(s) you wish to retrieve in response from the server.

A way of logically defining, grouping, organizing and structuring information so it may be understood by different systems.

This word or the adjective "required" means that the item is an absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an implementation in order to be considered compliant. If the data is
available in the system AND the data is presented for search then it MUST be implemented in the manner described in the
specification.

Copyright 2015 RESO Page 7

http://www.odata.org/documentation/
http://services.odata.org/V4/OData/OData.svc/
http://services.odata.org/V4/OData/OData.svc/
http://services.odata.org/V4/OData/OData.svc/$metadata
http://www.odata.org/odata-services/
http://www.odata.org/getting-started/learning-odata-on-postman/
http://www.odata.org/getting-started/learning-odata-on-postman/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.reso.org/data-dictionary

SHOULD This word or the adjective "recommended" means that there may exist valid reasons in particular circumstances to ignore this item,
but the full implications should be understood and the case carefully weighed before choosing a different course. A feature that the
specification states SHOULD be implemented is treated for compliance purposes as a feature that may be implemented.

MAY This word or the adjective "optional" means that this item is truly optional. A feature that the specification states MAY be
implemented need not be implemented in order to be considered compliant. However, if it is implemented, the feature MUST be
implemented in accordance with the specification.

Out of This statement means that the specific topic has not been addressed in the current specification but may be addressed in future
Scope versions.
N/A This term means “not applicable” to the scope of this standard and will not be addressed by this standard specification.

2.2 HTTP Protocol

A compatible server implementation MUST use either HTTP or HTTPS as the protocol declared by the server URL. The version MUST be HTTP
1.1 or above. Even though OData may be written using HTTP 1.0, there are many limitations in the HTTP 1.0 specification that we want to avoid.
Therefore, we are limiting compatible implementations to HTTP Version 1.1 or above. For specific HTTP references, please see the Section 5 -
References section.

Since the RESO Web API requires that the RESO Web API Security v1.0.3 be used for authorization and authentication, we also require that all
server implementations must implement TLS Security. For specific TLS references, please see the Section 5 - References section.

2.2.1 Version Header

2.2.2 X-HTTP-Method-Override Header

2.2.1 Version Header

ODat a- Ver si on: [Versi on]
[Version] = MAJOR M NOR
The version header is used by the server to communicate the currently supported version of the specification.

If Client Requests No version: Server MUST return the current supported version

If Client Requests the Current version: Server MUST return the current version

If Client Requests an Older version that the server still supports: Server MUST return requested version

If Client Requests an Older version than the server supports: Server MUST return HTTP 400 Bad Request
If Client Requests a Newer version than the server supports: Server MUST return HTTP 400 Bad Request

Please see 2.5 Response Message Bodies for details on expected responses.

2.2.2 X-HTTP-Method-Override Header

The X-HTTP-Method-Override allows clients making an OData request with long filter/select combinations to use the POST method and set the
X-HTTP-Method-Override to GET to overcome limitations in firewalls or some web server implementations on the length of the request of the GET
Method. Servers SHOULD accept the X-HTTP-Method-Override to fix this limitation.

Server vendors may still reject the request if the override method does not correspond to an appropriate Method for the resource. For example, an
override of DELETE on a GET Method can be rejected. A second example of a PUT on a POST may be accepted.

2.3 URL Formatting

The RESO OData Transport defines a few standardized URL formatting requirements for ease of use and application interoperability. These
requirements are designed to permit standards-compliant applications and servers to interoperate in a pluggable manner requiring minimal
configuration. All service URL's must match OData V4 Part 2 Section 2 URL Components in addition to the additional recommendations
mentioned in this section.

2.3.1 Hostname
2.3.2 URI Stem
2.3.3 Data Systems Endpoint

2.3.4 Metadata Endpoint

Copyright 2015 RESO Page 8

http://members.reso.org/display/APISEC3
http://members.reso.org/display/API/2.5+Response+Message+Bodies
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html#_Toc406398071

2.3.5 Resource Endpoint
2.3.1 Hostname

The hostname of the URL is arbitrary and no naming convention is required. For the purposes of this standard the following example protocol and
hostname will be used for clarity.

http://odata.reso.org

2.3.2 URI Stem

The RESO OData Transport recommends the following URI stem naming convention to simplify client application interoperability. The URI Stem
is the system endpoint of the OData server as implemented by a service provider.

1. Service = http://odata.reso.org/reso/odata/
2. Resource = http://odata.reso.org/reso/odata/Resource
3. Resource Entity By ID = http://odata.reso.org/reso/odata/Resource('ID")

The /resosection denotes that a RESO standardized interface is provided.
The /odata section denotes a RESO OData Transport compliant interface is provided.

It is expected that if a client accesses the Service endpoint directly, that a response listing all the resources available is presented as per the
OData specification.

An ATOM example of this would be:

<service xm ns="http://ww. w3. org/ 2007/ app"
xm ns: aton="htt p://ww. w3. or g/ 2005/ At ont'
xm ns: mE"htt p: // docs. oasi s- open. or g/ odat a/ ns/ net adat a"
xm :base="http://odata.reso.org/reso/ odata/"
m context="http://odata.reso. org/reso/ odat a/ $net adat a" >
<wor kspace><atomtitle type="text">Default</atomtitle>
<col l ection href="Menbesr">
<atomtitle type="text">Menbers</atomtitle>
</col l ection>
<col l ection href="COfices">
<atomtitle type="text">Ofices</atomtitle>
</ col |l ection>
<col l ection href="Properties">
<atomtitle type="text">Properties</atomtitle>
</ coll ection>
<col | ection href="CpenHouses" >
<atomtitle type="text">OpenHouses</atomtitle>
</col |l ection>
<col l ection href="Medi a">
<atomtitle type="text">Medi a</atomtitle>
</ col | ecti on></ wor kspace>
</ service>

A JSON example would be:

Copyright 2015 RESO Page 9

@dat a. context: "http://odata.reso.org/reso/ odat a/ $net adat a",

val ue: [{nane: "Menbers", kind: "EntitySet", url: "Menbers"},
{nane: "Ofices", kind: "EntitySet", url: "COfices"},
{nane: "Properties", kind: "EntitySet", url: "Properties"},
{nane: "OpenHouses", kind: "EntitySet", url: "OpenHouses"},
{nane: "Media", kind: "EntitySet", url: "Media"},

2.3.3 Data Systems Endpoint

There will be a top level URI to expose the “Data Systems” end point. The Data Systems end point will allow a user to inspect the Data Systems
available on the service including the following details:

1. Specification Version - The version of the Transport Specification supported.

2. Data System Endpoint - The URI identifying the location of the service for that data system.

3. Available Resources - The list of available Standard or Custom Resources available in the data system.

4. Localizations of Resources - The list of available “localized” or “custom” resources that may not conform to the RESO Data Dictionary.

http://odata.reso. org/reso/ odat a/ Dat aSyst ens

This methodology permits a server to expose multiple systems as deemed appropriate. This may be used to describe a catalog of Data Systems
content which a client may use.

Please see the following section for more information: DataSystem Resource

2.3.4 Metadata Endpoint

The $metadata endpoint is inherently defined within the DataSystems resource. To get the metadata for a given DataSystem, a client is expected
to use the ServiceURi/$metadata endpoint for the DataSystem that is being accessed.

It is very important to note that a service provider may be supporting multiple systems which may each have a different set of metadata because
they may be providing data for different Data Dictionary versions or different RESO Api versions.

This being the case, it is expected that clients will first execute a call to a service provider's DataSystems resource to get the list of DataSystems
that are defined by the service provider. This will provide the client all the information on how to get the appropriate metadata for each
DataSystem and how to access the data for each Resource provided by that DataSystem.

Possible examples of a metadata request for a specific DataSystem would be:
http://odata. reso. or g/ RESQ ODat a/ $net adat a
http://odata. reso. or g/ RESQ ODat a/ SYS1/ $net adat a

http://odat a. reso. or g/ RESQ ODat a/ SYS2/ $net adat a

2.3.5 Resource Endpoint

The Resource endpoint is explicitly defined within the DataSystems resource as the ServiceURI that is output for each Resource defined within
each DataSystem. Resource endpoints may be within the same DataSystem or may refer to another DataSystem that is accessible.

Clients must not attempt to execute requests against a service provider without first querying the DataSystems resource to get the information
required to access each DataSystem.

Possible examples of a Resource endpoint would be:
http://odata.reso. org/ RESQ ODat a/ [Resour ce]
http://odata. reso. org/ RESQ ODat a/ SYS1/ [Resour ce]

http://odata.reso. org/ RESQ ODat a/ SYS2/ [Resour ce]

Copyright 2015 RESO Page 10

2.4 Search

Section 11 of the OData V4 specification provides full details about OData service requests and query support.
2.4.1 Search by Unique ID

2.4.2 Query Support

2.4.3 Data Types

2.4.4 The $filter Option

2.4.5 Lambda Operators

2.4.6 Literals

2.4.7 Geospatial Search Implementation Details

2.4.8 Annotations

2.4.9 Single Valued Lookups

2.4.10 Multi Valued Lookups

2.4.1 Search by Unique ID

Accessing a single item in a provided resource must adhere to the OData standard taking the following form:
https://odata.reso. org/ RESQ OData/ [Resource] (' [1D]")

The [ID] must contain content conforming to the resource key as described by the resource metadata. The [ID] section is the unique ID of the
requested item.

Note: You may request multiple records using the $filter parameter to perform a search.

2.4.2 Query Support

You can use OData queries to filter the items you get back. See System Query Option $filter for further details.

A client may retrieve a list of objects that match supplied search criteria. This is done using OData query parameters. The RESO OData Transport
explicitly supports the following parameters.

® S$select — MUST support
Selects desired resource elements to be returned.

® S$filter — MUST support
Filters returned items according to filter criteria.

® $top — MUST support
Designates the maximum number of matching items returned.

® $skip — MUST support
Designates the number of matching items to omit before returning any items. When using $skip, it is expected that the first query sent to
the server starts with a $skip=0 in order to allow servers wishing to implement consistent pagination an indication that they should
prepare to receive multiple requests with differing $skip values and matching $filter.

® S$orderby — MAY support
Designates the field used to order items returned.

® $expand — MAY support
Allows expansion of details from a related resource. Expand may only be used where the EDMX document for a Resource implements a
reference.

NOTE: A server may return HTTP 413 - Request Entity Too Large if the $filter or $orderby is too complex or large for the server to process.

NOTE: Field names are case sensitive when used in the $select, $filter, and $orderby parameters. Therefore you MUST respect case sensitivity
defined in the resource metadata.

Copyright 2015 RESO Page 11

http://www.odata.org/documentation/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_The_$filter_System

2.4.3 Data Types

Although OData provides a vast array of search functionality, this version of the specification only requires a compatible server to support the
following subset of Primitive Types as specified in the OData V4 Part 3 Section 4.4 Primitive Types. Microsoft has also provided a set of examples
and usage for all these data types which can be found here: Open Data Protocol by Example

Type Meaning RESO
Specific
Examples
Edm.Boolean Binary-valued logic Waterfront,
Pets
Allowed
Edm.Byte Unsigned 8-bit integer Beds
Edm.Date Date without a time-zone offset List Date,
Sale Date
Edm.DateTimeOffset Date and time with a time-zone offset, no leap seconds Open House
Start
Edm.Decimal Numeric values with fixed precision and scale Commission

Attribute Meaning

Precision ® |s the maximum number of significant digits allowed in the property’s value
® |t MUST be a positive integer
® |f no value is specified the decimal property has unspecified precision
® MUST be a non-negative integer between 0 and 12 for a temporal
property
Scale ® |s the maximum number of digits allowed to the right of the decimal point
®* May be a non-negative integer or "variable"
® Integer Value
® The number of digits to the right of the decimal point may
vary from O to the value of Scale
® The number of digits to the left of the decimal point may
vary from 1 to the value of (Precision - Scale). If Precision
== Scale, then a single 0 must precede the decimal point
® Scale must be <= Precision. If no value is specified, Scale
defaults to O
® Variable
® The number of digits to the right of the decimal point may
vary from zero to the value of the Precision
Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits) Latitude,
Longitude
Edm.Int16 Signed 16-bit integer Price
Edm.Int32 Signed 32-bit integer Price
Edm.Int64 Signed 64-bit integer Price
Edm.SByte Signed 8-bit integer Level
Edm.String Sequence of UTF-8 characters Remarks,
Area Names

Attribute Meaning

MaxLength ® |s the maximum length of the string

Edm.TimeOfDay Clock time 00:00-23:59:59.999999999999
Edm.Geography Abstract base type for all Geography types
Edm.GeographyPoint A point in a round-earth coordinate system

Copyright 2015 RESO Page 12

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html#_Toc406397940
https://msdn.microsoft.com/en-us/library/ff478141.aspx

Edm.GeographyLineString Line string in a round-earth coordinate system

Edm.GeographyPolygon Polygon in a round-earth coordinate system

Edm.GeographyMultiPoint Collection of points in a round-earth coordinate system

Edm.GeographyMultiLineString = Collection of line strings in a round-earth coordinate system

Edm.GeographyMultiPolygon Collection of polygons in a round-earth coordinate system

Edm.EnumType

An enumeration that can represent lists of data or a single data element of a specific Amenities,
enumeration ListingStatus

2.4.4 The $filter Option

Although OData provides a vast array of filter functionality, this version of the specification requires that a compatible server MUST support the
following subset of the Built-In Filter Operations from the OData V4 Part 1 Section 11.2.5.1.1 Built In Filter Operations section.

Operator

Comparison Operators

eq

ne

gt

has

Logical Operators

and

or

not

Description General Example

Equal Address/City eq 'Redmond'
Not equal Address/City ne 'London’
Greater than Price gt 20

Greater than or equal Price ge 10

Less than Price It 20

Less than or equal Price le 100

Has flags Style has Sales.Color'Yellow'
Logical and Price le 200 and Price gt 3.5
Logical or Price le 3.5 or Price gt 200
Logical negation not endswith(Description, milk’)

Grouping Operators

0

Precedence grouping (Price sub 5) gt 10

Similarly, this version of the specification requires that a compatible server MUST support the following subset of the Built-In Query Functions
from the OData V4 Part 1 Section 11.2.5.1.2 Built-in Query Functions section:

Function

String Functions
contains
endswith
startswith

tolower

toupper

Date Functions
year

month

Copyright 2015 RESO

Example

contains(CompanyName,'freds")
endswith(CompanyName,'Futterkiste")
startswith(CompanyName,'Alfr")
tolower(CompanyName) eq ‘alfreds futterkiste'

toupper(CompanyName) eq 'ALFREDS FUTTERKISTE'

year(BirthDate) eq O

month(BirthDate) eq 12

Page 13

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_Toc406398302
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_Toc406398302

day day(StartTime) eq 8

hour hour(StartTime) eq 1
minute minute(StartTime) eq O
second second(StartTime) eq 0

fractionalseconds second(StartTime) eq 0

date date(StartTime) ne date(EndTime)

now StartTime ge now()

Geo Functions

geo.distance geo.distance(CurrentPosition, TargetPosition)

geo.intersects geo.intersects(Position, TargetArea)

2.4.5 Lambda Operators

OData defines two operators that evaluate a Boolean expression on a collection. Both must be prepended with a navigation path that identifies a
collection. The argument of a lambda operator is a lambda variable name followed by a colon (:) and a Boolean expression that uses the lambda
variable name to refer to properties of the related entities identified by the navigation path.

Further details on Lambda Operators can be found in the OData V4 Part 2 Section 5.1.1.5 Lambda Operators.
2.4.6 Literals

It is expected that compliant implementations of the RESO Web API adhere to the OData V4 Part 2 Section 5.1.1.6 Literals section of the OData
specification with the following exceptions:

1. Support for $it
2. Support for $root

2.4.7 Geospatial Search Implementation Details

Geographic search MUST be supported using the following OData functions.

® geo.distance - Search for resources nearby
® geo.intersects - Search for resources within an area (intersection of point and area)

The geo.distance function takes two GeographyPoint objects as arguments. It is expected that the servers will allow a literal field name of type
GeographyPoint to be passed in for the first GeographyPoint and that the second geography point will be the center for a radius search where the
results of the geo.distance function can be compared to a specific distance. For example, a filter to ask the system to return data for all properties
that are within 10 miles of a given point the filter could be geo.distance(Location, geography'SRID=4326;Point(142.1 64.1") <= 10. Note that SRID
4326 works well for all of North America.

The geo.intersects function takes a GeographyPoint and a GeographyPolygon as arguments. It is expected that the servers will allow a literal field
name of type GeographyPoint to be passed in for the GeographyPoint argument so that the server can return a set of data where the specified
field in the resource is within the specified GeographyPolygon. This allows geospatial queries to function on a given resource and also allows a
resource to have multiple GeographyPoint data points and queries to specify a specific point to perform the operation on. For example, a filter to
as the system to return data for all properties that are within a polygon using the Location field could be: geo.intersects(Location, [Any
GeographyPolygon]).

Here is a good blog that describes Geospatial Properties.
2.4.8 Annotations
The metadata returned from a server may have Annotations as specified in the OData Common Schema Definition Language.

Note that Annotations are a useful way to provide more context to data and are also used in the RESO implementation to build out Multi-Valued
Lookups that have more than 64 items in them.

A very useful function of Annotations is that they can be used to get around limitations in Edm.EnumType that require only certain characters in
the Name field. The following example illustrates how we use Annotations to provide meaningful names for enumerations:

Copyright 2015 RESO Page 14

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html#_Toc406398149
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html#_Toc406398152
http://www.odata.org/blog/geospatial-properties/
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html

Define the StandardName Annotation

<ednx: Edmx Versi on="4.0">
<ednx: Ref erence
Uri="http://standards. reso.org/transport/odata/v0. 1/ RESO. ODat a. Met adat a. xm
| ">
<ednx: I nclude Alias="Core" Nanespace="Org.OData. Core.V1"/>
</ ednx: Ref er ence>
<ednx: Dat aSer vi ces>
<Schenma Nanespace="RESO. ODat a. Met adat a" >
<Annot ati on Ter m=" Core. Description">
<String>Terns for extending OData Metadata to acconmpbdate RESO specific
requirenent s</ Stri ng>
</ Annot ati on>
<Ter m Nanme=" St andar dNane" Type="Edm String" AppliesTo="EntityType
Property Enuniype Menber">
<Annot ati on Ter m=" Core. Descri pti on">
<String>The standard nane of the entity, property, enuneration, or
enuner ation val ue</ String>
</ Annot at i on>
</ Ter >
</ Schema>
</ ednx: Dat aSer vi ces>
</ ednx: Ednx>

The above annotation declares the term 'StandardName' so it can be used to describe an EntityType, Property, EnumType or enumeration
Member as needed.

Implementing 'Nice' names for EnumType Members

<?xm version="1.0" encodi ng="utf-8"?>
<ednx: Ednmx Versi on="4.0"
xm ns: ednx="http://docs. oasi s- open. or g/ odat a/ ns/ ednx" >

<ednx: Dat aSer vi ces>

<Schenma Nanespace="M. Property. Data"
xm ns="http://docs. oasi s- open. or g/ odat a/ ns/ ednt >
<EntityType Nane="M/Properties">
<Annot ati on Ter n¥"RESO. ODat a. Met adat a. St andar dNanme" String="Property"

/>

<Key>
<PropertyRef Nane="I1D"' />
</ Key>
<Property Name="ID"' Type="Edm I nt 32" Nul |l abl e="fal se">
<Annot ati on Ter n=" RESO. ODat a. Met adat a. St andar dNane" String="Property
D' />
</ Property>
<Property Name="Type" Type="My. Property. Data. Type" Null abl e="fal se">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Property
Type" />
</ Property>
<Property Nanme="Features" Type="M. Property. Dat a. Feat uresType"

Copyright 2015 RESO Page 15

Nul | abl e="true">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane"
String="Lot Features" />
</ Property>
</EntityType>

<EnuniType Nane="Recor dType" >
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane"
String="PropertyType" />
<Menmber Nane="RES"' Val ue="1">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane”
String="Residential Property" />
</ Menber >
<Menmber Nane="MJL" Val ue="2">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane”
String="Milti-Fanily Property" />
</ Menber >
<Menmber Nane="COM' Val ue="3">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Conmer ci al
Property" />
</ Menber >
</ Enunirype>

<EnuniType Name="Feat uresType" |sFlags='true' >
<Annot ati on Ter me" RESO. ODat a. Met adat a. St andar dNane"
String="Lot Features" />
<Menmber Nane="Adj acent to Wash" Val ue="1">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Adj acent
to Wash" />
</ Menber >
<Menmber Nane="Alley" Val ue="2">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Alley" />
</ Menber >
<Menber Nane="Auto_Ti mer H20 Back" Val ue="4">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Auto Ti ner
H20O Back" />
</ Menber >

[interimvalues onmitted for brevity]
<Menber Nane="Pool " Val ue="4611686018427387904" >
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Pool " />

</ Menber >
</ Enunilype>

Copyright 2015 RESO Page 16

</ Schema>
</ ednk: Dat aSer vi ces>
</ ednx: Ednmx>

Notice that in the above example, we can have nice StandardNames in many different places such as the field names of a resource and the
descriptions of single-valued or multi-valued Enumerations.

2.4.9 Single Valued Lookups

A Single Valued Lookup is a field that can have one and only one selection from a list of values. The Web API Implements Single Valued Lookup
fields using the OData data type of Edm.EnumType with an underlying type of Edm.Int32. The values returned for data of this Type MUST be
those that are identified in the RESO Data Dictionary as per the supporting EDMX metadata for the specific field in the Resource. No additional
selections for the field may be provided by a system. If additional selections are required, these MUST only be output in a Localized Resource
(see the DataSystem Resource section for more details about Localized Resources).

An example of a Single Valued Lookup might be:

...

<EnuniType Nane=" St andar dSt atus" Underlyi ngType="Edm | nt 32" >
<Menber Nanme="Active" Value="1" />
<Menber Nanme="Active Under Contract" Value="2" />
<Menber Name="Pendi ng" Val ue="3" />
<Menber Nane="Hol d" Val ue="4" />
<Menber Nane="W't hdrawn" Val ue="5" />
<Menber Nanme="C osed" Val ue="6" />
<Menber Nane="Expired" Val ue="7" />
<Menber Nanme="Cancel ed" Val ue="8" />
<Menber Nane="Del ete" Val ue="9" />
<Menmber Nane="Inconpl ete" Val ue="10" />
<Menmber Nane="Com ng Soon" Val ue="11" />
</ EnuniType>

...

Any server implementing a field that is an Edm.EnumType must strictly follow the definition of the enumeration adhering to both the Name and
Value provided by the standard EDMX document containing the specified type.

2.4.10 Multi Valued Lookups

A Multi-Valued Lookup is a field that can have one or more items selected from a list of values.

Some databases have an option of creating these kinds of fields as a bitmap fields and others do not. A bitmap field is a field where each bit in the
numeric value of the field represents a distinct value. These implementations allow for extremely fast performance and, as such, are often the
preferred method for dealing with Multi Valued lookups. Other database implementations either have an external reference table for a list of
values by way of a foreign key to such a table.

In order to satisfy both use-cases, servers can implement either method and clients must be able to deal with both implementations.

® 2.4.10.1 Multi Valued Lookups - Bitmap Fields
® 2.4.10.2 Multi Valued Lookups - Collections of Enumerations

2.4.10.1 Multi Valued Lookups - Bitmap Fields

A Bitmap Field Multi Valued Lookup is a field that can have one or more items selected from a list of values. Bitmap Multi Valued Lookups MUST
adhere to all the limitations enforced by the Single Valued Lookups with the addition of the IsFlags="true" attribute being specified which indicates
that a bit-map field implementation is being used to manage the lookup. The UnderlyingType will be Edm.Int32 for a Multi-Valued Lookup with 32
or fewer choices and Edm.Int64 for more than 32 and 64 or fewer choices. The special case of greater than 64 choices is described below.

An example of a Multi-Valued lookup might be:

Copyright 2015 RESO Page 17

<EnunType Name="Associ ati onFeel ncl udes" Underlyi ngType="Edm I nt 32"
| sFl ags="true" >
<Menmber Nane="Cabl e TV" Val ue="1" />
<Menmber Name="Eart hquake_l nsurance" Val ue="2" />
<Menmber Nane="El ectricity" Value="4" />
<Menber Nane="Gas" Val ue="8" />
<Menmber Name="Insurance" Val ue="16" />
<Menmber Nane="Mai nt enance_Exterior" Val ue="32" />
<Menmber Nane="Mi nt enance_G ounds" Val ue="64" />
<Menber Nanme="Pest Control" Val ue="128" />
<Menber Nanme="Security" Val ue="256" />
<Menber Nane="Sewer" Val ue="512" />
<Mermber Name="Snow Reroval " Val ue="1024" />
<Menber Nane="Trash" Val ue="2048" />
<Menmber Nanme="Utilities" Value="4096" />
<Menmber Name="Water" Val ue="8192" />
</ Enunilype>

If a Multi Valued Lookup has more than 64 choices, two or more Multi Valued Lookups will be defined and Annotations will be used to relate the
Multi Valued Lookup definitions so that they can be combined for display and selection. This is simply due to the limitation of the OData
implementation of EnumType when IsFlags is set to true.

At the time this document was being written, there are only two enumerations in the Data Dictionary 4 specification that require more than 64
items. To see how we would use Annotations to solve this problem, please examine the following example:

<?xm version="1.0" encodi ng="utf-8"?>
<ednx: Ednmx Versi on="4.0"
xm ns: ednx="http://docs. oasi s- open. or g/ odat a/ ns/ ednx" >
<ednx: Dat aSer vi ces>
<Schenma Nanespace="M. Property. Data"
xm ns="http://docs. oasi s- open. or g/ odat a/ ns/ ednt >
<EntityType Nane="M/Properties">
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. St andar dNanme" String="Property"
/>
<Key>
<PropertyRef Nanme="ID"' />
</ Key>
<Property Nanme="|D"' Type="Edm I nt32" Null abl e="fal se" />
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Property
D" />
<Property Nanme="PropertyType" Type="M. Property. Data. PropertyType"
Nul | abl e="f al se" />
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Property
Type" />
<Property Nane="Lot Features_1"
Type="M. Property. Dat a. Lot Features_1_Type" Null abl e="true" />
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. St andar dNane"
String="Lot Features" />
<Property Nane="Lot Feat ures_2"
Type="M. Property. Dat a. Lot Feat ures_2_Type" Nul |l abl e="true" />
<Annot ati on Ter n=" RESO. ODat a. Met adat a. St andar dNane"
String="Lot Features" />

Copyright 2015 RESO Page 18

</EntityType>

<EnunType Nanme="Lot Features_1 Type">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane"
String="Lot Features" />
<Menber Name="Adj acent_to_Wash" Val ue="1">
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Adj acent
to Wash" />
</ Menber >
<Menmber Name="All ey" Val ue="2">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane” String="Alley" />
</ Menber >
<Menmber Nanme="Auto_Ti mer H2O Back" Val ue="4">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Auto Ti ner
H20O Back" />
</ Menber >
[additional values onmitted for brevity]
<Menber Nane="Pool " Val ue="4611686018427387904" >
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Pool " />
</ Menber >
<Menber Name="Rear Yard" Val ue="9223372036854775808" >
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Rear Yard"
/>
</ Menber >
<Member Name="RearyrdLot" Val ue="18446744073709551616" >
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Rear Yard
Lot" />
</ Menber >
</ Enunilype>

<EnunType Nane="Lot Features_2_ Type">
<Annot ati on Ter me" RESO. ODat a. Met adat a. St andar dNanme" Stri ng="Lot
Features" />
<Member Name="RoughG- aded" Val ue="1">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Rough
Graded" />
</ Menber >
<Menmber Name="Rural Lot" Val ue="2">
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. St andar dNane" String="Rural Lot"
/>
</ Menber >
<Menmber Nanme="Security Entrance" Val ue="4">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" String="Security
Entrance" />
</ Menber >
[additional values onmitted for brevity]
<Menmber Name="W er Vi ewLot" Val ue="16777216">
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. St andar dNanme" String="\Water View
Lot" />
</ Menber >
<Menmber Nanme="Yrd W ring_Sys Back" Val ue="33554432">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNane" Stri ng="Yard
Wat eri ng System Back" />

Copyright 2015 RESO Page 19

</ Menber >
<Menmber Name="Yrd _Wring_Sys Front" Val ue="67108864">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dName" String="Yard
Watering System Front" />
</ Menber >
</ Enunilype>

Copyright 2015 RESO Page 20

</ Schema>
</ ednk: Dat aSer vi ces>
</ ednx: Ednmx>

The goal here is to use the StandardName of LotFeatures to tell a client that two separate Enumerations with different field names are related to
each other. A client presenting the RESO Data Dictionary value LotFeatures enumeration choices may choose to present the Data Dictionary field
LotFeatures as a single field instead of two fields, LotFeatures_1 and LotFeatures_2 based on the fact that they have the same StandardName. In
this case, the client will combine the LotFeatures_1 and LotFeatures_2 enumerations into a single display field LotFeatures in the client
application. A client MUST still submit queries to the server using the individual fields LotFeatures_1 and LotFeatures_2 to provide the
user-selected choices to the server. A client presenting search results for LotFeatures may choose to combine the LotFeatures_1 and
LotFeatures_2 data values into a single display field LotFeatures.

The example above also illustrates how to use Annotations to give a nice, human readable, name to Enumeration choices. This is necessary as
no spaces or special characters may be used in values for an enumeration.

This workaround was selected by the Transport Workgroup as the simplest way to maintain OData compatibility while allowing lists that have
more than 64 choices. The Transport Workgroup will be following up with the OData organization to see if this limitation can be removed so that
we can get around this workaround.

2.4.10.2 Multi Valued Lookups - Collections of Enumerations

A Multi Valued Lookup is a field that can have one or more items selected from a list of values. Multi-Valued Lookups MUST adhere to all the
limitations enforced by the Single Valued Lookups. A field that contains Multi-Valued lookups must make use of an Enumeration that has
IsFlags=false. The UnderlyingType of the enumeration must be either Edm.Int32 or Edm.Int64 depending on the size of the values that are being
returned.

A field that contains Multi-Valued Lookups based on the defined Enumeration must be defined as a Collection of Enumerations.

Unlike Bitmap Multi Valued Lookups, the values can be any valid number based on the Edm.Int32 or Edm.int64 data type and do not need to only
consist of values that represent each possible in the number.

Examples:

Example Enumeration Definition

<EnuniType Nanme="Associ ation_Anenities" |sFl ags="fal se"

Under | yi ngType="Edm | nt 64" >

<Menber Name="Banquet_ Facilities" Value="50041194459" /> <Annotati on

Ter m=" RESQO. CDat a. Met adat a. MRI S. St andar dNane" <Stri ng>Banquet
Facilities</String> </ Annotation>

<Menber Nane="Barbecue" Val ue="50041194461" />

<Menber Nanme="Bi king Trails" Val ue="50041194463" /> <Annotati on

Ter m=" RESO. ODat a. Met adat a. MRI S. St andar dNane" <String>Bi king Trail s</ String>
</ Annot at i on>

</ Enunilype>

...

Field Using Enumeration

<Property Name="Associ ati onAnmenities"

Type="Col | ecti on(RESO. ODat a. Met adat a. MRI S. Associ ati on_Amenities)">
<Annot ati on Ter m=" RESO. ODat a. Met adat a. MRI S. St andar dNane" >
<String>Association Anenities</String> </ Annotation>

</ Property>

Copyright 2015 RESO Page 21

http://members.reso.org/display/WebAPIv103/2.4.9+Single-Valued+Lookups

Query: Get Rows with both Biking Trails and Gated Parking

https://services.dev.nris.com RESO ODat a/ MRl S/ Property?$format =j son&$filte
r=(Associ ati onAneni ties/any(a: a eq

RESO. ODat a. Met adat a. MRl S. Associ ation_Anenities'Biking Trails') and

Associ ati onAmeniti es/any(a: a eq

RESO. ODat a. Met adat a. MRI S. Associ ati on_Ameni ti es' Gat ed_Par ki ng'))

...

Query: Get Rows with either Biking Trails and Gated Parking

https://services.dev.nris.conm RESQO ODat a/ MRl S/ Propert y?$f or mat =j son&$filte
r=(Associ ati onAneni ti es/any(a: a eq

RESO. ODat a. Met adat a. MRl S. Associ ati on_Amenities' Biking_Trails') or

Associ ati onAneniti es/any(a: a eq

RESO. ODat a. Met adat a. MRI S. Associ ati on_Anenities' Gated_Parking'))

2.5 Response Message Bodies

2.5.2 HTTP Response Codes

2.5.3 Error Message Bodies

2.5.2 HTTP Response Codes

A compatible server implementation MUST return a valid HTTP status code for each request indicating the status of the request when
ATOM-XML is requested. If the response was not successful the server MAY include an error message in the body of the HTTP response. There
is a defined response body for JSON but there is no explicit requirement in the OData standard.

See Section 2.5.3 for response details.

Table 3 - HITP Response Codes

Code Short Detail
Description
200 OK Returned by GET method when retrieving a record or records. If no records are found an empty result set is
returned.
202 Accepted Returned by GET method to indicate that the server received the request but that it may take time to fulfill a
response.
400 Bad Request Returned by GET method calls when the data fails validation and more detail on the error may be found in the body

of the response.
403 Forbidden Returned when the selected Authentication mechanism is not successful.
404 Not Found Returned when a GET cannot find a resource or collection.

413 Request Entity Returned at the discretion of the server. Used to indicate when the server cannot handle the complexity of the

Too Large specific request.

415 Unsupported Returned when a media format requested is not supported by the system.
Media

429 Too Many Returned at the discretion of the server. Used to indicate that the user / licensee has met or exceeded their allowed
Requests usage (transactions per second, per day, per month, etc.

Copyright 2015 RESO Page 22

http://members.reso.org/display/API/2.5.3+Error+Message+Bodies

500 Internal Server Returned when an unexpected error is encountered and more detail may be provided in the response body.
Error

501 Not Returned when the requested method is not available.
Implemented

2.5.3 Error Message Bodies

When the client makes a request which cannot be satisfied or produces an error condition, a compliant server MUST follow the OData error
handling guidelines.

Full details of this mechanism may be found in the ATOM and JSON format specification at the following URLs:
JSON Error Response
ATOM Error Response
The following example includes a client request and a compliant server error response for reference.
Example Client Request:
http://odata.reso. org/reso/ odat a/ Menbers. svc/ Menber s?$or der by=Menber | D&t op=5&$ski p=5
Example Server Response:

Sample 1 - JSON Error Message Body from Server

...

R

f "error": {

"code": "501",

"message": "Unsupported functionality",
; “target": "query",

"details": |

| {

; "code": "301",

"target": "$skip",

; "message": "Resource does not support the $skip paraneter”
i }

; 1,

; "innererror": {

"trace": [...],

i "context": {...}

}

; }

!

Sample 2 - ATOM Error Message Body from Server

Copyright 2015 RESO Page 23

http://docs.oasis-open.org/odata/odata-json-format/v4.0/errata03/os/odata-json-format-v4.0-errata03-os-complete.html#_Toc453766668
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/cs02/odata-atom-format-v4.0-cs02.html#_Toc372792829

<error xm ns="http://docs. oasi s-open. or g/ odat a/ ns/ net adat a" >
<code>501</ code>
<nessage>Unsupported functionality</nmessage>
<t arget >query</target>
<detail s>
<detail >
<code>301</ code>
<nessage>Resour ce does not support the $skip paraneter</nessage>
<t ar get >$ski p</t ar get >
</ detail >
</ detail s>
</error>

Servers are encouraged to put as much detail in the message body of errors to give users the best chance of understanding and dealing with the
errors.

2.6 Standard Resources

In general, it is expected that the RESO Web API be able to output data as per the Standard Data Dictionary.
This section describes any standard resources that are to be implemented to aid the end-user in using the system.
The RESO OData Transport only defines one data resource for use with the transport standard, the DataSystem resource.

In addition to the mandatory DataSystem resource, at least ONE of the following resources from the RESO Data Dictionary Specification MUST
be supported by any compliant server:

1. Property - a “Property” resource based on the RESO Data Dictionary Specification.
2. Member - a “Member” resource based on the RESO Data Dictionary Specification.
3. Office - an “Office” resource based on the RESO Data Dictionary Specification.
4. Media - a “Media” resource based on the RESO Data Dictionary Specification.

Servers MAY support more than one version of the RESO Data Dictionary and may also define additional resources to support specific use
cases. For example, a server could provide a “Mobile” resource that returns a condensed list of fields to reduce the size of a response. Servers
may also support “custom” or “localized” resources that may not follow the RESO Data Dictionary Specification as long as they are identified as
such in the DataSystem resource.

2.6.1 Data System Resource

This resource MAY be provided by all implementations. The goal of this resource is to provide a list of URI's for one or more systems or sets of
MLS Data that may be available from a single RESO OData provider. If a system is providing data for a single system, then it is expected that
there be a single Data System output when the Data System end point is navigated to. The XML Schema that defines the Data System resource
can be found here: Appendix 4 - Data System XML Schema

To get the list of DataSytems provided by a server, the URI Stem of the server followed by /DataSystems is used.

The Data System resource defines the following top level fields:

Field Name Description

ID The unique key of the Data System. This can be used in a query for the specific Data System being requested. ie: http
:/lodata.reso.org/reso/odata/DataSystems(5) would return information about the Data System with the primary key of
5.

Name A unique identifier that describes the Name of the Data System.

ServiceURI This is to be considered the URI Stem of the Data System. For example, if a system were to support data from two

separate systems named SYS1 and SYS2, they would be expected to have two separate Data System records which
might have the following two different ServiceURI's: http://odata.reso.org/reso/odata/SYS1 and http://odata.reso.org/re
so/odata/SYS2. This essentially defines two separate systems which can have different $metadata by appending the
ServiceURI with the $metadata keyword. If a system is designed to only support a single Data System, then the
ServiceURI should be the same as the URI Stem of the server.

DateTimeStamp The last modification date of the $metadata within the Data System.

Copyright 2015 RESO Page 24

http://odata.reso.org/RESO/OData/DataSystem(5)
http://odata.reso.org/RESO/OData/DataSystem(5)
http://odata.reso.ort/RESO/OData/SYS1
http://odata.reso.org/RESO/OData/SYS2.
http://odata.reso.org/RESO/OData/SYS2.

TransportVersion This is expected to be the API Version of the RESO Web API that has been implemented and must be in the form:
VersionMajor.VersionMinor.VersionRelease of the RESO Web API.

DataDictionaryVersion The Data Dictionary Version of the Data System. It is expected that all non-localized resources provided by this Data
System adhere to this version of the Data dictionary. This version must be in the form: VersionMajor.VersionMinor of
the RESO Data Disctionary version that has been implemented by the Data System.

Resources The list of Resources with the data fields as defined in the Data System Resources Collection table. All Resources
that are custom and specific to the Data System are to be identified as a Localizations and not as Resources since
Resources may only be those as defined in the RESO Data Dictionary.

The Data System Resources Collection defines the following fields:

Field Name Description
Name The unique name of the Resource within the Data System.

ResourcePath This is the ResourcePath that is to be appended after the ServiceURI of the Data System when getting data for that
resource. This is generally expected to be the same as the Name of the Resource, but is allowed to be different for flexibility
purposes. For example, if the ServiceURI is http://odata.reso.org/reso/odata/SYS1, the following URI would be used to get
data for the 'Property' resource: http://odata.reso.org/reso/odata/SYS1/Property.

Description A description of the Resource expected to be a human readable explanation of what data is provided by the resource.

DateTimeStamp Data type is Edm.DateTimeOffset (the offset portion carries both hours and minutes).
For example: 2015-12-01T00:00:00-08:00

Localizations The list of related Resources that provide localized data that is related to this Resource. The data fields for this collection are
defined in the Localizations Collection table. A Localization can be either a list of complementary fields that further define the
base Resource or they may be a complete set of fields that include all the data in a localized format. If the list is a
complimentary set of data, it is expected that an appropriate OData reference be defined in the metadata of the Localization.

The Localizations Collection defines the following fields:

Field Name Descrpition
Name The unique name of the Localization within the Data System.

ResourcePath This is the ResourcePath that is to be appended after the ServiceURI of the Data System when getting data for this localized
resource. This is generally expected to be the same as the Name of the Localization, but is allowed to be different for
flexibility purposes. For example, if the ServiceURI is http://odata.reso.org/reso/odata/SYS1, the following URI would be
used to get data for the ‘Residential’ localization: http://odata.reso.org/reso/odata/SYS1/Residential.

Description. A description of the Localization expected to be a human readable explanation of what data is provided by the resource.

DateTimeStamp The last modification date of the $metadata within the Localization.

The Data System resource should not be confused with the $metadata OData command that can be used at the ServiceURI of the server. The
$metadata is standard OData metadata that defines all resources supported at the ServiceURI along with the fields within the resource and all
relationships between resources in the system. It is important to note that a system supporting multiple different Data Systems may only provide
limited metadata if the $metadata qualifier is used at the URI Stem of the server. Typically, on a server that supports more than one system, the
$metadata at the URI Stem of the server will only return the metadata describing the Data System resource. On a server supporting only a single
system, the $metadata qualifier at the URI Stem of a server may return all the metadata for all data within the system. For portability, it is strongly
recommended that clients first execute a request for the Data System (ie: http://odata.reso.org/reso/odata/DataSystems) to get the full list of
systems being supported and then use the $metadata qualifier on the ServiceURI that is returned for the Data System that is being worked with.
This ensures functionality with both multi-system implementations and single-system implementations.

2.6.2 Data Dictionary Resources

The Web API is intended to facilitate data exchange within a market and across different markets. This makes data sharing more efficient and
creating applications that use the data less expensive. To accomplish this, many common field terms, data types and some classes of values are
expressed in the RESO Data Dictionary, a separate related standard from RESO.

The Web API is intended, but not restricted, to use resources named in the RESO Data Dictionary. These resources have specific names for

Copyright 2015 RESO Page 25

http://odata.reso.ort/RESO/OData/SYS1,
http://odata.reso.ort/RESO/OData/SYS1,
http://odata.reso.org/OData/SYS1/Property
http://odata.reso.org/RESO/OData/DataSystem(5)

certain fields in a resource and specific names for values in certain cases for enumerations.

This section provides guidance to implementors of this standard on how to handle the resources, fields and enumerations of the RESO Data
Dictionary to maximize interoperability between implementations.

The standard MAY enforce some or all of these guidance items in the certification testing. Please refer to the RESO Web API Server Testing
Rules v1.0.3 for further information.

This section uses the terminology of the Odata V 4.0.1 standard. Please refer to Odata V4.0 Data Model for more information. The Odata term is
written in italics.

Odata Term Data Dictionary Term Example
Entity Set Resource Properties
Entity Property
declared property field ListingKey
Enumeration enumeration type Status
enumeration named constant enumeration value Sold

2.6.2.1 Entity Set Names

When an implementation has an Entity Set that is substantially similar to a resource name defined in the Data Dictionary, the implementation
MUST use the Data Dictionary resource name for the corresponding Entity Set name. Implementations MAY have additional Entity Sets that are
not defined in the Data Dictionary to meet the needs of the implementation.

2.6.2.2 declared property Names

Within a Entity Set that matches a Data Dictionary resource, when an implementation has a declared property name that is substantially similar to
a field name defined in the Data Dictionary, the implementation MUST use the Data Dictionary field name for the declared property name in the
XML and Json representation of the Entity Set. When a declared property does not have an equivalent Data Dictionary field, an Annotation tag
SHOULD be used to indicate that the declared property is not part of the compliance set for the Data Dictionary. Failure to use an Annotation tag
may result in a compliance failure or warning.

Client applications SHOULD inspect any declared property with respect to data type, and where a data type does not match the expected Data
Dictionary value, the application SHOULD expect to find the correct data type in the Annotation tag. Client applications may need special handling
to deal with these cases while the industry transitions historical data to new data types.

Within a Data Dictionary Entity Set, many implementations will have one or more declared property is not part of the Data Dictionary standard. In
these cases, implementors and their customers are encouraged to have the declared property included in the Data Dictionary where appropriate.
Some declared property will remain specific to an implementation based on locale, business rules or other considerations. declared property of
this type MUST have an Annotation attached to indicate that this declared property is specific to the implementation.

Within an Entity Set that is not part of any Data Dictionary resource, implementors are encouraged to identify any declared property names that
are identical to one defined for a different Data Dictionary resource and to use that declared property name in this Entity Set. The Entity Set SHO
ULD have an Annotation attached to the Entity Set to indicate that this is specific to the implementation. The declared property SHOULD have an
Annotation attached to each to indicate that this is specific to the implementation. Implementors may omit the Annotation when the declared
property matches the Data Dictionary field. Implementors MUST NOT define a declared property that has a semantically different meaning that a
Data Dictionary field name.

2.6.2.3 Enumeration

Within an Entity Set, when an implementation has an Enumeration that is substantially similar to an enumeration type in the Data Dictionary, the
implementation MUST use the Data Dictionary name for the Enumeration name.

2.6.2.4 Enumeration named constant

Within an Entity Set, when an implementation has an enumeration with a named constant that is substantially similar to an enumeration value in
the Data Dictionary, the implementation MUST use the Data Dictionary enumeration value for the enumeration named constant name.

2.6.2.5 Extending Entity Set, Enumeration and Enumeration named constant
In many implementations, specific Entity Set, Enumeration and enumeration named constant that are not part of the Data Dictionary will be

required. As described in 2.6.2.2 for Entity Names, extensions are indicated by an Annotation on the Entity Set, Enumeration or enumeration
named constant.

Copyright 2015 RESO Page 26

http://members.reso.org/display/WebAPIv103TestingRules/RESO+Web+API+Server+Testing+Rules+v1.0.3
http://members.reso.org/display/WebAPIv103TestingRules/RESO+Web+API+Server+Testing+Rules+v1.0.3
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html#_Toc453752198

2.6.2.6 Large Enumerations

Odata in the current and previous versions has a limitation on the size of a multi-value enumeration. Refer to section 2.4.8 Annotations for further
details.

2.6.2.7 Annotation Term Namespace

To simplify processing, this standard suggests that the Annotation Term represent a namespace and follow a recommended form. In the
examples below, the form suggested has a root of RESO.OData.Metadata. Each implementation will append the MLSName as appropriate for the
instance.

2.6.2.8 Examples

...

1. Data Dictionary Compliant

<EntityType Nane="Property"> <!-- A Data Dictionary Resource Nane -->
<Key>

<PropertyRef Name="ListingKey" />
</ Key>
<Property Nanme="ListingKey" Type="Edm I nt32" Nullable="false" /> <l-- A
Data Dictionary Entity Nane -->

...

...

2. Data Dictionary Non-Compliant Data Type

<EntityType Nane="Property"> <!-- A Data Dictionary Resource Nane -->
<Key>
<Pr opertyRef Nanme="Li stingKey" />
</ Key>
<Property Nanme="ListingKey" Nullable="fal se" Type="Edm String"
MaxLengt h="255"> <!-- A Data Dictionary Entity Name -->
<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dNanme" Stri ng="Li sti ngKey" />
<l-- Non conpliant data type -->
</ Property>

...

3. Data Dictionary Non-Compliant

<EntityType Nane="ListingProperty"> <l-- Not a Data Dictionary Resource
Name, but it is a Property -->
<Key>
<Pr opertyRef Nanme="ID"' />
</ Key>
<Property Name="ID"' Nul | abl e="fal se" Type="Edm I nt32"> <!-- should be
Li stingKey Data Dictionary Entity Nane -->
</ Property>

Copyright 2015 RESO Page 27

...

4. Data Dictionary Compliant Extension - Entity Set

<EntityType Nane="Hot sheet">
<Annot ati on Ter n¥" RESQO. ODat a. Met adat a. MLSNane" />

</EntityType>

5. Data Dictionary Compliant Extension - declared property

i <EntityType Name="Property"> <!-- A Data Dictionary Resource Name -->

. <Key>

<PropertyRef Name="ListingKey" />

. </ Key>

i <Property Nane="ListingKey" Type="Edm I nt32" Nullable="false" /> <l-- A

i Data Dictionary Entity Nane -->

<Property Nanme="Di st anceFr onVol cano" Type="Edm I nt32" > <!-- NOT a Data

. Dictionary Entity Nane -->

. <Annotation Ter me"RESO. ODat a. Met adat a. M_.SNane" />

i </Property>

6. Data Dictionary Compliant Enumeration

i <EnunType Nane="Country">

<Menber Nanme="UnitedStates" Value="0"> <!-- Spaces are not allowed in

~ Qane -->

<Annot ati on Ter m=" RESO. CDat a. Met adat a. St andar dName" String="US" /> <I--
¢ Accepted/ Conmpliant DD Value -->

; <Annot ati on Ter m=" RESO. ODat a. Met adat a. MLSNanme" String="United States"
. /> <!-- The M_S Preferred Val ue -->

<l-- Open Question: I'mnot sure if two <Annotation> elenents are

. allowed in an EDWX -->

; </ Menber >

i <Menber Nanme="Canada" Val ue="1">

<Annot ati on Ter m=" RESO. ODat a. Met adat a. St andar dName” String="CA" /> <!--
. Accept ed/ Conpl i ant DD Val ue -->

</ Menber >

© </ EnunType>

Copyright 2015 RESO Page 28

...

7. Data Dictionary Enumeration alternate name

<EnuniType Name="St andar dSt at us" >

<Menmber Name="Active" Value="0" /> <!-- Accepted/ Conpliant DD Value -->

<Menmber Nane="ActiveUnderContract" Value="1"> <!-- Spaces are not allowed
in @ame -->

<Annot ati on Ter m=" RESO. CDat a. Met adat a. St andar dName" String="Active

Under Contract" />

</ Menber >
</ EnuniType>

...

8. Data Dictionary MLS specific value

<EnuniType Name="PropertySubType">
<Menmber Nanme="Apartnent" Value="0" /> <!-- Accepted/ Conpliant DD Val ue

-->
<Menmber Name="Boat Slip" Value="1"> <!-- Spaces are not allowed in @\anme
-->
<Annot ati on Ter m" RESO. ODat a. Met adat a. St andar dNane" String="Boat Slip"
/>
</ Menber >

<Menber Nanme="M sSpeci fi cPST" Val ue="1"> <!-- Acceptabl e Non-DD Val ue in
Open Enuneration Field -->
<Annot ati on Ter m=" RESO. ODat a. Met adat a. MLSNane" String="M.S Specific
PropertySubType" />
</ Menber >
</ Enunilype>

Copyright 2015 RESO Page 29

Section 3 - Security

Authentication and authorization is not covered in this document. It is expected that implementations will follow the standard recommendation
from the RESO Web API Security v1.0.3.

Copyright 2018 RESO. By using this document you agree to the RESO End User License Agreement (EULA) posted here.
(http://reso.org/eula)

Section 1 - Intro to OpenID Connect

® 1.1.1 Terminology
® 1.1 - OpenlD Connect Relying Party
® 1.1.1 OpenlD Connect Relying Party Libraries
® 1.1.2 Discover Endpoints
¢ 1.1.3 Authorization Code Flow
® 1.1.3.1 Step 1 - Authorize
® 1.1.3.2 Step 2 - Callback
® 1.1.3.3 Step 3 - DATA!
® 1.1.3.4 Step 4 - Refresh
® 1.1.4 Implicit Flow
® 1.1.5 Hybrid Flow
® 1.2 - OpenlD Connect RETS Server Provider
® 1.2.1 OpenlD Connect Provider Libraries
1.2.2 Discovery service
1.2.3 Register New Relying Parties
1.2.4 Authorize Endpoint
1.2.5 Token Endpoint
1.2.6 UserInfo Endpoint
1.2.7 Verify Access Tokens
1.2.8 Refreshing an Access Token
® 1.2.8.1 An expired access token returns HTTP 401
® 1.2.8.2 Relying Party makes a request to the RETS Server Provider's token endpoint
® 1.2.8.3 Relying Party saves the access and refresh tokens
® 1.2.9 Implicit Flow
® 1.2.10 Hybrid Flow
® 1.2.11 Extra Security Measures

Copyright 2015 RESO Page 30

http://members.reso.org/display/APISEC3/RESO+Web+API+Security+v1.0.3
http://reso.org/eula
http://reso.org/eula
http://members.reso.org/display/APISEC2/Section+1+-+Intro+to+OpenID+Connect
http://members.reso.org/display/APISEC2/1.1.1+Terminology
http://members.reso.org/display/APISEC2/1.1+-+OpenID+Connect+Relying+Party
http://members.reso.org/display/APISEC2/1.1.1+OpenID+Connect+Relying+Party+Libraries
http://members.reso.org/display/APISEC2/1.1.2+Discover+Endpoints
http://members.reso.org/display/APISEC2/1.1.3+Authorization+Code+Flow
http://members.reso.org/display/APISEC2/1.1.3.1+Step+1+-+Authorize
http://members.reso.org/display/APISEC2/1.1.3.2+Step+2+-+Callback
http://members.reso.org/pages/viewpage.action?pageId=25527711
http://members.reso.org/display/APISEC2/1.1.3.4+Step+4+-+Refresh
http://members.reso.org/display/APISEC2/1.1.4+Implicit+Flow
http://members.reso.org/display/APISEC2/1.1.5+Hybrid+Flow
http://members.reso.org/display/APISEC2/1.2+-+OpenID+Connect+RETS+Server+Provider
http://members.reso.org/display/APISEC2/1.2.1+OpenID+Connect+Provider+Libraries
http://members.reso.org/display/APISEC2/1.2.2+Discovery+service
http://members.reso.org/display/APISEC2/1.2.3+Register+New+Relying+Parties
http://members.reso.org/display/APISEC2/1.2.4+Authorize+Endpoint
http://members.reso.org/display/APISEC2/1.2.5+Token+Endpoint
http://members.reso.org/display/APISEC2/1.2.6+UserInfo+Endpoint
http://members.reso.org/display/APISEC2/1.2.7+Verify+Access+Tokens
http://members.reso.org/display/APISEC2/1.2.8+Refreshing+an+Access+Token
http://members.reso.org/display/APISEC2/1.2.8.1+An+expired+access+token+returns+HTTP+401
http://members.reso.org/display/APISEC2/1.2.8.2+Relying+Party+makes+a+request+to+the+RETS+Server+Provider%27s+token+endpoint
http://members.reso.org/display/APISEC2/1.2.8.3+Relying+Party+saves+the+access+and+refresh+tokens
http://members.reso.org/display/APISEC2/1.2.9+Implicit+Flow
http://members.reso.org/display/APISEC2/1.2.10+Hybrid+Flow
http://members.reso.org/display/APISEC2/1.2.11+Extra+Security+Measures

Section 2 - FAQ

Section 4 - Authors

Section 5 - Revision List

Section 6 - Appendices

® 6.1 Use Case Diagrams

6.1.1 SP (Service Provider) to SP/IdP (Identity Provider)

6.1.2 SP to IdP to SP Typical three-way authorization

6.1.3 SP to SP/IdP Transparent three-way authorization

6.1.4 SP to SP/IdP Transparent, recurring "on behalf of" authorization
6.1.5 2-legged Client-Server Auth

6.1.6 4-legged Federated ldentities

® 6.2 Resources and Links

6.2.1 Help Guides and Introductions
6.2.2 Library Demos and Examples
6.2.3 Identity-as-a-Service Providers

Copyright 2015 RESO Page 31

http://members.reso.org/display/APISEC2/Section+2+-+FAQ
http://members.reso.org/display/APISEC2/Section+4+-+Authors
http://members.reso.org/display/APISEC2/Section+5+-+Revision+List
http://members.reso.org/display/APISEC2/Section+6+-+Appendices
http://members.reso.org/display/APISEC2/6.1+Use+Case+Diagrams
http://members.reso.org/pages/viewpage.action?pageId=25527739
http://members.reso.org/display/APISEC2/6.1.2+SP+to+IdP+to+SP+Typical+three-way+authorization
http://members.reso.org/pages/viewpage.action?pageId=25527741
http://members.reso.org/pages/viewpage.action?pageId=25527743
http://members.reso.org/display/APISEC2/6.1.5+2-legged+Client-Server+Auth
http://members.reso.org/display/APISEC2/6.1.6+4-legged+Federated+Identities
http://members.reso.org/display/APISEC2/6.2+Resources+and+Links
http://members.reso.org/display/APISEC2/6.2.1+Help+Guides+and+Introductions
http://members.reso.org/display/APISEC2/6.2.2+Library+Demos+and+Examples
http://members.reso.org/display/APISEC2/6.2.3+Identity-as-a-Service+Providers

Section 4 - Authors

Author Company

Scott Petronis Onboard Informatics
Matthew McGuire ~ Corelogic

Sergio Del Rio Templates for Business, Inc.
Fred Larsen UtahRealEstate.com

James McDaniel UtahRealEstate.com

Robert Gottesman RESO

RESO Transport Workgroup

Copyright 2015 RESO Page 32

Section 5 - References

Table 4 - Docunent References

Description

REST

Open Data Protocol or “OData”
OData V4

OData V4 - Part 1 - Protocol

OData V4 - Part 2 - URL Conventions

OData V4 - Part 3 - Common Schema Definition
Language

Geospatial Support in OData

HTTP Protocol 1.1

HTTP Protocol 2.0

Transport Layer Security (TLS) (Encryption for
HTTP support)

Copyright 2015 RESO Page 33

Link

http://en.wikipedia.org/wiki/Representational_state_transfer

http://www.odata.org/

http://www.odata.org/documentation
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-partl-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html

http://www.odata.org/blog/geospatial-data-support-in-odata/

Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
® https://tools.ietf.org/html/rfc7230

Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

® https://tools.ietf.org/html/rfc7231

Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests
® https://tools.ietf.org/html/rfc7232

Hypertext Transfer Protocol (HTTP/1.1): Range Requests
® https://tools.ietf.org/html/rfc7233

Hypertext Transfer Protocol (HTTP/1.1): Caching
® https://tools.ietf.org/html/rfc7234

Hypertext Transfer Protocol (HTTP/1.1): Authentication
® https://tools.ietf.org/html/rfc7235

Hypertext Transfer Protocol Version 2 (HTTP/2)
® https://tools.ietf.org/html/rfc7540

HPACK: Header Compression for HTTP/2
® https://tools.ietf.org/html/rfc7541

The Transport Layer Security (TLS) Protocol Version 1.2
® https://www.ietf.org/rfc/rfc5246.txt

Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS)

® https://tools.ietf.org/html/rfc7525
OWASP TLS implementation guide

® https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
SSL Labs TLS Deployment Best Practices

® https://www.ssllabs.com/downloads/SSL_TLS Deployment_Best_Practices.pdf

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.odata.org/
http://www.odata.org/documentation
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://www.odata.org/blog/geospatial-data-support-in-odata/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7541
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc7525
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf

Section 6 - List of Tables & Figures

Section 6 - List of Tables & Figures

Tables

Table 1- Terminology

Table 2 - Data Types

Table 3 - Logical Operators
Table 4 - HTTP Response Codes
Table 5 - Document References

Table 6 - Use Cases

Samples

Sample 1 - Error Message Body from Server

Sample 2 - OData XML EDMX instance of the schema

Sample 3 - OData XML (ATOM) encapsulated instance of the schema for reference
Sample 4 - OData JSON encapsulated instance of the schema for reference
Sample 5 - Select a single data system

Sample 6 - Select a single data system w/JSON

Sample 7 - How do | look at the metadata for a specific service? (URI endpoint)

Copyright 2015 RESO Page 34

http://members.reso.org/display/TD/2.4.4+Logical+operators
http://members.reso.org/display/WebAPIv103/Appendix+4+-+DataSystem+XML+Schema#Appendix4-DataSystemXMLSchema-sample2
http://members.reso.org/display/WebAPIv103/Appendix+4+-+DataSystem+XML+Schema#Appendix4-DataSystemXMLSchema-sample3
http://members.reso.org/display/WebAPIv103/Appendix+4+-+DataSystem+XML+Schema#Appendix4-DataSystemXMLSchema-sample4
http://members.reso.org/display/WebAPIv103/2+-+Select+a+single+data+system#id-2-Selectasingledatasystem-sample5
http://members.reso.org/display/WebAPIv103/2+-+Select+a+single+data+system#id-2-Selectasingledatasystem-sample6
http://members.reso.org/pages/viewpage.action?pageId=23396935#id-3-HowdoIlookatthemetadataforaspecificservice?-sample7

Section 7 - Revision List

Revision Comment Revision Revision
Date By
Addition of Section 2.6 2015-03-19 Sergio Del
Rio
Fixed Discrepancies in Appendix 3 - DataSystem XML Schema 2015-03-19 = Sergio Del
Rio
Updated to OData V4 throughout document 2015-04-01 Sergio Del
Rio
Section 2.2 - Cleaned up References to ATOM and JSON 2015-04-01 Sergio Del
Rio
Section 2.2.1 - Removed RESO prefix to OData-Version header 2015-04-01 Sergio Del
Rio
Section 2.3.3 - Now reference the new Section 2.6 2015-04-01 Sergio Del
Rio
Section 2.5.2 - Addition of 202, 413 and 429 response codes 2015-04-01 Sergio Del
Rio
Section 2.4.2 - Added $expand and changed $filter to MAY 2015-04-01 Sergio Del
Rio
Section 2.4.3 - Cleaned up the Enumeration wording 2015-04-03 Sergio Del
Rio
Section 2.2 - Cleaned up more, left the specifics to the OData V4 specification instead of trying to detail them 2015-04-03 Sergio Del
here. Rio
Section 2.4 - Major Changes - Revised Entire Section 2015-04-03 Sergio Del
Rio
Section 2.5.3 - Added comment encouraging servers to add good error message text. 2015-04-03 = Sergio Del
Rio
Section 2.5.1 - Deleted - Moved to 2.6 Standard Resources section 2015-04-03 Sergio Del
Rio
Section 3 - Updated link and included page to API Security v1.0.1 2015-04-06 Cal
Heldenbrand
Section 2.3.3, 2.3.4 and 2.3.5 - Edited to better explain the DataSystem resource and how it impacts clients. 2015-05-11 Sergio Del
Rio
Added SRID to Geo section and added extra link to Data Types section. 2015-05-26 Sergio Del
Rio
Revised bad links as OData moved their main documentation link yet again. Revised several sections to include a 2015-08-02 Sergio Del
few more details and examples. Also added a few more places to get some useful OData examples from. Rio
Section 2.4.9 - Clarified wording. 2015-08-11 Sergio Del
Rio
Section 2.4.10 - Clarified wording. 2015-08-11 Sergio Del
Rio
Section 1.3 - Changed wording of output formats. 2015-08-12 Sergio Del
Rio
Section 2.4.10 - Fixed Typo 2016-04-28 Sergio Del
Rio
RCP - WEBAPI-001: Modified: Section 2.4.3 2017-03-22 Sergio Del
Rio

Copyright 2015 RESO Page 35

RCP - WEBAPI-002: Modified: Appendix 4 - DataSystem XML Schema, 2 - Select a single data system, 3 - How

do I look at the metadata for a specific service?

RCP - WEBAPI-003:

RCP - WEBAPI-004:

RCP - WEBAPI-005:

RCP - WEBAPI-006:

RCP - WEBAPI-007:

RCP - WEBAPI-008:

RCP - WEBAPI-009

Modified: 2.2 HTTP Protocol, Section 5 - References

Modified: 2.2 HTTP Protocol, Section 5 - References

Modified: 2.6.2 - Replaced Entire Section

Modified: 2.6.1 - Changed MUST to MAY

Modified: 2.4.4 - Removed time row in table

Modified: Many clean-up changes as per the RCP.

: Modified 2.4.10 as per the RCP.

Copyright 2015 RESO Page 36

2017-03-22

2017-03-27

2017-03-27

2017-08-17

2017-08-17

2017-08-17

2017-08-18

2017-08-21

Sergio Del
Rio

Sergio Del
Rio, Geoff
Rispin

Sergio Del
Rio, Geoff
Rispin

Sergio Del
Rio
Sergio Del
Rio
Sergio Del
Rio
Sergio Del
Rio

Sergio Del
Rio

Section 8 - Appendices

Appendix 1 - Use Cases

Appendix 2 - Basic Query Examples

Appendix 3 - Advanced Query Examples

Appendix 4 - DataSystem XML Schema

Appendix 5 - Approved RCPs

Appendix 1 - Use Cases

MUST = Must support this functionality.
SHOULD = Should support this functionality based on proposed approach.

MAY = May support this functionality but no proposed approach. Roadmap item.

N/A = Not available in first release and no proposed approach. May be a roadmap item.

Table 5 -

UC Category

ID#

1 001 - Listing
Search

2 001 - Listing
Search

3 001 - Listing
Search

4 001 - Listing
Search

5 001 - Listing
Search

6 001 - Listing
Search

7 001 - Listing
Search

8 003 - Other
Search

9 005 - Group
Search

10 010 -
Authentication

11 010 -
Authentication

12 010 -
Authentication

13 010 -
Authentication

14 020 - Media

Use Cases

Use Cases / Functionality

Listing search by geography (name)

Listing search by point + radius

Listing search by boundary

Listing search by address + radius

Listing search by specific address

Listing search by specific street

Listing search by map bounds

Retrieve listing details by ID

Get count of listings by geography (name)

Authentication

Authorization

Authorization

Authorization

Get specific media for this specific listing
(agent) or record

Copyright 2015 RESO Page 37

Example

Akron, Ohio

(long, lat) 20 unit = miles

polygon, multi-polygon

123 Main St. Akron Ohio 20 unit=miles

123 Main St. Akron Ohio

Main St. Akron Ohio

Upper left, lower right, what falls within

Give me the details of this specific listing

How many listings are there in Chicago, IL (ZIP Code, County,

Neighborhood, etc.)

Give me access to the API

What data do | have access to?

What capabilities do | have access to?

Give me access to this specific data.

Give me the main photo, thumbnail, etc. (urls)

Required

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

MUST

N/A

N/A

N/A

N/A

MUST

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

020 - Media

030 -
Metadata

030 -
Metadata

030 -
Metadata

030 -
Metadata

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

040 - Agent /
Office

050 - Open
House

050 - Open
House

050 - Open
House

050 - Open
House

050 - Open
House

050 - Open
House

050 - Open
House

050 - Open
House

Get all media for this group of listings
(agent) or record

What data dictionaries does the server
support

MLS Rules

MLS Rules, retrieve specific info

Record rules

Agent or office search by geography
(name)

Agent or office search by point + radius

Agent or office search by boundary

Agent or office search by address + radius

Agent or office search by specific address

Agent or office search by geography
(name)

Agent or office search by map bounds

Retrieve agent or office details by ID

Get count of agents/offices by geography
(name)

Open house search by date range and
geography (name)

Open house search by date range and
point + radius

Open house search by date range and
boundary

Open house search by date range and
address + radius

Open house search by date range and
specific address

Open house search by date range and
specific street

Open house search by date range and
map bounds

Retrieve open house details by date range
and ID

Copyright 2015 RESO Page 38

Give me the main photo urls for all these listings

Can | request 1.0, 1.1, 1.2, etc., names? What other resources are

supported (non-RESO)?

What are the specific rules for this MLS?

Give me the disclaimer, logo, copyright, etc.

What can | do with this specific record?

Akron, Ohio

(See lines 1-9)

(long, lat) 20 unit = miles

(See lines 1-9)

polygon, multi-polygon

(See lines 1-9)

123 Main St. Akron Ohio 20 unit=miles
(See lines 1-9)

123 Main St. Akron Ohio

(See lines 1-9)

Akron, Ohio

(See lines 1-9)

Upper left, lower right, what falls within
(See lines 1-9)

Give me the details of this specific agent or office
(See lines 1-9)

How many agents/offices are there in Chicago, IL
(See lines 1-9)

Akron, Ohio

(See lines 1-9)

(long, lat) 20 unit = miles

(See lines 1-9)

polygon, multi-polygon

(See lines 1-9)

123 Main St. Akron Ohio 20 unit=miles
(See lines 1-9)

123 Main St. Akron Ohio

(See lines 1-9)

Main St. Akron Ohio

(See lines 1-9)

Upper left, lower right, what falls within
(See lines 1-9)

Give me the details of this specific open house

(See lines 1-9)

MUST

MUST

N/A

N/A

N/A

MUST

SHOULD

SHOULD

SHOULD

SHOULD

MUST

SHOULD

MUST

MAY

MUST

SHOULD

SHOULD

SHOULD

SHOULD

MAY

SHOULD

MUST

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

050 - Open
House

060 -
Statistics

080 - System
080 - System
001 - Listing

Search

001 - Listing
Search

001 - Listing
Search

001 - Listing
Search

001 - Listing
Search

001 - Listing
Search

001 - Listing
Search

001 - Listing
Search

070 - Resourc
e

070 -
Resource

070 -
Resource

011 - Edit

020 - Media

001 - Listing
Search

001 - Listing
Search

Get count of open houses by date range
and geography (name)

Search by Statistics

Manage Pagination

Retrieve system capabilities, metadata

Simple result sortation

Advanced sort

Preferential sort

Search by multiple boundaries

Search in boundary intersection

Saved search

Alerts

Exclude listings with specific attributes

Request Just IDs (Keys)

Request Defined Resource

Request Specific Fields

Modify specific listing attributes

Retrieve additional documents pertaining
to a listing or other record.

Keep my local database synchronized
(replication) against a remote data store
via an API|

Aggregate data from multiple sources for
local storage

Appendix 2 - Basic Query Examples

This appendix provides a set of example queries using OData V4 and the specific RESO resources discussed in this document. This is intended

How many open houses are there in Chicago, IL
(See lines 1-9)

Count of listings with price reductions between 5-10% in the last 30 days in
specified zip codes

Identify the number of records per page and the specific page they would
like to get back.

Query system to determine what types of resources, search capabilities,
record limits and other constraints there may be.

Allow the user to select the desired sort based on a single field (e.g. <field>
ascending or descending)

Allow the user to apply multiple sort rules on multiple fields (e.g. sort by this,
then by this)

Bring "my" listings to the top then sort the rest by the simple or advanced
sort criteria

Bring back listings that are within any of the provided boundaries.

Bring back listings that are within the boundary created by the intersection of
two or more boundaries

"Push" content to the user based on pre-selected "search" criteria

Alert a "subscriber" when a listing becomes available in a specific area.

| don't want short sales or beach front

I only want to bring back the IDs of the records matching my request.

I want to bring back a specific resource (e.g., Full IDX, Mobile, VOW,
Syndication, etc.) for the records matching my request.

I want to bring back only the specific fields | indicate for the records matching
my request.

As an agent | want to modify specific listing attributes from my mobile device.

As an agent | want to retrieve documents such as disclosures, HOA minutes
and other related documents pertaining to a listing. (This is another type of
media)

As an application developer | want to be able to request updates to my local
data from one or more MLSs

As an application developer | want to be able to request updates to my local
data from one or more MLSs and keep track of source details

N/A

Out of
Scope
MUST
MUST
MUST
MUST
Out of
scope
MUST
MUST
Out of

scope

Out of
scope
MUST

MUST

MUST
MUST
Out of

scope

MUST

Out of
scope

Out of
scope

to highlight various common use cases, not to describe all the possible queries that may be executed. It is important that all URL's must be
properly URL Encoded when they are sent to the server. We have intentionally not done this in the examples in order to make the examples
more human readable.

1 - Request the list of Data Systems

2 - Select a single data system

3 - How do | look at the metadata for a specific service?

4 - How do | retrieve data using this metadata?

5 - Get a single Property

Copyright 2015 RESO Page 39

6 - Select specific field values

7 - Filter by field value

8 - Filter by multiple field values

9 - Get the first five Members

10 - Get the second five Members

11 - Get the top ten Residential properties within 1 mile of a specific point ordered by distance

12 - Get all the properties with a price range of $250k to $500k within a specific area drawn on map (polygon)
13 - Get all the properties with a price range of $250k to $500k within the map on the screen (polygon)
14 - Get all properties with price range of $250k to $500k within a complex drawn area on map (multi-polygon)
15 - Get all the Residential properties within a half mile of a specific road (linestring)

16 - Request only IDs

17 - Get all the properties with a listing price less than $300K

18 - Get all the properties with a listing price greater than $300K

19 - Get all the properties with a listing price of $300K

20 - Query using boolean to find all properties that are short sales

21 - Combine multiple criteria in a search

22 - Get records back in a certain order

23 - Get a count of records

24 - Get all members whose first name starts with ‘Joh’

25 - Get all members whose last name ends with ‘ith’

26 - Get all members whose last name contains the string ‘ohns’

27 - Get all members whose first name is ‘James’ or ‘Adam’ and who are active

28 - Get all properties that were listed in the year 2013

29 - Get all properties that were listed in May of 2013

1 - Request the list of Data Systems

To get the complete list of DataSystems provided by a server, append /DataSystem to the URI Stem of the server.
An example of this would be:
http://odata. reso. or g/ RESQ ODat a/ Dat aSyst em

Each Data System provided by the service will be listed as <entry> items. The client may select a single DataSystem using the ID of the desired
DataSystem.

2 - Select a single data system

http://odata. reso. org/ RESQO ODat a/ Dat aSyst en(' RESO_M.S') ?f or nat =at om

Copyright 2015 RESO Page 40

The client selects a specific single Data System. The resulting XML for this is verbose so only the relevant parts of the response are shown here.

Sanmple 5 - Select a single data system

<entry>
<i d>http://odata.reso. org/ Dat aSyst em svc/ Dat aSyst em(' RESO_ ML.S') </ i d>
<cat egory term="RESO OData. Transport . Dat aSyst enf
scheme="http://schemas. m crosoft.conf ado/ 2007/ 08/ dat aser vi ces/ schenme" />
<link rel="edit" title="DataSystenl' href="DataSysten(' RESO M.S')" />
<title />
<updat ed>2013- 11- 22T19: 13: 50Z</ updat ed>
<aut hor >
<name />
</ aut hor >
<content type="application/xm">
<m properties>
<d: Nane>RESO_M_S</ d: Nane>
<d: Servi ceURl >http://odata. reso. or g/ Dat aSyst em svc/ </ d: Ser vi ceURl >
<d: Dat eTi meSt anp m type="Edm Dat eTi ne">2013- 11- 22T14: 13: 50. 3810781- 05: 00</ d: Dat eTi neSt anp>
<d: Transport Ver si on>0. 9</ d: Tr ansport Ver si on>
<d: Resources mtype="Col | ecti on(RESO. ODat a. Tr ansport . Resour ce) ">
<d: el ement >
<d: Nane>Pr operty</d: Name>
<d: Resour cePat h>Pr opert y</ d: Resour cePat h>
<d: Descri pti on>RESO St andard Property Resource</d: Descri ption>

<d: Dat eTi meSt anp m type="Edm Dat eTi ne">2013- 11- 22T14: 13: 50. 3810781- 05: 00</ d: Dat eTi meSt anp>

http://odata. reso. or g/ RESQ ODat a/ Dat aSyst en{' RESO MLS') ?$f or nat =j son

The same content is available in JSON format as well and the above example will look like the following one in JSON format.

Sanple 6 - Select a single data system w JSON

Copyright 2015 RESO Page 41

http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://odata.reso.org/DataSystem.svc/
http://odata.reso.org/Properties.svc

{
"odata. netadata": "http://odata.reso. org/ Dat aSyst em svc/ $net adat a#Dat aSyst e @l enent ",

"Nanme": "RESO M.S',

"ServiceURI ": "http://odata.reso. org/DataSystem svc/",
"Dat eTi meSt anp": "2013-11-22T17: 41: 34. 8131432- 05: 00",
"TransportVersion": "0.9",

"Resources": [{

"Name": "Property",

"Resour cePath": "Property",

"Description": "RESO Standard Property Resource",

"Dat eTi meSt anp": "2013-11-22T17: 41: 34. 8131432- 05: 00",

.etc...

3-How do | look at the metadata for a specific service?

For a server that implements a single system, the metadata can be retrieved by adding the $metadata argument to the URI Stem of the server as
follows:

http://odata. reso. or g/ RESQ ODat a/ $net adat a
If the server is a single-system implementation, then this should return the metadata for all resources exposed by that system.

On the other hand, if the server supports multiple systems, all you should expect to receive is the metadata of the standard DataSystem resource.
This might look something like the following:

Copyright 2015 RESO Page 42

<ednx: Edmx xnl ns: ednx="htt p://docs. oasi s- open. or g/ odat a/ ns/ ednx"
Versi on="4.0">

<ednx: Dat aSer vi ces>

<Schema xm ns="htt p://docs. oasi s- open. or g/ odat a/ ns/ edn{
Nanespace="ODat aSer vi ce" >

<EntityType Nane="Dat aSysteni >

<Key>

<PropertyRef Name="1D' />

</ Key>

<Property Nanme="ID' Type="Edm I nt32" Null abl e="fal se" />
<Property Nanme="Nanme" Type="Edm String" />

<Property Nanme="ServiceURI " Type="Edm String" />

<Property Nanme="Dat eTi neSt anp" Type="Edm Dat eTi neCf fset" />
<Property Name="Transport Version" Type="Edm | nt32" />

<Property Nanme="DataDi cti onaryVersion" Type="Edm | nt32" />
<Property Nanme="Resources" Type="Col | ecti on(CODataService. Resource)" />
</EntityType>

<Conpl exType Name="Resource">

<Property Nanme="ID' Type="Edm I nt32" Null abl e="fal se" />
<Property Nanme="Resourcel D' Type="Edm I nt32" Nul | abl e="fal se" />
<Property Nanme="Nanme" Type="Edm String" />

<Property Nanme="ServiceURI " Type="Edm String" />

<Property Nanme="Description" Type="Edm String" />

<Property Name="Dat eTi neSt anp" Type="Edm Dat eTi neCf fset" />
<Property Nanme="Local i zati ons" Type="Col | ecti on(ODat aServi ce. Local i zati on)"
/>

</ Conpl exType>

<Conpl exType Nanme="Local i zati on">

<Property Nanme="Resourcel D' Type="Edm I nt 32" Nul | abl e="fal se" />
<Property Name="d asslI D' Type="Edm I nt 32" Nul | abl e="fal se" />
<Property Name="Nane" Type="Edm String" />

<Property Nanme="Description" Type="Edm String" />

<Property Name="Servi ceURl" Type="Edm String" />

<Property Name="Dat eTi neSt anp” Type="Edm Dat eTi neCf fset” />

</ Conpl exType>

</ Schema>

<Schema xm ns="htt p://docs. oasi s- open. or g/ odat a/ ns/ ednf
Nanespace="Defaul t" >

<Enti t yCont ai ner Name="Cont ai ner">

<EntitySet Name="DataSystens" EntityType="0DataServi ce. DataSystent />
</ Enti tyCont ai ner >

</ Schema>

</ ednx: Dat aSer vi ces>

</ ednx: Ednx>

For servers that support multiple systems, the metadata for each individual system can be obtained by using the ServiceURI of the System
followed by the $metadata argument, which might look like this:

http://odata. reso. or g/ RESQ ODat a/ SYS1/ $net adat a

This is now expected to output the metadata for all resources that are supported by that specific System, including all localizations.

Copyright 2015 RESO Page 43

4 - How do | retrieve data using this metadata?

Once you have the metadata for a given system, a client may begin interacting with the server to search for the desired data for any supported
resource.

This is accomplished by using the ServiceURI that was used to get the metadata, followed by a path to the resource being searched for.
Specific search examples are provided following this section in the appendix.

5 - Get a single Property

http://odata. reso. or g/ RESQ ODat a/ SYS1/ Property(' Listingld3')?$f or mat =at om

Here is a truncated example response for the request above.

Sample 9 - Get Single Property return ATOM XM

<?xm version="1.0" encodi ng="utf-8"?>

<entry xml :base="http://odata.reso.org/Properties.svc/"

xm ns="http://ww.w3. or g/ 2005/ At ont'

xm ns: d="http://schemas. m crosoft.conm ado/ 2007/ 08/ dat aser vi ces"

xm ns: me"http://schemas. m crosoft. conf ado/ 2007/ 08/ dat aser vi ces/ net adat a"

xm ns: georss="http://ww. georss. or g/ georss" xm ns:gm ="http://ww. opengi s. net/gm ">
<id>http://odata.reso.org/ Properties.svc/Properties('Listingld3)</id>
<cat egory term="CorelLogi c. Dat aServi ce. RESO. Property"

scheme="http://schemas. m crosoft. conf ado/ 2007/ 08/ dat aser vi ces/ schene" />
<link rel="edit" title="Property" href="Properties('Listingld3)" />

<title />

<updat ed>2013- 11- 14T21: 27: 24Z</ updat ed>
<aut hor >
<name />

</ aut hor >

<content type="application/xm">
<m properties>

<d: | D>Li sti ngl d3</d: | D>

<d: AboveG adeFi ni shedArea mtype="Edm Si ngl e">3</ d: AboveG adeFi ni shedAr ea>
<d: AboveG adeFi ni shedAr eaSour ce>AboveG adeFi ni shedAr eaSour ce3

</ d: AboveG adeFi ni shedAr eaSour ce>

<d: AboveG adeFi ni shedAr eaUni t s>AboveG adeFi ni shedAr eaUni t s3

</ d: AboveG adeFi ni shedAr ealni t s>

.etc...

The client may change this to JSON as well as follows:
http://odata.reso. org/ RESQ ODat a/ SYS1/ Property(' Li stingld3')?$fornmat =j son

This will return the following example result again truncated for brevity.

Sanmpl e 10 - Change the response to JSON

Copyright 2015 RESO Page 44

"odata. netadata": "http://odata.reso.org/Properties.svc/ $net adat a#Properties/ @l ement",
"I D': "Listingld3",
"AboveG adeFi ni shedArea": 3,
"AboveG adeFi ni shedAr eaSpeci fied": fal se,
" AboveG adeFi ni shedAr eaSource": "AboveG adeFi ni shedAr eaSour ce3",
" AboveG adeFi ni shedAreaUni ts": "AboveG adeFi ni shedAr eaUni t s3",
"AccessibilityFeatures":

["Accessi bilityFeaturesl",

"Accessi bilityFeatures2",

"Accessi bilityFeatures3"],
" Addi ti onal Parcel sDescription": "Additional Parcel sDescription3",
"Addi tional Parcel sYN': "Additional Parcel sYN3",
"Approval Status": "Approval Status3",
"Architectural Style": "Architectural Style3",

.etc...

6 - Select specific field values
http://odata. reso. or g/ RESQ ODat a/ SYS1/ Menber ?$sel ect =Menber Last Narme, Menber Fi r st Narme, Menber | D

Note: All names in the $select option are case-sensitive to match the names of elements provided by the resource.

7 - Filter by field value

http://odata.reso. org/ RESQ ODat a/ SYS1/ Menber ?$fi | t er=(Menber Last Nane eq 'Smith')

Note: All names in the $filter option are case sensitive to match the names of elements provided by the resource.

8 - Filter by multiple field values

http://odata. reso. or g/ RESQ ODat a/ SYS1/ Menber ?$fi | t er=(Menber Fi rst Name eq ' Joe' and MenberLast Nane eq
"Smith').

Note: Query strings MUST be URL encoded where appropriate by a compliant client.

9 - Get the first five Members

htt p://odat a. reso. or g/ RESQ ODat a/ SYS1/ Menber ?$or der by=Menber | DSt op=5

10 - Get the second five Members

http://odata. reso. or g/ RESQ ODat a/ SYS1/ Menber ?$or der by=Menber | D&t op=5&$ski p=5
Note: The implementation of $top and $orderby is defined by the server and may restrict what values may be used in either option. A compliant

client SHOULD use the $orderby query to sustain consistency between requests, however a compliant server is not required to guarantee
consistent results between requests.

11 - Get the top ten Residential properties within 1 mile of a specific point ordered by distance
http://odata.reso. org/ RESQ ODat a/ Property?$filter=/PropertyType/ Nane eq "Residential" and

geo. di stance(Location, PO NT(-127.89 45.23)) It 1&$orderby=geo. di stance(Locati on, PO NT(-127.89
45. 23)) &$t op=10

Copyright 2015 RESO Page 45

12 - Get all the properties with a price range of $250k to $500k within a specific area drawn on map
(polygon)

http://odata.reso. org/ RESQ ODat a/ Property?$filter=ListPrice gt 250000 and ListPrice |t 500000 and
geo.intersects(Location, POLYGON((-127.01 45.50,-127.00 45.49,-127.01 45.49,-127.00 45.50)))

13 - Get all the properties with a price range of $250k to $500k within the map on the screen (polygon)

http://odata.reso. org/ RESQ ODat a/ Property?$filter=ListPrice gt 250000 and ListPrice It 500000 and
geo. i ntersects(Location, POLYGON((-127.02 45.08,-127.02 45.38,-127.32 45.38,-127.32 45.08,-127.02 45.08)))

14 - Get all properties with price range of $250k to $500k within a complex drawn area on map
(multi-polygon)
http://odata. reso. org/ RESQ ODat a/ Property?$filter=ListPrice gt 250000 and ListPrice It 500000 and

geo. i ntersect s(Locat i on, MULTI POLYGON(((- 127. 02 45. 08, - 127. 023 45.38, - 127. 32 45. 38, - 127. 32 45. 08, - 127. 02
45.08)), ((-127.12 45.18,-127.12 45.28,-127.22 45.28,-127.22 45.18,-127.12 45.28))))

15 - Get all the Residential properties within a half mile of a specific road (linestring)
http://odata.reso. org/ RESQ ODat a/ Property?$filter=PropertyType/ Nane eq "Residential" and

geo. di stance(Location, LINESTRI NG (-118.62 34.22, -118.61 34.22, -118.61 34.21, -118.62 34.2, -118.62
34.22)) It 0.5

16 - Request only IDs

http://odata. reso. or g/ RESQ ODat a/ Property?$filter=ID

17 - Get all the properties with a listing price less than $300K

http://odata. reso. org/ RESQ ODat a/ Property?$filter=ListPrice It 300000

18 - Get all the properties with a listing price greater than $300K

http://odata. reso. org/ RESQ ODat a/ Property?$filter=ListPrice gt 300000

19 - Get all the properties with alisting price of $300K

http://odata. reso. org/ RESQ ODat a/ Property?$filter=ListPrice eq 300000

20 - Query using boolean to find all properties that are short sales

http://odata. reso. or g/ RESQ ODat a/ Property?$filter=ShortSale eq true

21 - Combine multiple criteria in a search

http://odata.reso. org/ RESQ ODat a/ Property?$filter=ListPrice gt 250000 and ListPrice |t 500000

22 - Get records back in a certain order

http://odata.reso. org/ RESQ ODat a/ Property?$filter=ListPrice It 300000&$orderby=Li stPrice desc

Copyright 2015 RESO Page 46

23 - Get a count of records

http://odata.reso. org/ RESQO ODat a/ Property?$filter=ListPrice It 300000&$i nlinecount =al | pages

24 - Get all members whose first name starts with ‘Joh’

http://odata. reso. or g/ RESQ ODat a/ Menber ?$fi | t er =st art swi t h(Menber Fi r st Nane, 'Joh")

25 - Get all members whose last name ends with ‘ith’

http://odata. reso. or g/ RESQ ODat a/ Menber ?$fi | t er =endswi t h(Menber Last Nane, 'ith")

26 - Get all members whose last name contains the string ‘ohns’

http://odat a. reso. or g/ RESQ ODat a/ Menber ?$fi | t er =i ndexof (Menber Last Narme, ' ohns')

27 - Get all members whose first name is ‘James’ or ‘Adam’ and who are active

http://odata. reso. org/ RESQ ODat a/ Menber ?$f il ter=(Menber Status eq 'Active' and (MenberFirstName eq ' Janes'
or MenberFirstNanme eq ' Adani))

28 - Get all properties that were listed in the year 2013

http://odata.reso. org/ RESQ ODat a/ Property?$filter=year(Li stDate) eq 2013

29 - Get all properties that were listed in May of 2013

http://odata.reso. org/ RESQO ODat a/ Property?$filter=year(ListDate) eq 2013 and nonth(ListDate) eq 5

Appendix 3 - Advanced Query Examples

Copyright 2015 RESO Page 47

Appendix 4 - DataSystem XML Schema

Figure 1 - DataSystem XML Schema

<?xm version="1.0" encodi ng="UTF- 8" ?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Namespace="ht t p: / / ww. r eso. or g/ RESQ Dat aSyst enf
xm ns:tns="http://ww.reso. org/ RESQ Dat aSyst ent'

el enent For nDef aul t =" unqual i fi ed">

<conpl exType nane="Dat aSyst ent' >
<sequence>
<el enent nane="Nane" type="tns: Nane"></el ement >
<el enent nane="ID"' type="tns:|D'></el enent >
<el enent nane="Servi ceUR " type="anyURl "></el enent >
<el ement nane="Dat eTi neSt anp" type="tns: Dat eTi neSt anp" ></ el enent >

<el enent nane="Dat aDi cti onaryVersi on"
type="t ns: Dat aDi cti onar yVersi on"></ el ement >

<el enent nane="Transport Versi on" type="tns: Transport Versi on"></ el enent >
<element name="Resources" type="tns:Resources"></element>
</ sequence>
</ conpl exType>
<conpl exType nanme="Resources">
<sequence>
<el ement nane="Resource" type="tns: Resource"
m nCccur s="1" maxCccur s="unbounded" ></ el enent >
</ sequence>
</ conpl exType>
<conpl exType nane="Resource">
<sequence>
<el enent nane="Nane" type="tns: Nane"></el enent >
<el enent nane="Resour cePat h" type="tns: Resour cePat h"></ el enent >
<el ement nane="Descri ption" type="tns: Description"></el enent>
<el enent nane="Dat eTi meSt anp" type="tns: Dat eTi neSt anp" ></ el ement >
<el enent nane="Local i zations" type="tns:Localizations"></el ement>
</ sequence>
</ conpl exType>
<conpl exType name="Local i zati ons" >
<sequence>
<el enent nane="Local i zation" type="tns:Localization"
m nCccur s="0" nmaxQccur s="unbounded" ></ el enent >
</ sequence>

</ conpl exType>

Copyright 2015 RESO Page 48

http://www.w3.org/2001/XMLSchema
http://www.reso.org/RESO/DataSystem

<conpl exType nanme="Local i zati on">
<sequence>
<el enent nane="Nane" type="tns: Nane"></el ement >
<el enent nane="ResourcePat h" type="t hs: Resour cePat h"></ el enent >
<el enent nane="Description" type="tns:Description"></el emrent>
<el ement nane="Dat eTi neSt anp" type="tns: Dat eTi neSt anp" ></ el enent >
</ sequence>
</ conpl exType>
<si npl eType nanme="|D"'>
<restriction base="string"></restriction>
</ si npl eType>
<si npl eType nanme="Nane" >
<restriction base="string"></restriction>
</ si npl eType>
<si npl eType nanme="Resour cePat h">
<restriction base="string"></restriction>
</ si npl eType>
<si npl eType nane="Servi ceURl ">
<restriction base="anyURl "></restriction>
</ si npl eType>
<si npl eType nane="Descri ption">
<restriction base="string"></restriction>
</ si npl eType>
<si npl eType nane="Dat eTi neSt anp" >
<restriction base="dateTi me"></restriction>
</ si npl eType>
<si npl eType nanme="Tr ansport Versi on">
<restriction base="string"></restriction>
</ si npl eType>
<si npl eType nane="Dat aDi cti onaryVersi on">
<restriction base="string"></restriction>
</ si npl eType>

</ schema>

The following is a sample OData XML EDMX instance of the schema for reference.

Figure 2 - OData XML EDMX instance of the schema

Copyright 2015 RESO Page 49

<ednx: Edmx xml ns: ednx="htt p://schemas. m crosoft.com ado/ 2007/ 06/ ednx" Versi on="1.0">
<ednx: Dat aServi ces xm ns: n="http://schemas. m crosoft.con ado/ 2007/ 08/ dat aser vi ces/ net adat a"

m Dat aSer vi ceVer si on="3. 0" m MaxDat aSer vi ceVer si on="3. 0" >

<Schema xm ns="http://schemas. m crosoft.com ado/ 2009/ 11/ edn Namespace="RESO. ODat a. Tr ansport ">

<EntityType Nanme="Dat aSysteni >

<Key>
<PropertyRef Nanme="I|D'/>
</ Key>
<Property Nanme="Nane" Type="Edm String"/>
<Property Nanme="Servi ceURI " Type="Edm String"/>
<Property Nanme="DateTi meSt anp" Type="Edm DateTi meCf fset" Null abl e="fal se"/>
<Property Name="Transport Version" Type="Edm String"/>
<Property Nanme="DataDi ctionaryVersion" Type="Edm String"/>
<Property Nanme="Resources" Type="Col | ecti on(RESO ODat a. Transport. Resource)" Nul | abl e="fal se"/>
<Property Name="ID' Type="Edm String" Nullabl e="fal se"/>
</EntityType>

<Conpl exType Name="Resource" >
<Property Nanme="Nane" Type="Edm String"/>
<Property Nanme="ResourcePath" Type="Edm String"/>
<Property Nanme="Description" Type="Edm String"/>
<Property Nanme="DateTi meSt anp" Type="Edm DateTi meCf fset" Null abl e="fal se"/>
<Property Nanme="Localizations" Type="Col |l ection(RESO OData. Transport.Localization)" Nullable="fal se"/>
</ Conpl exType>

<Conpl exType Name="Local i zati on">
<Property Nanme="Nane" Type="Edm String"/>
<Property Nanme="ResourcePath" Type="Edm String"/>
<Property Nanme="Description" Type="Edm String"/>
<Property Nanme="DateTi meSt anp" Type="Edm DateTi meCf fset" Null abl e="fal se"/>
</ Conpl exType>
</ Schema>
</ ednx: Dat aSer vi ces>
</ ednx: Ednx>

The following is a sample OData XML (ATOM) encapsulated instance of the schema for reference.

Figure 3 - OData XML (ATOM) encapsulated instance of the schema for reference

Copyright 2015 RESO Page 50

http://schemas.microsoft.com/ado/2009/11/edm

<feed xni

ns="http://ww. w3. or g/ 2005/ At onf' xml ns: d="http://schemas. m crosoft.conm ado/ 2007/ 08/ dat aser vi ces":

osof t. conf ado/ 2007/ 08/ dat aser vi ces/ net adat a" xnml ns: geor ss="http://ww. georss. org/ georss" xm ns: gm ="http:,

se="http:

/ /'l ocal host: 2099/ Dat aSyst em svc/ ">

<id>http://|ocal host: 2099/ Dat aSyst em svc/ Dat aSyst enx/ i d>
<title type="text">DataSystenx/title>

<updat ed>2014- 04- 11T15: 24: 00Z</ updat ed>

<link rel="self" title="DataSysten href="DataSystenl/>

<entry>

<id>http://| ocal host: 2099/ Dat aSyst em svc/ Dat aSyst en(' RESO M.S') </ i d>
<cat egory term=" RESO. ODat a. Transport. Dat aSystent’ schenme="http://schemas. m crosoft.com ado/ 2007/ 08/ dat as:
<link rel="edit" title="DataSysten href="DataSysten(' RESO M.S)"/>
<titlel >
<updat ed>2014- 04- 11T15: 24: 00Z</ updat ed>
<aut hor >
<nane/ >
</ aut hor >
<content type="application/xm">
<m properties>
<d: Name>RESO_M_S</ d: Nane>
<d: Servi ceURl >ht t p:// odat a. reso. or g/ Dat aSyst em svc/ </ d: Servi ceURl >
<d: Dat eTi neSt anp m type="Edm Dat eTi meCf f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi neSt anp>
<d: Transport Ver si on>0. 9</ d: Tr ansport Ver si on>
<d: Dat aDi cti onaryVer si on>1. 3</ d: Dat aDi cti onar yVer si on>
<d: Resources mtype="Col | ecti on(RESO. ODat a. Transport . Resource)" >
<d: el ement >

<d:
<d:
<d:
<d:
<d:

Name>Pr oper t y</ d: Nane>

Resour cePat h>Pr oper t y</ d: Resour cePat h>

Descri pti on>RESO St andard Property Resource</d: Description>

Dat eTi neSt anp m t ype="Edm Dat eTi ne(f f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi meSt anp>
Local i zati ons mtype="Col | ecti on(RESO. ODat a. Transport. Local i zati on)">

<d: el ement >
<d: Nane>Si ngl e Fam | y</d: Nanme>
<d: Resour cePat h>Si ngl eFami | y</ d: Resour cePat h>
<d: Description>Local i zed Single Fam |y Residential Resource</d: Description>
<d: Dat eTi neSt anp m type="Edm Dat eTi neCf f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi neSt anp>

</

d: el enent >

<d: el ement >
<d: Name>Mul ti Fami | y</ d: Name>
<d: Resour cePat h>Mul ti Fami | y</ d: Resour cePat h>
<d: Descri ption>Local i zed Multi Fam |y Residential Resource</d: Description>
<d: Dat eTi neSt anp m type="Edm Dat eTi neCf f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi neSt anp>

</

d: el enent >

</ d: Local i zati ons>

</ d:

el enent >

<d: el enent >

<d:
<d:
<d:
<d:
<d:
</ d:

Nane>Cf fi ce</ d: Nane>

Resour cePat h>Cf f i ce</ d: Resour cePat h>

Descri pti on>RESO St andard Of fi ce Resource</d: Descri pti on>

Dat eTi neSt anp m t ype="Edm Dat eTi ne(f f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi meSt anp>
Local i zati ons mtype="Col | ecti on(RESO. ODat a. Transport. Local i zation)"/>

el ement >

<d: el enent >

<d:
<d:
<d:
<d:
<d:
</ d:

Nane>Menber </ d: Nane>

Resour cePat h>Menber </ d: Resour cePat h>

Descri pti on>RESO St andard Menber Resource</d: Descri pti on>

Dat eTi neSt anp m t ype="Edm Dat eTi ne(f f set " >2014- 04- 11T11: 24: 00. 6508563- 04: 00</ d: Dat eTi meSt anp>
Local i zati ons mtype="Col | ecti on(RESO. ODat a. Transport. Local i zation)"/>

el ement >

</ d: Resour ces>
<d: | D>RESO_M_S</ d: | D>
</ m properties>
</ cont ent >

</entry>

</ feed>

The following is a sample OData JSON encapsulated instance of the schema for reference.

Figure 4 - OData JSON encapsulated instance of the schema for reference

Copyright 2015 RESO Page 51

http://www.w3.org/2005/Atom
http://localhost:2099/DataSystem.svc/DataSystem
http://localhost:2099/DataSystem.svc/DataSystem%28
http://odata.reso.org/DataSystem.svc/
http://odata.reso.org/Properties.svc
http://odata.reso.org/SingleFamily.svc
http://odata.reso.org/MultiFamily.svc
http://odata.reso.org/Office.svc
http://odata.reso.org/Member.svc

}

"odata. metadata": "http://local host: 2099/ Dat aSyst em svc/ $net adat a",

"val ue": [{
" Name" :

RESO M.S",

"ServiceURI": "http://odata.reso.org/DataSystem svc/",
"Dat eTi meSt anp": "2014-04-11T12: 02: 48. 509401- 04: 00",
"Transport Version": "0.9",
"Dat aDi cti onaryVersion": "1.3",
"Resources": [{
"Nanme": "Property",
"ResourcePath": "Property",
"Description": "RESO Standard Property Resource",
"Dat eTi neSt anp": "2014-04-11T12: 02: 48. 509401- 04: 00",
"Local i zations": [{

Resour ce",

Resour ce",

}H

"Nane": "Single Fam|ly",
"ResourcePath": "SingleFanily",
"Description": "Localized Single Fam |y Residential

"Dat eTi neSt anp": "2014-04-11T12: 02: 48. 509401- 04: 00"
"Nane": "Multi Famly",
"ResourcePath": "MultiFam|y",

"Description": "Localized Multi Fam |y Residential

"Dat eTi meSt anp”: "2014-04-11T12: 02: 48. 509401- 04: 00"

"Nanme": "Ofice",

"ResourcePath": "Ofice",

"Description": "RESO Standard O fice Resource",

"Dat eTi neSt anp": "2014-04-11T12: 02: 48. 509401- 04: 00",
"Local i zations": []

"Nanme": "Menber",

"ResourcePat h": "Menber",

"Description": "RESO Standard Menmber Resource”,

"Dat eTi neSt anp": "2014-04-11T12: 02: 48. 509401- 04: 00",
"Local i zations": []

"ID': "RESO_M.S'

b
{
I
}H
}

Appendix 5 - Approved RCPs

Copyright 2015 RESO Page 52

® RCPs Approved for Version 1.0.3

RCPs Approved for Version 1.0.3

RCP - WEBAPI-001 Odata Property Facet Attribute MaxLength, Precision and Scale Errata

RCP - WEBAPI-002 Remove TimeZoneOffset

RCP - WEBAPI-003 Update HTTP specification references to current Internet/Industry Standards
RCP - WEBAPI-004 Include SSL RFC to ensure secure implementation

RCP - WEBAPI-005 Revise Section 2.6.2 - Data Dictionary Resources

RCP - WEBAPI-006 Modify 2.6.1 Data System Resource from Must Implement to May Implement
RCP - WEBAPI-007 Section 2.4.4: Remove required filter function time() (Copy)

RCP - WEBAPI-008 Web API Version 1.0.2 Specification Errata (Copy)

RCP - WEBAPI-009 Collections of Enumerations (Copy)

RCP - WEBAPI-001 Odata Property Facet Attribute MaxLength, Precision and Scale Errata

Submitter Name Jeremy Crawford Document Name RESO Web API v1.0.2
Submitter Organization Real Estate Standards Document Version 1.0.2
Organization
Date Submitted 2016-04-13
Submitter Email jeremy@reso.org
Status IN DRAFT
Co-submitter Name Maria Dalarcao
) o o Status Change Date 2017-08-17
Co-submitter Organization MLSListings, Inc.
Co-submitter Email mdalarcao@mislistings.com
Synopsis
Clarify the meaning of the attributes of Edm.Decimal and Edm.String in the document RESO Web API v1.0.2 to be compliant with OData Vers
ion 4.0.
Rationale

To comply with OData V4 spec, we need to:

® Add explanation to the meaning of Edm.Decimal's attributes Precision and Scale.
® Add the attribute MaxLength to Edm.String.

Proposal
Modify the document RESO Web API v1.0.2, Section 2.4.3 Data Types.

® Add the explanation (bold text below) of the Precision and Scale for decimal data type:

Edm.Decimal Numeric values with fixed precision and scale.
Precision
® |s the maximum number of significant digits allowed in the property’s value
® |t MUST be a positive integer
® |f no value is specified the decimal property has unspecified precision
[]

MUST be a non-negative integer between 0 and 12 for a temporal property
Scale

® |s the maximum number of digits allowed to the right of the decimal point
® May be a non-negative integer or "variable"
® Integer Value
® The number of digits to the right of the decimal point may
vary from 0 to the value of Scale

Copyright 2015 RESO Page 53

http://members.reso.org/display/~maria.dalarcao
http://members.reso.org/display/API2/RESO+Web+API+v1.0.2

® The number of digits to the left of the decimal point may
vary from 1 to the value of (Precision - Scale). If Precision
== Scale, then a single 0 must precede the decimal point

® Scale must be <= Precision. If no value is specified, Scale
defaults to 0

® Variable

®* The number of digits to the right of the decimal point may

vary from zero to the value of the Precision

® Add MaxLength (bold text below) for string data type:
Edm.String Sequence of UTF-8 characters

MaxLength: the maximum length of the string

Implementation example:

<Property Name="AssociationFee" Type="Edm.Decimal" Precision="13" Scale="2" />

<Property Name="BuilderName" Type="Edm.String" MaxLength="50" />

RCP - WEBAPI-002 Remove TimeZoneOffset

Submitter Name Maria Dalarcao Document Name RESO Web APIv1.0.3
Submitter Organization MLSListings, Inc Document Version 1.0.3

Submitter Email mdalarcao@mlslistings.com Date Submitted 2016-04-13
Co-submitter Name Status IN DRAFT
Co-submitter Organization Status Change Date 2017-08-17

Co-submitter Email

Synopsis
We are proposing to remove TimeZoneOffset field from the Data System resource collection because DateTimeStamp field contains the time

zone offset value in OData V4 and it's not necessary to have TimeZoneOffset field anymore. OData V4 supports only Edm.Date and
Edm.DateTimeOffet and DateTime gets converted to DateTimeOffset. In OData V4 Edm.DateTime does not exist.

From OData V4 spec (http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-o0s-part3-csdl.html) OData defines the following
two types:

Edm.Date Date without a time-zone offset

Edm.DateTimeOffset Date and time with a time-zone offset, no leap seconds

In RESO Web API v1.0.3 document under 2.6.1 DataSystem Resource, the Data System Resources Collection defines the following two
fields:

DateTimeStamp The last modification date of the $metadata within the Resource.

Copyright 2015 RESO Page 54

http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831927
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://members.reso.org/display/WebAPIv103?src=breadcrumbs-homepage
http://members.reso.org/display/WebAPIv103/2.6.1+DataSystem+Resource

TimeZoneOffset The TimeZone Offset provided in standard TimeZone notation of GMT[+|-]X, where X is the number of hours in the
offset.

Example of medata of DataSystem:
<Property Name="DateTimeStamp" Type="Edm.DateTimeOffset" />

<Property Name="TimeZoneOffset" Type="Edm.String" />

Example of created values:
"DateTimeStamp™: "2015-12-01T00:00:00-08:00"

"TimeZoneOffset": "-8"

Rationale

The OData DateTimeStamps carry the time zone as part of the actual datum. This makes the TimeZoneOffset in the Data System
superfluous.

Please note that DateTimeStamp's offset portion carries both hours and minutes, e.g. "DateTimeStamp": “2015-12-01T00:00:00-08:00".
Proposal

TimeZoneOffset should be removed from Data System Resources Collection (RESO Web API v1.0.3, Section 2.6.1 DataSystem Resource).

The following line should be removed: "TimeZoneOffset The TimeZone Offset provided in standard TimeZone notation of GMT[+|-]X, where X
is the number of hours in the offset.”

RCP - WEBAPI-003 Update HTTP specification references to current Internet/Industry Standards

Submitter Name Geoff Rispin Document Name WebAPI
Submitter Organization Templates 4 Business, Inc. Document Version 1.02
Submitter Email grispin@t4bi.com Date Submitted 2016-05-02
Co-submitter Name Status IN DRAFT
Co-submitter Organization Status Change Date 2017-08-17

Co-submitter Email

Synopsis

The RESO standards should encourage the adoption of the current predominant internet standards at the time of release. The current
WebAPI Document references superseded RFC standards that have been out for some time and the RFC in the RESO documents are now
consider obsolete.

The updated standards in include errata, language clarifications, updated security, bug fixes and backwards compatible feature
enhancements.

Copyright 2015 RESO Page 55

http://members.reso.org/display/WebAPIv103?src=breadcrumbs-homepage
http://members.reso.org/display/WebAPIv103/2.6.1+DataSystem+Resource

Rationale
The RESO community is building its standards on top of those standards already actively in use on the internet. The RESO standards should
reflect that in our documentation by using those standards that are actively in use. Most implementations will already meet to using libraries

and frameworks that implement the newer RFCs as developers are using libraries, browsers and other frameworks from sources that have
already make these changes years ago.

Proposal

Updates all HTTP RFC references in the WebAPI transport document to their latest specification

® HTTP/1.1 RFC 2616 -> RFC 7230-7237
® HTTP/2 (Not Referenced) -> RFC 7540

Impact
The impact should be minimal as most implementers of the WebAPI transport are using common third party software to implement the HTTP
transport within their software. There are very few implementations that are not written to the latest HTTP/1.1 RFC standards

(RFC7230-7237). The ones that would be highly impacted are those implementations that wrote their own HTTP stack which should be rare
and have taken on a significant technical debt by taking that approach in the first place.

The HTTP/2 includes a separate handshake method that will not impact those that have not implemented it and downgrade gracefully.

Compatibility

The new RFCs are backwards compatible with the old ones except where contradictions or ambiguity exists in the older RFCs.

RCP - WEBAPI-004 Include SSL RFC to ensure secure implementation

Submitter Name Geoff Rispin Document Name WebAPI Transport
Submitter Organization Templates 4 Business, Inc. Document Version 1.0.2

Submitter Email grispin@t4bi.com Date Submitted 2016-05-01
Co-submitter Name Status IN DRAFT

Co-submitter Organization Status Change Date 2017-08-17

Co-submitter Email

Synopsis
The current WebAPI standards document references secure communication with references but does not include the reference standards
involved. There are many out of date standards that should not be used as have been "broken" and no longer provide any security. Even

with the latest standards, configuration updates must be made for the protocol to be secure as the implementation allows for weak encryption
by default that provides no benefit.

Rationale

Copyright 2015 RESO Page 56

The current specification does not define any encryption reference for implementation and many of the old implementations that are
compatible with HTTP are also cryptographically un-secure or weak. These include all of SSL2 and SSL3 and parts of TLS1.0.

Both Oauth2.0 and OpenlID have enforced encryption requirements which have an impact on the WebAPI Transport implementations as well.

Proposal

Add the current standard cryptographic RFCs for HTTPS communication to the specification.
® TLS 1.2 -> RFC5246 https://www.ietf.org/rfc/rfc5246.txt

Add a references to security vendor best practices for the use of Encryption

® RFC 7525 Best Practices - https://www.rfc-editor.org/rfc/rfc7525.txt
® OWASP TLS implementation guide - https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
® https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf

Include security in the certification process. This step should be a requirement of validating a secure OAuth2 communication for the current
specification as strong security is a requirement of the underlying authentication protocol. Extending it to the Transport protocol make sense
Users get a false sense of security when they see a secure connection but the implementation is poor or flawed.

® Server test (free service) - https://www.ssllabs.com/ssltest/

Impact

For most implementors it should be minimal as SSL is provided underlying frameworks and libraries that are likely updated. All of the major
software implementations (Mozilla NSS, Java SSE, OpenSSL, Microsoft SChannel/CryptAPI, GnuTLS, etc.) provide regular security updates
for all issues and implement the latest feature sets. For those that are using out-of-date or un-patched software or custom cryptographic
implementations, they will have more work involved to bring them up to a reliable state but their security would be benefiting them little if they
do not.

There may be many clients using older libraries that have not been updated they should be encourage to move to non-encrypted
communications or update as their implementation are providing no security benefit and making the providers less secure.

Implementations will still need validate their configurations secure their systems properly. The crpytographic software does allow for weak
configurations as there are places that they are still valid. This is where the best practices references can help with giving the specification a
target for MUST implement and SHOULD implement behaviours.

Compatibility

For those solutions that are maintaining patch levels of their software and frameworks, this should be a transparent endeavor. The
compatiblity problem come from the unmaintained solutions and the frequent security updates that happen. Due to the nature of
cryptographic vulnerabilities and their announcement, those using un-secure methods would be broken by strict enforcement but those same
solutions are have a false sense of security and are gaining no crpytograhic benefits in their implementation.

RCP - WEBAPI-005 Revise Section 2.6.2 - Data Dictionary Resources

Submitter Name Scott Petronis Document Name RESO Web API
Submitter Organization Onboard Informatics, LLC Document Version 1.0.3
Submitter Email spetronis@onboardinformatics. Date Submitted 2017-03-06

com

Status IN DRAFT
Co-submitter Name Paul Stusiak
. o . Status Change Date 2017-08-17

Co-submitter Organization Falcon Technologies

Corporation

Copyright 2015 RESO Page 57

https://www.ietf.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc7525.txt
https://www.ssllabs.com/ssltest/
http://members.reso.org/display/~scott.petronis
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831933

Co-submitter Email pstusiak@falcontechnologies.c
om

Synopsis
Section 2.6.2 is revised to provide detail on how Data Dictionary Resources are intended for use in the Web API.
Rationale

Section 2.6.2 is incomplete and does not fully express the intent of the Web API to define limitations and constraints in the use of Odata for
the purposes of RESO.

The section currently references empty pages without formal detail. The EDMX files referenced are simply examples and NOT part of the
standard definition. Therefore, the section does not currently provide explicit guidance for the standard implementation or assistance in
making implementation decisions. Proper EDMX references MAY be made within testing rules or other support documents.

Proposal

The text of section 2.6.2 be changed to

The Web API is intended to facilitate data exchange within a market and across different markets. This makes data sharing more efficient and
creating applications that use the data less expensive. To accomplish this, many common field terms, data types and some classes of values
are expressed in the RESO Data Dictionary, a separate related standard from RESO.

The Web API is intended, but not restricted, to use resources named in the RESO Data Dictionary. These resources have specific names for
certain fields in a resource and specific names for values in certain cases for enumerations.

This section provides guidance to implementors of this standard on how to handle the resources, fields and enumerations to maximize
interoperability between implementations.

The standard MAY enforce some or all of these guidance items in the certification testing. Please refer to the Certification Testing Rules for
further information.

2.6.2.1 RESOURCE Names

When an implementation has a resource that is substantially similar to a resource name defined in the Data Dictionary, the implementation
MUST use the Data Dictionary resource name. Implementations MAY have additional resources that are not defined in the Data Dictionary to
meet the needs of the implementation.

2.6.2.2 Entity Names

Within a Data Dictionary resource, when an implementation has a entity (field) name that is substantially similar to a field name defined in the
Data Dictionary, the implementation MUST use the Data Dictionary field name for the entity name in the XML and Json representation of the
resource. When existing data has not been transformed to match the Data Dictionary data type, an Annotation tag SHOULD be used to
indicate that the field is not in compliance with the Data Dictionary and to indicate what the data types is.

Client applications SHOULD inspect entities with respect to data type, and where a data type does not match the expected Data Dictionary
value, the application SHOULD expect to find the correct data type in the Annotation tag. Client applications may need special handling to
deal with these cases while the industry transitions historical data to new data types.

Within a Data Dictionary resource, many implementations will have entities (fields) that are not part of the Data Dictionary standard. In these
cases, implementors and their customers are encouraged to have these entities included in the Data Dictionary. Some entities will remain
specific to an implementation based on business rules or other considerations. Entities of this type MUST have an Annotation attached to
indicate that this entity is specific to the implementation.

2.6.2.3 Enumeration Entity Names

Within a Data Dictionary resource, when an implementation has an enumeration entity (field) that is substantially similar to a field name and
enumeration type in the Data Dictionary, the implementation MUST use the Data Dictionary field name for the enumeration entity.

2.6.2.4 Enumeration Entity Values

Within a Data Dictionary resource, where the entity has a Data Dictionary enumeration entity name, the Data Dictionary may have defined
values for enumerations. Where the enumeration value is substantially similar to the Data Dictionary enumeration entity name value, the
implementation MUST use the Data Dictionary field name value.

2.6.2.5 Extending Data Dictionary Resources, Names and Values

In many implementations, specific resources, entities and enumeration entity values not part of the Data Dictionary will be required. As

Copyright 2015 RESO Page 58

http://reso.org/downloads/

described in 2.6.2.2 for Entity Names, extensions are indicated by an Annotation on the resource, entity or enumeration value.
2.6.2.6 Large Enumerations

Odata in the current and previous versions has a limitation on the size of a multi-value enumeration. Refer to section 2.4.8 Annotations for
further details.

2.6.2.7 Examples
1. Data Dictionary Compliant
<EntityType Nanme="Property"> <!-- A Data Dictionary Resource Nanme -->
<Key>
<PropertyRef Name="ListingKey" />
</ Key>

<Property Nane="ListingKey" Type="Edm Int32" Nullable="false" /> <!-- A Data Dictionary Entity Name -->

2. Data Dictionary Non- compliant (data type)

<EntityType Nanme="Property"> <!-- A Data Dictionary Resource Nanme -->
<Key>

<PropertyRef Name="ListingKey" />

</ Key>

<Property Nane="ListingKey" Null abl e="fal se" Type="Edm String" MaxLength="255"> <l-- A Data Dictionary
Entity Nane -->

<Annot ati on Ter n=" RESO. ODat a. Met adat a. St andar dNane" String="Li stingKey" /> <!-- Non conpliant data type
-->

</ Property>

3. Non-compliant
<EntityType Name="ListingProperty"> <l-- Not a Data Dictionary Resource Nanme, but it is a Property -->

<Key>
<PropertyRef Nane="ID' />
</ Key>

<Property Nane="ID' Nul | abl e="fal se" Type="Edm Int32"> <!-- should be ListingKey Data Dictionary Entity
Name -->

</Property>
4. Extension - Resource
<EntityType Name="Hot sheet" >

<Annot ati on Ter m=" RESO. ODat a. Met adat a. MLSNane" />

</EntityType>

5. Extension - Entity
<EntityType Name="Property"> <!-- A Data Dictionary Resource Nanme -->

<Key>
<PropertyRef Nane="ListingKey" />
</ Key>

<Property Nane="ListingKey" Type="Edm Int32" Nullable="false" /> <!-- A Data Dictionary Entity Name -->

Copyright 2015 RESO Page 59

<Property Nane="Di stanceFronVol cano" Type="Edm Int32" > <I-- NOT a Data Dictionary Entity Nane -->
<Annot ati on Ter n¥" RESO. ODat a. Met adat a. M_.SNane" />

</ Property>

Impact

This change proposal may impact existing implementations of the Web API.

RCP - WEBAPI-006 Modify 2.6.1 Data System Resource from Must Implement to May Implement

Submitter Name Scott Petronis Document Name RESO Web API v1.0.3
Submitter Organization Onboard Informatics, Inc. Document Version 1.0.3
Submitter Email spetronis@onboardinformatics. Date Submitted 2016-04-13
com
Status IN DRAFT

Co-submitter Name
. L Status Change Date 2017-08-17
Co-submitter Organization

Co-submitter Email

Synopsis

In the RESO Web API v1.0.2 specification section 2.6.1 there is reference to a 'DataSystem' resource. The purpose of this resource was
to enable organizations to offer client applications a set of pointers to (e.g. URIS) to one or more underlying systems. For example, a service
organization that supports multiple MLS clients could use this model to present a single endpoint that contains multiple MLS data resources.

This 'DataSystem' concept has been confused during some implementations and has caused OData compliance tests to fail in some cases.
In other cases the 'DataSystem' concept is superfluous as there is no need for pointers to multiple underlying systems.

We are proposing to keep this concept in the standard for those who wish to implement it, but to change it from a MUST be supported to a M
AY be supported. This would still allow organizations to use the concept but would not require organizations to implement it where there is no
need. This also keeps with standard OData $metadata usage at the service URI stem.

Appendix 4 would remain intact as an example of how the 'DataSystem' should be implemented for those choosing to use this model.
Specifically, in RESO Web API v1.0.3 document under 2.6.1 DataSystem Resource, the following modification would be made:
Modify this "This resource MUST be provided by all implementations."

To this "This resource MAY be provided by any implementation.”

Rationale

The DataSystem resource acts a a pointer to other underlying systems and resources. In many cases (i.e. servers that support a single MLS)
this top level 'DataSystem’ is simply not required and creates an additional step in acquiring the underlying metadata. In some cases this may
also interfere with standard, off-the-shelf OData client implementations and, therefore, require additional time and cost unnecessarily. For
organizations that wish to implement this model, they still may do so, but this should not be required for all organizations.

Proposal

Change the wording in section 2.6.1 of the Reso Web API v1.0.3 from "MUST be provided" to "MAY be provided."

Copyright 2015 RESO Page 60

http://members.reso.org/display/~scott.petronis
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831935
http://members.reso.org/display/API2/2.6.1+DataSystem+Resource
http://members.reso.org/display/API2/Appendix+4+-+DataSystem+XML+Schema
http://members.reso.org/display/WebAPIv103?src=breadcrumbs-homepage
http://members.reso.org/display/WebAPIv103/2.6.1+DataSystem+Resource

RCP - WEBAPI-007 Section 2.4.4: Remove required filter function time() (Copy)

Submitter Name Pace Davis Document Name RESO Web API v1.0.3 Draft
Submitter Organization Zillow Group Document Version 1.0.3
Submitter Email pacedavis@big-lic.com Date Submitted 2017-03-17
Co-submitter Name Michael Watt Status IN DRAFT
Co-submitter Organization Zillow Group Status Change Date 2017-08-17
Co-submitter Email mwatt@big-llc.com

Synopsis

This RCP proposes the removal of the required filter function time() in section 2.4.4 of the RESO Web API v1.0.3 Draft document. We submit
that servers should not be required to implement this function as there are very few reasonable use cases for it within the context of a
real-estate API, and implementing it often has significant performance considerations attached.

Rationale

Section 2.4.4 of the RESO Web API v1.0.3 Draft identifies a number of functions from the OData standard that a RESO Web API
implementation must support to be considered compliant. One such function is time(), which extracts the Edm.TimeOfDay component from an
Edm.DateTimeOffset value.

We propose the removal of this requirement for the following reasons:

® We can identify no use case for extracting the time component of a Edm.DateTimeOffset in a filter that could reasonably be
considered required functionality of a Web APl implementation. Consider that the RETS 1.x standards define no equivalent
functionality for the DMQL query language.

® |mplementations that support filtering on the time component of a date-time value would need to very carefully consider the
performance characteristics of such a query. Typical implementations using a relational database may not be able to satisfy such a
guery using an index, as the time component of a date-time value is not the most significant prefix of the value, resulting in slow full
table scans.

Proposal

In section 2.4.4 of RESO Web API v1.0.3 Draft, in the table listing functions that implementations are required to support, remove the
following row from the 'Date Functions' sub-section:

time time(StartTime) le StartOfDay

Further notes

Many of the other functions identified in section 2.4.4 could similarly be argued against. For example, hour(), minute(), second(), and so on.
Future RCPs may address the removal of these functions also.

RCP - WEBAPI-008 Web API Version 1.0.2 Specification Errata (Copy)

Submitter Name Cody Gustafson Document Name RESO Web API v1.0.3 Draft
Submitter Organization FBS Document Version 1.0.3 DRAFT

Submitter Email cgustafson@fbsdata.com Date Submitted 2017-03-21

Co-submitter Name Rick Trevino Date Appended 2017-08-02

Co-submitter Organization MetroList Status IN DRAFT
Co-submitter Email rtrevino@metrolist.net Status Change Date Status

Copyright 2015 RESO Page 61

http://members.reso.org/display/~pace.davis
http://members.reso.org/display/~mwatt
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831945
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831945
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831945
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831945
http://members.reso.org/display/~cody.gustafson
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831963

Co-submitter2 Name Paul Stusiak
Co-submitter2 Organization Falcon Technologies

Co-submitter2 Email pstusiak@falcontechnologies.c
om

Synopsis

The RESO WEB API v1.0.2 Specification contains several errors. The v1.0.3 document should fix these errors.

Rationale

The working version of the specification should fix errors found in previous versions.

Proposal

The current working version, v1.0.3 should make the following changes:

Correct grammar, spelling errors and broken links.

Update OData 3.0 to OData 4.0 and augment the XML Examples with JSON Examples.

Specific changes:

Section 1.3 Approach - The first paragraph link to the Odata specification is broken.

Section 2 Specification - The first paragraph link to the Odata specification is broken.

Section 2.2.2 X-HTTP-Method-Override Header - The second paragraph, last sentence is missing a closing period.

Section 2.3.2 URI Stem - This section should have JSON examples added. JSON is the primary serialization technique in implementations
and all certifications have been done through it.

Section 2.3.2 URI Stem - Standardize the use of 'stem' to be represented as lower case.
Section 2.3.3. Data Systems Endpoint - Paragraph 1: Standardize the use of ‘end point' to be two words.
Section 2.3.3. Data Systems Endpoint - Paragraph 3: Correct spelling of ‘Pleas' to "Please"

Section 2.4 Search - The first paragraph link to the Odata specification is broken.

action 4 Oue PAVa VAt i Naotalhblg PR i hawva

4 5 4 : @ = Rejected: RFC 2616 uses
capitals on each word of an HTTP response code description.

Section 2.4.3 Data Types - Correct the examples to use RESO Data Dictionary standard names.
‘Price’ should be ‘ListPrice’, ‘ClosePrice’

‘Beds’ should be ‘BedroomsTotal’

‘List Date’, ‘Sale Date’ should be ‘ListingContractDate’, ‘CloseDate’

‘Open House Start’ should be ‘OpenHouseDate’

‘Commission’ should be ‘LotSizeAcres’

‘Level’ should be ‘Levels’

Copyright 2015 RESO Page 62

Section 2.4.4 The $filter Option - Correct the spelling of Functions in "Built-In Query Fuctions".

Type Meaning RESO Specific

Edm Booiesn Binary-vaiued 0gic Vemterroni. Feis
Al

Exm Bytw Urignes 8-be istegar Bacs

Edm Date Diate < #hout o Srma-zore c¥et Lint Ciate. Sale Date

Exdim Tl TarmaeCrS et Dot &7ed fima +70h @ Drri=2nered D8 O HeaD S8 C0M0Y Ol Houaas S3art

Eam Dcimal Hurene saien - fued srecunn and scae Cirmeriasion

Edm Dbl IEEE 754 binaryGd Soafing-point reambsr (1517 decimal dighs) LabRucke Losngifuide

Edm intis Sigrd 180 inbeger Frice

B g2 Sighed 2-51 integer Price

Edm Inksd Sigried Sdbit intager Frice

Eam 5By Sigroba B2t e Leval

Eam Shirg Saquence of UTF-0 cRarachn Apmacky Asws Marey

e ?

fom b ! marmie

L FELE S T

Section 2.4.9 Single-Valued Lookups - Correct use of 'Single-Valued' to be consistent with the rest of the document. Correct the use of
'Resource' to be consistent with the rest of the document.

145 Singh-valued Lookups

3 e] Lokl 4 B PTG L i ' el e e D B b b T e T et e el L
Rl s e =L okl Py o 5 sl P o T e il ' ol g g o Bt Bl P it mbirwomn] B ol o Wi, e L DT e
Wkt I e S) - R L8 LT Loty S o) e i e) SO, s B0 Tl G, Bl 0 el L %
raie e, b B B e e ey v i v e BT ks o a0 |, ihd i e

o [y iepamyrrn) o e vy gy ooy Lol Drporrn)

145 Singla-valusd Loakups

4 g et Lol o 0 P I L i e] e B P B et T R T PR S e L i
Rl a1 =i il Ve o P v F v T il ' iy e o Pl 0T P iy o] R il ol WP T LT e
Wiaiaks O Gl sl e o o e LY LS Loty O o T it i COGAY, LI B Tl el Bl S i L s i
s, b Fo sl o e prec il i, avaee i Fo AT s g d o gl il o
P [t Vippmyren proee o worn iy womey L Perpowrrmn

Section 2.4.10 Multi-Valued Lookups - Correct use of 'Single-Valued' to be consistent with the rest of the document. Correct the use of
'‘Canceled' to be correct.

B 10 Wt Yl ued Loabiigg

b s e | ke 3 @ bl Ban b e o e e e ok Parn o b ed ol o Bl s abaesld | el g BP T i byl B
ol e e by B e il | ml g ek P acebieon ol Be S8 by e ol deae e el shof radsaies Tl a Gl v
e} e g e b ey B el The Lecariyry T e vl e F e e e g Wb e | onle g i U o e
e e L e o mowy e o e 24 o eame oraes T omosl oo o prmaier e B poermn 6 e DeiE

ae g o LA s g ook g gt e

Copyright 2015 RESO Page 63

cisrbar Hemss "Cloasd® Valoss®*d® iz

cileal Mame="Eiplred™ Valug=*7" /s

cMarksr Hams:"Cancellsd" Valus="B" =

aMamliay Hame-"Delacs™ Valwsa="9° /=

cMantar Hames"[ocooplabta® Talus="10% /=

idernbar Hame=-"Comlng Boom®™ Valus="11% /&
= i Enumi T ypas

B o

Ay e TG ed e en EdmulramTyps real ey e e defindion o e emeaion
il ol e By T o ke L B o e | (L] Wk e i]

2410 Multi-Valued Lesskuips

Section 2.5.3 Error Message Bodies - is referring to OData v3 documentation. So, we need to update that as well as the example to show
the correct response format(s). As a side note, it would probably be worth mentioning that a server needs to respond with the format

requested with errors.

Section 2.5.3 Error Message Bodies - Correct spelling of 'that'

Code AN Thtim
Liristriapd 5

i i} Ol Reomed by GET method when ssraansg 1 1wt o reconds. I re reconds. s Feand an
Lt]

ki k) & ErRETE Asumsd oy GoF T e i B s i ie eoryel FRorivms o PR T IR T Ty LR
By

K] Fisd Fsgpsal FAemimsd by (F T rebdie] Coly & T (LS Db asielomesr Sl riae: il on Fed ST
£ el el

gl

Section 2.5.3 Error Message Bodies - Correct grammar of last paragraph. Correct spelling of ‘the’

SEAEPETE TEG W O LR RATEMT WREITTS ONE ROT PEDEOTTT RSRIL [TV A e R A
= T

BT i el e D Ol . Tl e o Tow Eei e DOl o ol e L g i | o Lol o o i o e A] e ol

I8 Slardard Masow oas "

Section 2.6 Standard Resources The Web API should be independent of specific versions of the Data Dictionary. Remove the references to
a specific Data Dictionary versions in the fourth paragraph list. This may be worth skipping in favor of WEBAPI-005

Section 2.6.1 DataSystem Resource - Correct spelling of 'requested'. Correct spelling of 'VersionMinor'. Correct use of 'DataSystem' to be
consistent with the rest of the document. Correct URI path to be 'http://odata.reso.org/RESO/Odata/SYS1/Property. Correct spelling of
'Localization’. Correct spelling of 'Description’. Correct URI path to be 'http://odata.reso.org/RESO/Odata/SYS1/Residential.

TP rmt By I P D VIR Tl Y O D Y O T I T I D IR (N MERSERES. & DO

ikl haaw Fersargiow

{5
Al el e BT A i T e e o e LS AT el e DT L
-

LERNTG il T D S v T D Ty TR0 T W 0] e [Ty
D ™y e’ " . ol 0 Tt = i T e’y T i’y sl Do 7 D b e oo el el o

of P 9 FC Dl P ey oon [ne sy Bl B Lt gyl] by Pee Dalls Bipalee
L] Tom g S T S T O Sy 1 aetea oo o hope Bemnong [mager EE L gy

PR AR R RO IR DR T I oRTe LO PR B R O LT Y
oy s sy o S iy gy s B V50 Clam Diomap

il el A g i, Gl il il A -,

Copyright 2015 RESO Page 64

http://odata.reso.org/RESO/Odata/SYS1/Property.
http://odata.reso.org/RESO/Odata/SYS1/Property.

Trrarkan . roenla rreaw) o W BT TS e P | }

LU ST O T L S e T DO YR T AT T O P O e O
e " o el o T D OEH Oy T R el [Tl T eI S T

LA ks
P BT Dl D' e s Bl Pl L il By T Sl i
Pawermm Tom e o sy g e e Bt 1y et oo D e Seoscas Calacter o il O gy

I R LR R KOS I T R P M e O [O T BT I R T e
Farp oy oy v o reew g omirg r g B G0 Cavm Ceowear

il gl A g ol il il i

Tl D Bl m Fema e com: = s oy el B or honar oy Tkl

Fisll S D il

L] Tt rem s raeE 3 T FE L o e T DT
HECFEEIE TH D SRR T D RO S T g =
riman i T ey i) P e e P e ind o o) e i] P Bt i
pumeda R f e SnersS e oo mE 0D
I3 FA e PR RS MR R e e S T

Thee LoCaiEmoirs. Coilechon Jdefines T lobowng Beids.
Fighd Mams Uscipilin
e Tha ursgue name of thie Localizabon within T DataSysiem

Bescurcelath This B he Besourcelalh al & 6 be appanded afer e Servcsliia
rEsoris The s ganecally aapeched i be e sams

Lsesrymrs Coscwr mlras mm bvaeeg fein

Farkl M B il

e Tei ek Parm o Tl s et el e - ol puis

HrommrPa® T Be Hean oo PS® Raln b b aoeesied afen T S el B of B Dada Typadee e g e, dala b B s sl
e b TTrA e ey e bl B L T B of e e] . o] K i B e

iy oty T, T e, ¢ e O o e O s S LSS el 1 e e L iy
il I T R S T P P i S Y S

2.6.2 Data Dictionary Resources - Missing an EDMX Definition for the Resource in the table.

Resource EDMX Definition

Office
Agent
Property
Media
OpenHouse

Rooms

Units

Appendix 2 - Basic Query Examples - Correct use of ‘case sensitive' to be consistent with the rest of the document.

-

T - Filtar by Teeld walue

B e it adal s vam oo g BELS Tl o F AN el FET L Dar Tl lanl B g " Bemli®ii

waw. Ml re i b B ponon e o E-ETEEE B0 Roneh DR e o s rmes ooesies by e st

| ikl A S~ it~ .

Copyright 2015 RESO Page 65

Impact

None

Compatibility

None identified

RCP - WEBAPI-009 Collections of Enumerations (Copy)

Submitter Name Sergio Del Rio Document Name RESO Web API v1.0.3 Draft
Submitter Organization Templates for Business, Inc. Document Version 1.0.3

Submitter Email Sergio.Del.Rio@t4bi.com Date Submitted 2017-04-24

Co-submitter Name Status IN DRAFT
Co-submitter Organization Status Change Date

Co-submitter Email

Synopsis

When version 1.0.2 of the Web API was written, there appeared to be no way to nicely deal with multi-valued-lookups. The team settled on
using Enumerations where IsFlags=true which is all we could find at the time that satisfied the problem. However, this limited
multi-valued-lookups to 64 items so we added section 2.4.10 Multi-Valued Lookups to the specification to outline a way to implement larger
lookups and still use Enumerations where IsFlags=true. Recent research has revealed that both server and client API's support an alternate
method which would be to use a Collection of Enumerations. Furthermore, some server vendors have issues with implementing the solution
proposed in 2.4.10 due to limitations of the libraries that are available to implement OData on their platforms.

Rationale

This RCP proposes that we add an additional method to implement Multi-Valued Lookups to make it easier for both Clients and Servers to
implement than the current only available solution in the specification and also address the implementation issue on some platforms.

Proposal

The solution is to use an Enumeration with IsFlags=false and then, in the field definition define the field as a Collection of the specific
Enumeration. This is handled in the metadata quite easily. The following is an example of the metadata for a specific Multi-Valued Lookup:

Copyright 2015 RESO Page 66

http://members.reso.org/display/~sergio.del.rio
http://members.reso.org/pages/createpage.action?spaceKey=WebAPIv103&title=RESO+Web+API+v1.0.3+Draft&linkCreation=true&fromPageId=36831981

The Enuner ati on:

<EnunType Nane="Association_Anenities" |sFl ags="fal se"

Under | yi ngType="Edm | nt 64" >

<Menber Nanme="Banquet Facilities" Val ue="50041194459" /> <Annotati on
Ter me" RESO. ODat a. Met adat a. MRl S. St andar dNane" <Stri ng>Banquet
Facilities</String> </ Annotati on>

<Menber Nane="Barbecue" Val ue="50041194461" />

<Menber Name="Bi king_Trails" Val ue="50041194463" /> <Annotati on

Ter me" RESO. ODat a. Met adat a. MRl S. St andar dNane" <Stri ng>Bi ki ng

Trail s</ String> </ Annot ati on>

</ Enunilype>

The Fiel d:

<Property Nane="Associ ati onAmenities"

Type="Col | ecti on(RESO. ODat a. Met adat a. MRl S. Associ ati on_Anmeni ties)">
<Annot ati on Ter n=" RESO. ODat a. Met adat a. MRl S. St andar dNane" >
<String>Associ ati onAneni ti es</ String> </ Annot ati on>

</ Property>

With the above metadata, the collection is easily queryable as part of your object as follows:

To get records which have only the specified set of anenities:

https://services.dev. nris.conf RESQ ODat a/ MRl S/ Pr opert y?$f or nat =j son&$fi |
ter=ListPrice ge 10000 and Associ ati onAnenities eq

RESO. ODat a. Met adat a. MRI S. Associ ati on_Anenities' Bi king_Trail s, Gat ed_Par ki
ng' &bt op=100&$ski p=0

To get records which have all of the specified set of anenities but may
have other anenities as well:

https://services.dev.nris.com RESO ODat a/ MRl S/ Propert y?$f or mat =j son&$fi |
ter=ListPrice ge 10000 and Associ ati onAnenities has

RESO. ODat a. Met adat a. MRI S. Associ ati on_Anenities' Bi ki ng_Trail s, Gat ed_Par ki
ng' &bt op=100&$ski p=0

Proposed Changes to the Specification
Section 2.4.10 should be broken up into two sub-sections:
2.4.10.1 Multi-Valued Lookups - Bitmap Fields
2.4.10.2 Multi-Valued Lookups - Collections of Enumerations
The current text in 2.4.10 should be moved into 2.4.10.1 exactly as it is at this time.

The contents of Section 2.4.10.2 should be as follows:

2.4.10.2 Multi-Valued Lookups - Collections of Enumerations

A Multi-Valued Lookup is a field that can have one or more items selected from a list of values. Multi-Valued Lookups MUST adhere to all the

Copyright 2015 RESO Page 67

limitations enforced by the Single Valued Lookups. A field that contains Multi-Valued lookups must make use of an Enumeration that has
IsFlags=false. The UnderlyingType of the enumeration must be either Edm.Int32 or Edm.Int64 depending on the size of the values that are
being returned.

A field that contains Multi-Valued Lookups based on the defined Enumeration must be defined as a Collection of Enumerations.
The examples above will be also included in the section.

Further notes

Copyright 2015 RESO Page 68

http://members.reso.org/display/WebAPIv103/2.4.9+Single-Valued+Lookups

	RESO Web API v1.0.3
	Section 1 - Proposal
	1.1 Purpose
	1.2 Scope
	1.3 Approach

	Section 2 - Specification
	2.1 Terminology
	2.2 HTTP Protocol
	2.2.1 Version Header
	2.2.2 X-HTTP-Method-Override Header

	2.3 URL Formatting
	2.3.1 Hostname
	2.3.2 URI Stem
	2.3.3 Data Systems Endpoint
	2.3.4 Metadata Endpoint
	2.3.5 Resource Endpoint

	2.4 Search
	2.4.1 Search by Unique ID
	2.4.2 Query Support
	2.4.3 Data Types
	2.4.4 The $filter Option
	2.4.5 Lambda Operators
	2.4.6 Literals
	2.4.7 Geospatial Search Implementation Details
	2.4.8 Annotations
	2.4.9 Single Valued Lookups
	2.4.10 Multi Valued Lookups
	2.4.10.1 Multi Valued Lookups - Bitmap Fields
	2.4.10.2 Multi Valued Lookups - Collections of Enumerations

	2.5 Response Message Bodies
	2.5.2 HTTP Response Codes
	2.5.3 Error Message Bodies

	2.6 Standard Resources
	2.6.1 Data System Resource
	2.6.2 Data Dictionary Resources

	Section 3 - Security
	Section 4 - Authors
	Section 5 - References
	Section 6 - List of Tables & Figures
	Section 7 - Revision List
	Section 8 - Appendices
	Appendix 1 - Use Cases
	Appendix 2 - Basic Query Examples
	1 - Request the list of Data Systems
	2 - Select a single data system
	3 - How do I look at the metadata for a specific service?
	4 - How do I retrieve data using this metadata?
	5 - Get a single Property
	6 - Select specific field values
	7 - Filter by field value
	8 - Filter by multiple field values
	9 - Get the first five Members
	10 - Get the second five Members
	11 - Get the top ten Residential properties within 1 mile of a specific point ordered by distance
	12 - Get all the properties with a price range of $250k to $500k within a specific area drawn on map (polygon)
	13 - Get all the properties with a price range of $250k to $500k within the map on the screen (polygon)
	14 - Get all properties with price range of $250k to $500k within a complex drawn area on map (multi-polygon)
	15 - Get all the Residential properties within a half mile of a specific road (linestring)
	16 - Request only IDs
	17 - Get all the properties with a listing price less than $300K
	18 - Get all the properties with a listing price greater than $300K
	19 - Get all the properties with a listing price of $300K
	20 - Query using boolean to find all properties that are short sales
	21 - Combine multiple criteria in a search
	22 - Get records back in a certain order
	23 - Get a count of records
	24 - Get all members whose first name starts with ‘Joh’
	25 - Get all members whose last name ends with ‘ith’
	26 - Get all members whose last name contains the string ‘ohns’
	27 - Get all members whose first name is ‘James’ or ‘Adam’ and who are active
	28 - Get all properties that were listed in the year 2013
	29 - Get all properties that were listed in May of 2013

	Appendix 3 - Advanced Query Examples
	Appendix 4 - DataSystem XML Schema
	Appendix 5 - Approved RCPs
	RCPs Approved for Version 1.0.3
	RCP - WEBAPI-001 Odata Property Facet Attribute MaxLength, Precision and Scale Errata
	RCP - WEBAPI-002 Remove TimeZoneOffset
	RCP - WEBAPI-003 Update HTTP specification references to current Internet/Industry Standards
	RCP - WEBAPI-004 Include SSL RFC to ensure secure implementation
	RCP - WEBAPI-005 Revise Section 2.6.2 - Data Dictionary Resources
	RCP - WEBAPI-006 Modify 2.6.1 Data System Resource from Must Implement to May Implement
	RCP - WEBAPI-007 Section 2.4.4: Remove required filter function time() (Copy)
	RCP - WEBAPI-008 Web API Version 1.0.2 Specification Errata (Copy)
	RCP - WEBAPI-009 Collections of Enumerations (Copy)

