‘ REAL ESTATE STANDARDS ORGAMNIZATION

RESO Web API Security v1.0.1

Copyright 2014 RESO

Section 1 - Five Minute OAUINZ e e e 3

L1 HTTP Client ReQUITEMENTS o ottt e 5
1.1 - OAULNZ API CONSUMET . . .ottt ettt e et e e e e e e e e e et e e e e e e e 5
1.1.1 OAuth2 Client TOOIKITSo e e e e e 5
1.1.2Step 1 - AULNONIZE . ..o 6
1.1.3Step 2 - Callback . ..o 7
114 SteP 3 - DAT Al 9
115 SteP B - REfTES L 11
1.2-0AUth2 RETS APl eIVl . . e e e e 12
1.2.1 OAUth2 Server TOOIKITS e 13
1.2.2 Register NeW API CONSUMEIS . . . ottt ittt e 13
1.2.3 AUthOrize ENCPOINto e 14
1.2.4 Grant ENAPOINt oo e 15
1.2.5 Verify ACCESS TOKENS . . .ottt et e e e e e e e e e e e e e 16
1.2.6 EXtra SECUNLY MEBASUIES oottt ettt e e e e e e e e e e e e e 17
Section 2 - OAuth2 Implementation ReCOMMENAtiONSo i e e 17
2.1 Client Password Credentials 18
2.2 TOKEN EXPINAtiONS . . o oottt e e e e e e 18
2.3 Format and Construction of TOKENS e 18
2.4 RedireCt_Ur ENfOrCemMENto e e 19
2.5 Refreshing an ACCESS TOKENo e e e 20
2.5.1 An expired access token returns HTTP 401 ot e e 20
2.5.2 API Consumer makes a request to the RETS Server's authorize endpoint 20
2.5.3 API Consumer saves the access and refreshtokens i 20
SECHON 4 - AUINOIS . .o 20
Section 5 - ReVISION LISto 21
SECHON B - APPENAICES . . o .ttt ittt e e e e e e e e 22
6.1 INtended USE CaSESttt e e 23
6.1.1 SP to IdP to SP Typical three-way authorization i 23
6.2 UNSUPPPOIEA USE CaASES . ..ottt ittt ettt e e e e e e e e 23
6.2.1 SP (Service Provider) to SP/IAP (Identity Provider) 23
6.2.2 SP to SP/IdP Transparent three-way authorization i 24
6.2.3 SP to SP/IdP Transparent, recurring "on behalf of* authorization 25
6.3 Explicitly Disallowed USE CaSESttt et et e e e e e e 26
6.3.1 2-legged Client-Server AU 26
6.3.2 4-legged Federated Identitiest 27

Copyright 2014 RESO

RESO Web API Security v1.0.1

Copyright 2014 RESO. By using this document you agree to the RESO End User License Agreement (EULA) posted here.

(https://reso.memberclicks.net/assets/docs/reso%20eula.pdf)

Page 3

Please review the document, RETS Web API Security - RESO Position, as a preamble to this RETS Web API Security v1.0.1 document.

Section 1 - Five Minute OAuth2

® 1.1 HTTP Client Requirements
® 1.1 - OAuth2 API Consumer

¢ 1.1.1 OAuth2 Client Toolkits

® 1.1.2 Step 1 - Authorize

® 1.1.3 Step 2 - Callback

® 1.1.4 Step 3 - DATA!

® 1.1.5 Step 6 - Refresh
® 1.2 - OAuth2 RETS API Server

® 1.2.1 OAuth2 Server Toolkits
1.2.2 Register New API Consumers
1.2.3 Authorize Endpoint
1.2.4 Grant Endpoint
1.2.5 Verify Access Tokens
1.2.6 Extra Security Measures

Section 2 - OAuth2 Implementation Recommendations

2.1 Client Password Credentials

2.2 Token Expirations

2.3 Format and Construction of Tokens

2.4 Redirect_uri Enforcement

2.5 Refreshing an Access Token
® 2.5.1 An expired access token returns HTTP 401
® 2.5.2 API Consumer makes a request to the RETS Server's authorize endpoint
® 2.5.3 API Consumer saves the access and refresh tokens

Section 4 - Authors
Section 5 - Revision List

Section 6 - Appendices

® 6.1 Intended Use Cases

® 6.1.1 SP to IdP to SP Typical three-way authorization
® 6.2 Unsuppported Use Cases

® 6.2.1 SP (Service Provider) to SP/IdP (Identity Provider)

® 6.2.2 SP to SP/IdP Transparent three-way authorization

® 6.2.3 SP to SP/IdP Transparent, recurring "on behalf of" authorization
® 6.3 Explicitly Disallowed Use Cases

® 6.3.1 2-legged Client-Server Auth

® 6.3.2 4-legged Federated Identities

Copyright 2014 RESO

https://reso.memberclicks.net/assets/docs/reso%20eula.pdf
https://reso.memberclicks.net/assets/docs/reso%20eula.pdf
http://members.reso.org/display/RWASRP/RESO+Web+API+Security+-+RESO+Position

Page 4

Section 1 - Five Minute OAuth?2
OAuth2: too long; didn't read (TL;DR)

OAuth2 uses a 3-legged authentication scheme. The three legs are the Client Browser, APl Consumer, and RETS Server. The Client can be
an MLS Member, or VOW consumer. The API Consumer is a server-side application that consumes MLS Data and acts as a middle-man
between the Client and the RETS Server. The RETS Server is operated by the Site/MLS. It services the OData endpoints, MLS Data, and
operates as the identity provider.

Authaorize
APl Consumer?

RETS

Legend
Server

Auth Request

>

Auth Response

MLS Data ’ ' API

Consumer

The general flow in this process is:

1) An unauthenticated MLS Member requests access to the API Consumer. The APl Consumer responds with a redirect to the RETS Server's
OAuth2 aut hor i ze endpoint.

2) The MLS member passes a username and password to the RETS Server. They also agree to authorize the API Consumer access to their
Site/MLS data. Aredirect_uri parameter in this request is compared with a previously stored value on the RETS Server as a security check.

3) The Client browser is redirected back to the r edi rect _uri that was given in the request from Step 2. The API Consumer is also given an
authorization code parameter for use in Step 4.

4) The API Consumer makes a request to the RETS Server's token exchange service. The authorization code received in Step 3 is exchanged
for access and refresh tokens.

5) The API Consumer uses the access token to request Site/MLS data. The data is processed and presented to the Client browser.

Continue with the overview: Which leg are you writing?

® Section 1.1 - APl Consumer
® Section 1.2 - RETS Server

For more in depth reading:

OAuth2 Resources: http://oauth.net/2/

OAuth2 RFC 6749: http://tools.ietf.ora/html/rfc6749

OAuth2 Threat Model and Security Considerations RFC 6819: https://tools.ietf.org/html/rfc6819

Copyright 2014 RESO

http://members.reso.org/display/API/RETS+Web+API+v1.0.1
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819

Page 5

1.1 HTTP Client Requirements

The HTTP Client Browser, and HTTP Client Library used in the APl Consumer role MUST support these features:

Ability to submit POST requests with a JSON message body

Ability to submit custom headers, specifically the Authorization header
Follow HTTP 302 redirects automatically

Support SSL

Display HTML content to a user

These requirements should be standard in every modern tool, and this is the bare minimum required to use OAuth2.

1.1 - OAuth2 API Consumer

The API Consumer accepts client browsers and uses an access token to retrieve data from the RETS API server. This access token is an
obfuscated transient key, and represents the identity of an MLS Member or VOW consumer. An APl Consumer is typically a standard MVC web
application and is strictly a server-side middle-man between a Client and the RETS Server. This middle-man approach adds extra security
features when compared to the standard client-server model.

An API Consumer must first apply for a registration process from the Site/MLS. The Site/MLS will provide acl i ent _idandclient_secret.
The cl i ent _i d is registered with ar edi rect _uri , which is a URL that points back to the APl Consumer's callback controller.

The general algorithm an APl Consumer must implement is:
Step 1: Accept an unauthenticated Client, and redirect to the RETS Server's aut hor i ze endpoint

Step 2: Accept a Client at the callback URL (registered r edi r ect _uri). The RETS Server appends a code parameter to this call.
Exchange the code for access and refresh tokens at the RETS Server's gr ant endpoint

Step 3: Use the access token in the Aut hori zat i on HTTP header to request data from the API
Step 4: If an access token expires, use the refresh token at the RETS Server's gr ant endpoint to attain a fresh one

Four steps, that's not too bad! There are also many OAuth2 client libraries available which make the programming process quicker and easier.

A few security guidelines:

1. An API Consumer MUST NEVER give out access tokens, refresh tokens, or client_secrets. Treat these like a password!
2. The API Consumer MUST use SSL for the callback URL
3. Do not mix up client sessions with different access tokens. They are a 1:1 identity relationship

1.1.1 OAuth2 Client Toolkits
1.1.2 Step 1 - Authorize
1.1.3 Step 2 - Callback
1.1.4 Step 3 - DATA!

1.1.5 Step 6 - Refresh

1.1.1 OAuth2 Client Toolkits

The RESO role of an API Consumer may use an existing OAuth2 client library. OAuth2 client libraries are not required, they just make the
programming task a little easier. Read 1.1 HTTP Client Requirements for the basic requirements.

Try to not confuse "OAuth2 client" with the RESO term for "Client" which represents the client web browser. The APl Consumer is both a client
and server. A client to the RETS API Server, and a server to the MLS Member.

Most of the client libraries listed here have been taken from the OAuth2 Implementations page here: http:/oauth.net/2/ If your language is not
listed here, please refer to the OAuth2 list.

PHP

PHP OAuth 2.0 "Authorization Code Grant" client
https://github.com/fkooman/php-oauth-client

Zend OpenlID Connect (And OAuth2) Client Library
https://github.com/ivan-novakov/php-openid-connect-client

PHP OAuth API
http://www.phpclasses.org/package/7700-PHP-Authorize-and-access-APIs-using-OAuth.html

Copyright 2014 RESO

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://oauth.net/2/
https://github.com/fkooman/php-oauth-client
https://github.com/ivan-novakov/php-openid-connect-client
https://github.com/ivan-novakov/php-openid-connect-client

Page 6

Java

Spring Security OAuth2
https://github.com/spring-projects/spring-security-oauth/wiki

Apache Oltu
http://oltu.apache.org/download.html
https://cwiki.apache.org/confluence/display/OLTU/Documentation

.NET

DotNetOpenAuth
http://dotnetopenauth.net/

Spring Social for .NET
http://www.springframework.net/social/

Ruby

Intridia OAuth2 gem
https://qgithub.com/intridea/oauth?

Tiabas OAuth2 client
https://github.com/tiabas/oauth2-client

nov's rack-oauth2 client
https://github.com/nov/rack-oauth2

Python

rauth
https://github.com/litl/rauth

sanction
https://github.com/demianbrecht/sanction

Google APIs Client Library for Python
https://developers.google.com/api-client-library/python/guide/aaa_oauth

i0S

Client library for OAuth2
https://github.com/nxtbgthng/OAuth2Client

Android

In practice, the Java clients listed in this section should also work on Android.

Scribe

https://github.com/fernandezpablo85/scribe-java

Copyright 2014 RESO

https://github.com/spring-projects/spring-security-oauth/wiki
http://oltu.apache.org/download.html
http://oltu.apache.org/download.html
https://cwiki.apache.org/confluence/display/OLTU/Documentation
http://dotnetopenauth.net/
http://www.springframework.net/social/
https://github.com/intridea/oauth2
https://github.com/tiabas/oauth2-client
https://github.com/nov/rack-oauth2
https://github.com/litl/rauth
https://github.com/demianbrecht/sanction
https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://github.com/nxtbgthng/OAuth2Client
https://github.com/fernandezpablo85/scribe-java

Page 7

1.1.2 Step 1 - Authorize

Accept an unauthenticated client request:

Client Request

GET / HITP/ 1.1
Host: app. exanpl e. com

Respond with a redirect to the RETS Server's aut hor i ze endpoint. Provide the cl i ent _i d andredirect _uri parameters associated with
the API Consumer. A st at e parameter is an extra security measure, and is a unique session ID to assist in preventing cross-site forgery attacks.

Response

HTTP/ 1.1 302 Found

Location: https://rets.exanple.confauthorize?client_id=7dlwp67gl 1lo08wsc8ks4csgsk&
&st at e=05n9ki 8kpi | 86vI 9j 11uuj bn41
&redirect _uri=https://app. exanpl e. con cal | back. php

PHP Example

A quick snippet in everyone's favorite language

index.php

<?php
$client_id = "7dlwp67gl loo8wsc8ks4csgsk"”;
$cal | back = "https://app. exanpl e. cont cal | back. php";
if (session_id() === "" && $_COXKI E[session_nane()] == NULL)
{
session_start();
header ("Location: https://rets.exanple.conl authorize?"
"client_id=$client_id"
"&state=" . session_id()
"&edirect _uri=$redirect_uri");

1.1.3 Step 2 - Callback

Accept a client request that has been redirected from the RETS Server. The MLS Member has logged in, and is being redirected back to the API
Consumer.

Client Request

GET /cal | back. php?code=5i 46kaOuur 7sokt i yca6l cczt ?st at e=05n9ki 8kpi | 86vl 9j 11uuj bn4l
HTTP/ 1.1

Host: app. exanpl e. com

Referer: https://rets.exanpl e.com aut hori ze

Cooki e: PHPSESSI D=05n9ki 8kpi | 86vl 9j 11uuj bn41; (Set fromthe exanpl e index. php)

Copyright 2014 RESO

Page 8

Verify that the st at e parameter is the same as the current session ID to prevent cross-site forgery attacks.

Before responding to this client, open up a new server-side HTTP request to the RETS Server's token exchange service. Provide the cl i e
nt_id,client_secret,redirect_uri, and authorization code.

RETS Server Request

POST /grant HTTP/ 1.1
Host: rets.exanple.com
Cont ent - Type: application/json

{"code": "5i 46kaOuur 7sokt i yca6l cczt ",
"client _id":"7dlwp67gl 1o08wsc8ks4csgsk",
"client_secret":"6pphytzx8qkl fa2w 23wgi yi |l ",
"redirect _uri":"https://app. exanpl e. coni cal | back. php",
"grant _type":"authorization_code"}

RETS Server Response

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{"access_t oken":"2wOwc3b8565aj pj 4i 9v68i vl v",
"refresh_token":"t Gzv3JOKFOXGEQX2TI KW A",
"expires_in":3600}

® Save the access and refresh tokens in a protected storage space, referenced by the client's session ID. (
o5n9ki 8kpi | 86vl 9j 11uuj bn41)
® Optionally, save the expi r es_i n timestamp to know in advance when a refresh will be needed.

® |f supported by the RETS Server, use the access token at this time to query an MLS Member's information for display purposes. (Name,
email, etc)

Respond to the client with a redirect to the API Consumer's "logged in" landing location. SSL is not required after this step!

Client Response

HTTP/ 1.1 302 Found
Location: http://app.exanpl e.con dashboard. php

PHP Example

Copyright 2014 RESO

http://members.reso.org/display/APISEC/1.1.6+Step+6+-+Refresh

Page 9

callback.php

<?php
session_start();
$code = $_REQUEST["code"];
$state = $_REQUEST["state"];
if ($state !'= session_id())
{
Cross site forgery detection
}
$ch = curl _init(); curl_setopt($ch, CURLOPT_URL, "https://rets.exanple.congrant");
curl _setopt ($ch, CURLOPT_HTTPHEADER, array(' Content-Type: application/json'));
curl _setopt ($ch, CURLOPT_PCST, 1);
curl _setopt($ch, CURLOPT_RETURNTRANSFER, 1)

curl _setopt($ch, CURLOPT_POSTFI ELDS, json_encode(array(
"code": " 5i 46kalOuur 7sokt i yca6l cczt",
"client _id":"7dlwp67gl loo8wsc8ks4csgsk”,
"client_secret":"6pphytzx8gkl fa2w 23wgi yi | ",
"grant _type":"authorization_code"

)))s

$response = curl _exec($ch);
curl _cl ose($ch);

$response = json_decode($response);
$access_token = $response["access_t oken"];
$refresh_token = $response["refresh_token"];

Calculate the tinestanp a refresh will be needed at
$expires_at = strftime("%-%n% %1 %v 8", tine() + $response["expires_in"])

I nsert sonething useful into a database

$sql = "insert into keys (session_id, access_token, refresh_token, expires_at)
"values ('" . session_id() . "', '%$access_token', '$refresh_token’

"$expires_at')";

Redirect to our |anding page

header ("Location: http://app. exanpl e. conl dashboard. php"
?>

1.1.4 Step 3 - DATA!

| can haz data?

Copyright 2014 RESO

Page 10

The access token can now be used in the Aut hori zat i on HTTP header to request data from the RETS Server API on behalf of the MLS
Member. Make sure to follow these security guidelines:

1. An API Consumer MUST NEVER give out access tokens, refresh tokens, or client_secrets. Treat these like a password!
2. Do not mix up client sessions with different access tokens. They are a one-to-one identity relationship

Client Request

GET /dashboard. php HTTP/ 1.1
Referer: https://app.exanpl e.cont cal | back. php
Cooki e: PHPSESSI D=05n9ki 8kpi | 86vl 9j 11uuj bn41;

The request to the RETS Server APl might look something like this:

RETS API Request

GET / RESO ODat a/ Properties.svc/ Properties('Listingld3") HITP/ 1.1
Host: rets. exanpl e.com
Aut hori zation: Bearer 2wOwc3b8565aj pj 4i 9v68i vl v

PHP Example

Copyright 2014 RESO

Page 11

dashboard.php

session_start();

Retrieve this client's access token. expires_at condition optional,

the RETS Server will tell us when an access token is expired

$sql = "sel ect access_token from keys where session_id="" . session_id() . "' and
now() < expires_at";

curl _setopt ($ch, CURLOPT_URL,
"https://rets. exanpl e. coml RESQ ODat a/ Properties. svc/ Properties('Listingld3)");
curl _setopt($ch, CURLOPT_HTTPHEADER, array("Authorization: Bearer $access_token"));
$response = curl _exec($ch);
$status = curl _getinfo($ch, CURLI NFO HTTP_CODE) ;
if ($status == 401)
{
/1l See Section 1.1.5 Step 4 - Refresh

}

present $response to the client

1.1.5 Step 6 - Refresh

If a RETS Server responds from an API request with an HTTP 401 response, the access token is invalid and must be refreshed.

RETS API Response

HTTP/ 1.1 401 Unauthori zed
WAN Aut hent i cate: Bearer real n=' RETS Server', error='expired_token'
Cont ent - Type: application/json

{ "nessage": "Access token has expired" }

The API Consumer usesthe client _id,client_secret,refresh_token,andredirect_uri to retrieve a fresh set of access and refresh
tokens for the MLS Member.

RETS Server Request

POST /grant HTTP/ 1.1
Host: rets.exanpl e.com
Cont ent - Type: application/json

{"client_id":"7dlwp67gl 1loo8wsc8ks4csgsk",
"client_secret":"6pphytzx8gkl fa2w 23wgi yi |l ",
"refresh_token":"t Gzv3JOKFOXGEQX2TI KW A",

"redirect _uri":"https://app. exanpl e. coni cal | back. php",
"grant _type":"refresh_t oken",

}

Copyright 2014 RESO

RETS Server Response

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{ "access_t oken":"645nhg6of axunp2hfj Opou8r 0",
"refresh_token":"300ii pzrpiknijyxtjrugkt29",
"expires_in":3600

}

Page 12

The new pair should be saved as a reference to the current session ID. Any old access and refresh tokens are invalid, and should be deleted.

PHP Example

Snippet of dashboard.php

$status = curl _getinfo($ch, CURLI NFO _HTTP_CCDE) ;
if ($status == 401)
{
$ch = curl _init();
curl _setopt($ch, CURLOPT_URL, "https://rets.exanple.com grant");

curl _setopt($ch, CURLOPT_HTTPHEADER, array(' Content-Type: application/json'));

curl _setopt($ch, CURLOPT_POCST, 1);

curl _setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl _setopt($ch, CURLOPT_POSTFI ELDS, json_encode(array(
"refresh_t oken": $refresh_t oken,
"client _id":"7dlwp67gl 1008wsc8ks4csgsk"”,
"client_secret":"6pphytzx8qgkl fa2w 23wgi yi | ",
"redirect _uri": "https://app.exanple.cont cal | back. php",
"grant _type":"refresh_t oken"

)));

$response = curl _exec($ch);

curl _cl ose($ch);

$response = json_decode($response);

$access_t oken = $response["access_t oken"];

$refresh_token = $response["refresh_token"];

Calculate the tinestanp a refresh will be needed at

$expires_at = strftime("%-%n% %1t % 8", tine() + $response["expires_in"]);

$sql = "delete fromkeys where session_id ="'" session_id() . "'";
$sql = "insert into keys (session_id, access_token, refresh_token, expires_at)
" values ('" . session_id() . "', '$access_token', '$refresh_token',
"$expires_at')";

}

1.2 - OAuth2 RETS API Server

The RETS Server must implement four basic features:

Register new APl Consumers
. Authorize endpoint

Grant endpoint

. Verify access tokens

PONPE

A few security guidelines

Copyright 2014 RESO

Page 13

1. All requests MUST be over SSL
. API Consumers MUST be registered with ar edi r ect _uri callback, and verified at the aut hor i ze endpoint

N

1.2.1 OAuth2 Server Toolkits

1.2.2 Register New API Consumers
1.2.3 Authorize Endpoint

1.2.4 Grant Endpoint

1.2.5 Verify Access Tokens

1.2.6 Extra Security Measures

1.2.1 OAuth2 Server Toolkits

Most of the server libraries listed here have been taken from the OAuth2 Implementations page here: http:/oauth.net/2/ An OAuth2 server toolkit
is not required, they just provide some helper methods to make an OAuth2 implementation quicker and easier.

If your language is not listed here, please refer to the OAuth2 list.
PHP

PHP OAuth2 Server
https://github.com/bshaffer/oauth2-server-php

PHP OAuth 2.0 Auth and Resource Server
https://github.com/php-loep/oauth2-server

PHP OAuth 2.0 Authorization Server (with SAML/BrowserID AuthN, with management REST API)
https://github.com/fkooman/php-oauth

Java

Apache Oltu
http://oltu.apache.org/download.html
https://cwiki.apache.org/confluence/display/OLTU/Documentation

Spring Security OAuth2
https://github.com/spring-projects/spring-security-oauth/wiki/oAuth2

JavaScript (Node.js)

Mark Lesswing’'s OAuth 2.0 authorization code authentication strategy for Passport.

https://www.npmjs.org/package/passport-oauth2-code

Python

OAuth 2.0 Client + Server Library
https://github.com/NateFerrero/oauth2lib

Ruby

nov’s rack-oauth?2 client
https://github.com/nov/rack-oauth2

.NET

DotNetOpenAuth
http://dotnetopenauth.net/

Copyright 2014 RESO

http://oauth.net/2/
https://github.com/bshaffer/oauth2-server-php
https://github.com/php-loep/oauth2-server
https://github.com/fkooman/php-oauth
http://oltu.apache.org/download.html
https://cwiki.apache.org/confluence/display/OLTU/Documentation
https://github.com/spring-projects/spring-security-oauth/wiki/oAuth2
https://www.npmjs.org/package/passport-oauth2-code
https://github.com/NateFerrero/oauth2lib
https://github.com/nov/rack-oauth2
http://dotnetopenauth.net/

Page 14

1.2.2 Register New APl Consumers

[cLiont_ids |

¢

031800 1

A RETS Server MUST register an API Consumer r edi rect _uri callback with new cl i ent _i ds. Usually this is a one-to-one relationship.
One cl i ent _i d represents one API Consumer's callback URL. This MAY be a one-to-many relationship, with restrictions documented in
Section 2.4 Redirect_uri Enforcement. Eachclient_id hasaclient_secret, which is effectively a password in the same token format.

This MUST NOT be an automated process. The RETS Server MUST implement a method to require a human action by the Site/MLS to
authorize a new APl Consumer product. No client_id vending machines!

1.2.3 Authorize Endpoint

The aut hor i ze endpoint can be any URL name chosen by the RETS Server, and should be documented for the API Consumer. (This URL can
be hidden from public view if desired) This URL MUST use SSL. The API Consumer will redirect a request from the Client browser to this
endpoint:

Client Request

GET /authorize?client_id=7d1lwp67gl 1loo8wsc8ks4csgsk

&st at e=05n9ki 8kpi | 86vl 9j 11uuj bn41l

& edirect _uri=https://app. exanpl e.com cal | back. php HTTP/ 1.1
Host: rets.exanple.com

The RETS Server must match a pre-registered cl i ent _i d and r edi rect _uri pair with the request parameters. If the security check passes,
generate a new Aut hori zati on code. (See Section 2.3 Format and Construction of Tokens) This code SHOULD expire in ten minutes.
Read more about expirations in Section 2.2 Token Expirations.

Hint
Database systems that have automatic TTL expirations work great for this. MongoDB and Redis are good examples.

Redirect the Client browser to the r edi r ect _uri with the code parameter appended to the URL. Relay the same st at e parameter the API
Consumer provided to prevent cross site forgery attacks.

Copyright 2014 RESO

http://docs.mongodb.org/manual/tutorial/expire-data/
http://redis.io/commands/expire

Page 15

Client Response

HTTP/ 1.1 302 Found

Locati on:

http://app. exanpl e. coni cal | back?code=5i 46kaOuur 7sokt i yca6l cczt &t at e=o5n9ki 8kpi | 86v| 9j
11uuj bn41l

PHP Example

authorize.php

$sql = "select redirect_uri fromconsumers where client_id=""
$ REQUEST["client _id"] . "'";
if ($redirect_uri !'=$ REQUEST["redirect_uri"])
{
Error response defined in QAuth2 RFC 6749 Section 4.1.2.1
}
$new_code = generate_token();
$sql = "insert into codes (client_id, code, expires_at) "

"values('". $_REQUEST['client_id'] . "', '$new code', now() + 600)";
header (" Location: $redirect_uri?code=$new_code&st at e=$_REQUEST[' state']");

1.2.4 Grant Endpoint

The RETS Server's gr ant endpoint is responsible for authorization code key exchanges and refreshing access tokens. The gr ant endpoint can
be any URL name chosen by the RETS Server, and should be documented for the APl Consumer. (This URL can be hidden from public view if
desired) This URL MUST use SSL.

All requests to the gr ant endpoint require acl i ent _id, client_secret,andredirect_uri ataminimum.

Authorization Codes

API Consumer Request

POST /grant HTTP/ 1.1
Host: rets.exanple.com
Content - Type: application/json

{"code": "5i 46kaOuur 7sokti yca6l cczt ",
"client_id":"7dlwp67gl 1lo08wsc8ks4csgsk",
"client_secret":"6pphyt zx8qgkl f a2wi 23wgi yi | ",
"redirect _uri":"http://app. exanpl e.com cal | back. php",
"grant _type":"authorization_code"}

First the RETS Server must validate the cl i ent _i d, cl i ent _secret,andredirect _uri. Then verify that the code parameter matches with
the cl i ent _i d, and that it has not expired. If the verification is successful, generate new access and refresh tokens in a JSON response. The
RETS Server MUST delete or invalidate authorization codes after an APl Consumer uses them.

Copyright 2014 RESO

Page 16

API Consumer Response

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{"access_t oken":"2wowc3b8565aj pj 4i 9v68i vl v",
"refresh_token":"t Gzv3JOKFOXGEQx2TI KW A",
"expires_in":3600}

Refreshing Access Tokens

API Consumer Request

POST /grant HTTP/ 1.1
Host: rets. exanpl e.com
Cont ent - Type: application/json

{"refresh_token":"t Gzv3JOKFOXGQ2TI KW A",
"client _id":"7d1lwp67gl 1lo08wsc8ks4csgsk",
"client_secret":"6pphytzx8qgkl fa2wi 23wgi yi | *,
"redirect _uri":"http://app.exanpl e.conl cal | back. php",
"grant _type":"refresh_token"}

First the RETS Server must validate the cl i ent _i d, cli ent_secret,andredirect _uri. Then, verify therefresh_t oken is valid and
pairs with the cl i ent _i d. Although refresh tokens do not carry an expiration, they can be manually removed from the RETS Server if security
tripwires are triggered. This effectively blocks the API Consumer from accessing data on behalf of the specific MLS Member.

If the verification is successful, generate new access and refresh tokens in a JSON response. The RETS Server MUST delete or invalidate old
access and refresh tokens after an APl Consumer uses them.

API Consumer Response

HTTP/ 1.1 200 K
Cont ent - Type: application/json

{"access_t oken": "645nhg6of axunp2hf j Opou8r 0",

"refresh_t oken":"300ii pzrpi knijyxtjrugkt29",
"expires_in":3600}

1.2.5 Verify Access Tokens

On every API request, the RETS Server must verify that the access token has not expired.

APl Consumer Request

GET / RESQ ODat a/ Properties. svc/ Properties('Listingld3") HITP/ 1.1
Host: rets.exanple.com
Aut hori zation: Bearer 2wOwc3b8565aj pj 4i 9v68i vl v

On success, return the OData response using the identity tied to this access_t oken

Copyright 2014 RESO

Page 17

On failure, return an HTTP 401 to tell the APl Consumer that the access token is invalid

Failure Response

HTTP/ 1.1 401 Unauthori zed
WANM Aut hent i cat e: Bearer real n=' RETS Server', error='expired_token'
Cont ent - Type: application/json

{ "message": "Access token has expired" }

1.2.6 Extra Security Measures

Although not defined in the OAuth2 RFC, there are a few extra security measures a RETS Server may implement for extra security

IP Address Accounting

Keep a history of all IP addresses an APl Consumer uses. Most server-side applications should not cycle through IPs very often. If there is a
sudden influx of many IP addresses seen from a given client_id or access_t oken, invalidate them.

User-Agent Verification
Along with ar edi rect _uri , register an APl Consumer's User-Agent. On each API request, verify the requested User-Agent is the same.

Return an HTTP-401, or possibly invalidate the client_id and access tokens. A less invasive approach would be to keep a history of User-Agents,
and perform a similar algorithm to the IP address accounting.

Rate Limiting

Keep track of the request rate at the gr ant and aut hor i ze endpoints. Brute force attacks can be easily caught and disallowed with these two
services. Rate limit API requests by IP address, access_token, and client_id.

Lower Access Token Expirations

Section 2.2 Token Expirations suggests an access token expiration time of less than 24 hours for production traffic. The lower the expiration time,
the quicker access tokens must be discarded, which results in less time for an attacker to use a stolen access token.

OAuth 2.0 Threat Model and Security Considerations

Read RFC 6819.

Copyright 2014 RESO

https://tools.ietf.org/html/rfc6819

Page 18

Section 2 - OAuth2 Implementation Recommendations
2.1 Client Password Credentials

Client Password Credentials (OAuth2 Section 2.3)

The OAuth2 spec defines the option to use HTTP Basic authentication, or Client Credentials using a client_id and client_secret pair. RETS
Server MUST use the Client Password Credentials. HTTP Basic is certainly easier to use, but it removes the fine grained access control that a
client_id represents. Additionally, both methods use the same Authorization header. A RETS Server can only support one method with any
single endpoint. Thus, the RESO standard is to use the Client Password Credentials.

2.2 Token Expirations

Access Token Expirations and Refresh Tokens

In OAuth? RFC Section 1.4, an access token “may self-contain the authorization information in a verifiable manner (i.e., a token string consisting
of some data and a signature).” In this use case, the access token behaves similar to a cookie that is self-signed. Altering the OAuth2 RFC, the
RETS Server MUST NOT use self-authorizing access tokens. The access token MUST be stored server side, and verified during each client
request. This protects against brute forcing a signature algorithm, and makes it easy to invalidate access tokens by removing the server-side
record.

In OAuth? REC Section 10.3, an access token "MUST be kept confidential in transit and storage, and only shared among the authorization
server, the resource servers the access token is valid for, and the client to whom the access token is issued." In practice, there are circumstances
where an access token might be leaked to an attacker. This is improbable in web applications, but is a rare possibility in native OS applications
like mobile or desktop applications.

If an access token is stolen, the attacker could only use it for a limited amount of time until it expires. Keeping a short expiration is a balance
between security, convenience, and speed. It is convenient to be able to use a single access token during development or testing for an extended
period of time. And, an API Consumer application is a faster user experience if it doesn't have acquire a new access token frequently.

On a typical OAuth2 web application, refresh tokens are used less often than access tokens, and are therefore subject to fewer intrusion
situations. If an access token expires once every 24 hours, then the means to steal a refresh token is a small time window once every 24 hours
via sniffing, program tracing, or other real-time attacks. If a refresh token is compromised by an attacker, it is still only valid for the access token's
expiry length of time. Each time the APl Consumer requests a new access token, a replacement refresh token is created as well. This effectively
revokes access to any previous refresh tokens.

Considering the details of the security implications of expiration times, the RETS Server SHOULD enforce an expiration time of less than 24 hours
for mainstream production traffic. The expiration time SHOULD be no less than two hours to avoid unnecessary communication overhead. A few
exceptions to this rule are development, testing and native applications, which could have longer expirations.

Additionally, the RETS Server SHOULD revoke access to the attacker's tokens prematurely if any sort of security tripwires have been broken.
(Detecting source IP address anomalies, request rate soft-limit overages, User-Agent header anomalies, etc.) From a system administrator's

standpoint, revoking tokens is much easier than attempting to block IP addresses. From the end-user's standpoint, it is more convenient than
changing passwords or other security increases. The security problem is handled server-side and completely transparent to the user.

Authorization Codes

Following the OAuth2 RFC recommendation in Section 4.1.2, all authorization code tokens SHOULD have an expiration of 10 minutes. This code
MUST NOT be used more than once. The authorization code grant is meant to be a short lived process. The client logs in, agrees to the
approval step, and then the code is generated. After a single redirect, the code is relayed to the APl Consumer, who then uses the code to
exchange for access and refresh tokens. In most cases, the authorization code should live for only a few seconds.

Hint
Database systems that have automatic TTL expirations work great for this. MongoDB and Redis are good examples. RDBMSs can
use triggers or cron jobs to remove expired tokens.

2.3 Format and Construction of Tokens

Format and Construction of Tokens

The format of access and refresh tokens are left fairly vague in the OAuth2 specification. In OAuth2 Section 4.2.2, "The access token string size is
left undefined by this specification. The client should avoid making assumptions about value sizes. The authorization server SHOULD document
the size of any value it issues."

Here is the RESO standard for character set, length, and cryptographic entropy:

For a character set, base 36 SHOULD be used as the encoding alphabet. The case insensitivity of the alpha characters makes it easier to type or

Copyright 2014 RESO

http://tools.ietf.org/html/rfc6749#section-2.3
http://tools.ietf.org/html/rfc6749#section-1.4
http://tools.ietf.org/html/rfc6749#section-10.3
http://tools.ietf.org/html/rfc6749#section-4.1.2
http://tools.ietf.org/html/rfc6749#section-4.2.2
http://docs.mongodb.org/manual/tutorial/expire-data/
http://redis.io/commands/expire

Page 19

verbally communicate when keys are manually generated for end users. Typing on a mobile device might also capitalize the first character, and
base 36 protects against confusing problems associated with that use case. The length needs to be a balance between entropy and convenience.
In psychology, chunking refers to the short term memory retention for bits of information in small groups. The magic nhumber is about 5 to 9 bits of
information that a human can remember in short term memory for about 20 to 30 seconds.

A good middle ground of cryptographic entropy is 128 bits (16 bytes). Encoded to base 36 results in a 25 character string. That would be 5
chunks, of 5 bits of information each. This is also the exact same length and encoding that Microsoft uses for product keys.

In terms of coding ease, here is an example in everyone's favorite language, PHP:

function generate_token()

{
Generate 128 bits of cryptographically strong
random bi nary data
$rand_bytes = openssl _random pseudo_bytes (16);

Convert to hexadeci nal
$rand_hex = bi n2hex($rand_bytes);

Convert to base36
return base_convert($rand_hex, 16, 36);

This returns a token string that looks like c4xw032sf ks8s08s800scgo8. To make that even nicer in print, it could be upper cased and
chunked into 5 groups of 5 characters:

CAXW/- 032SF- KS8SO- 8S800- SCG8.

2.4 Redirect_uri Enforcement

The OAuth2 RFEC Section 3.1.2.2 states that "the authorization server SHOULD require all clients to register their redirection endpoint prior to
utilizing the authorization endpoint.” It applies a MUST to public clients or any clients using the implicit grant type. This is a solid security method
to protect against man-in-the-middle or phishing attacks. The RESO standard is changing this to a MUST for all requests to the authorize
endpoint.

The only inconvenience to this might be that a separate client_id needs to be registered for every redirect_uri. This means a new registration for
different APl Consumer environments. (Development, Alpha, Beta, Staging, Production, etc.) It might require a little extra time on the RETS
Server's behalf. But the benefit to this is that different access roles and expirations could be applied to the individual client_ids on the RETS
Server. For example, a Development environment client_id might set the access token's expiration to 1 week to make it easier to experiment with.
But the production client_id might set the expiration to something more strict, such as 2 hours.

To make this process more convenient, the RETS Server MAY allow multiple redirect_uris to be registered for each client_id. The RETS Server
MAY also register the base URL containing AT LEAST the domain name of the API Consumer, and pattern match multiple redirect_uri
parameters against the registered pattern. In OAuth2 Section 3.1.2.3, the RFC states that "if multiple redirection URIs have been registered, or if
only part of the redirection URI has been registered, the client MUST include a redirection URI with the authorization request.”

For example, a base URI could be registered on the RETS Server, such as: "https://staging.test_app.example.com". Any redirect_uri parameters
that contain that base domain name could pass the verification test.

Then URIs like this would match:

https://staging.test_app.example.com/test/callback

https://staging.test_app.example.com/test/callback2

But a phishing attempt like this would still fail the verification:

https://naughty_phisher.com/callback

st at e Parameter

OAuth2 RFC Section 4.1.1 states that the st at e parameter on the aut hori zat i on endpoint is "RECOMMENDED. An opaqgue value used by
the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to

Copyright 2014 RESO

http://tools.ietf.org/html/rfc6749#section-3.1.2.2
http://tools.ietf.org/html/rfc6749#section-3.1.2.3
https://staging.test_app.example.com
http://tools.ietf.org/html/rfc6749#section-4.1.1

Page 20

the client. The parameter SHOULD be used for preventing cross-site request forgery as described in Section 10.12."

The RESO Web API Security document is placing the st at e parameter as a MUST, since it's simple to implement, and is a great security
measure.

2.5 Refreshing an Access Token
2.5.1 An expired access token returns HTTP 401

An expired access token returns HTTP 401 Unauthorized on a given API request.
GET /ny/listings HITP/ 1.1
Host: rets.exanple.com

Aut hori zation: Bearer 2wOwc3b8565aj pj 4i 9v68i vl v

Response:
HTTP/ 1.1 401 Unauthori zed
WA Aut hent i cate: Bearer real n¥' RETS Server', error='expired_token'
Content - Type: application/json

{ "nessage": "Access token has expired" }

2.5.2 APl Consumer makes a request to the RETS Server's authorize endpoint

APl Consumer makes a request to the RETS Server's authorize endpoint

The previously saved refresh token is used to request another access token. The client_id and client_secret pair are required (see Section UC 1.3
- Client Credentials) and redirect_uri (see ??) are validated before granting access.

Request:

POST /authorize HTTP/ 1.1
Host: rets. exanple.com
Content - Type: application/json

{"client_id":"1234",
"client_secret":"dedyhcrynzeza6vl jncfnbnxj",
"refresh_token":"t Gzv3JOKFOXGEQXx2TI KW A",

"redirect_uri": "https://test_app.example.com/callback" ,
"grant _type":"refresh_t oken",

}

Response
HTTP/ 1.1 200 K
Content - Type: application/json

{ "access_t oken":"645nhg6of axunp2hfj Opou8r 0"
"refresh_t oken":"300ii pzrpiknijyxtjrugkt29"
"expires_in":3600

}

2.5.3 API Consumer saves the access and refresh tokens

API Consumer saves the access and refresh tokens for future use.

The new access and refresh tokens are saved in a database and used in subsequent RETS Server requests. Any old access and refresh tokens
should be discarded.

Copyright 2014 RESO

http://tools.ietf.org/html/rfc6749#section-10.12
http://members.reso.org/pages/createpage.action?spaceKey=APISEC&title=UC+1.3+-+Client+Credentials&linkCreation=true&fromPageId=16254365
http://members.reso.org/pages/createpage.action?spaceKey=APISEC&title=UC+1.3+-+Client+Credentials&linkCreation=true&fromPageId=16254365
https://test_app.example.com/callback

Page 21

Section 4 - Authors

Author Company Email

Matt Cohen Clareity Consulting matt.cohen@clareity.com
Cal Heldenbrand FBS cal@fbsdata.com

Mark Lesswing NAR

Matt McGuire Corelogic

Copyright 2014 RESO

Page 22

Section 5 - Revision List

® First working draft: RETS Web API Security Group Google Document
® First RESO document: RETS Web API Security v1.0
® Current Version: RESO Web API Security v1.0.1

Copyright 2014 RESO

https://docs.google.com/document/d/1nfww4xuldgNXrNXNR3xdaRwgtuEt36EFOK1xf6eo3Jk
http://members.reso.org/display/AUTHSS/RETS+Web+API+Security+v1.0

Page 23

Section 6 - Appendices

6.1 Intended Use Cases

The only case supported in this first version of the RESO RETS Web API Security standard is a real time application that works on behalf of a
user against the OData Web API. The applications could be mobile, desktop, or web applications. The main attribute to this use case is that an
end user requesting data will result in a real time query against the Web API, and present the data to the end user.

6.1.1 SP to IdP to SP Typical three-way authorization

Typical three-way authorization of a user (Transient authentication of an APl Consumer on behalf of an MLS member).

Example: A web application that interacts with the MLS on behalf of a user, e.g., a real-time CMA.

RESO
Authentication &

Authorization
Use Case #2

Auth Request

R

Auth Response

Authorize
APl Cansumer?

MLS Data

T RETS

Server

API
Consumer

1. An unauthenticated MLS member requests access to the API consumer. The APl consumer responds with a failure redirect to the RETS
server.

2. The MLS member enters a username / password at the RETS IdP. They also agree to authorize the APl consumer product to access
Site/MLS data..

3. The authenticated MLS member makes another request to the API consumer with valid authentication.

4. The APl consumer makes a data request to the RETS server with the authentication supplied by the MLS member. The API consumer
processes the data for presentation to the MLS member.

5. The API consumer responds with Site/MLS data to the MLS member.

6.2 Unsuppported Use Cases

Unsupported use cases are possible to implement with OAuth2, but will be left out of the intended use case for the first version of the RESO API.
As the API standard progresses, these edge cases will be worked back in.

Copyright 2014 RESO

Page 24

6.2.1 SP (Service Provider) to SP/IdP (Identity Provider)

Server or Client to Server authorization (without human intervention)

Example: RETS 1.x style flow. A syndicator's recurring bulk download of listing data.

f RESO ’
Authentication &
Authorization
| Use Case #1 |

Auth Request @
— |

Auth Response |

MLS Data

—_—

©

API
Consumer RETS Server
Local DB

1. An API consumer submits a request for authentication to the RETS server. The API consumer declares its own identity to the RETS
server (Not on behalf of an MLS member). No human interaction takes place.

2. The RETS server responds with an authentication success message along with any extra authentication session information. It may also
respond with MLS data in the same response.

3. A web browser client requests MLS data directly from the APl consumer. They may perform authentication using locally stored
credentials, which may be independent of the MLS vendor's credentials. The request might also be unauthenticated for IDX sites.

6.2.2 SP to SP/IdP Transparent three-way authorization

Transparent three-way authorization of a user.
(Transient authentication of an APl consumer on behalf of a user without human intervention)

Example: A VOW provider's validation of eligibility for an existing customer.

Copyright 2014 RESO

Page 25

RESO
Authentication &

Authorization
Use Case #3

Legend

Auth Request

—lp

Auth Response

|

MLS Data

Token Push

API

E gi Consumer

Local DB

1. The Site/MLS (or an MLS member) gives an authentication token to the API consumer. This could be a manual process, or a batch
process of tokens for many users. This token may have an expired lifetime.

2. The API consumer uses the token to request authorization from the RETS server. The API consumer could also request VOW
authorization of a customer on behalf of an MLS member using that token.

3. The RETS server checks the token for authorization and expiration. They respond with a success, and possibly another (updated) token
for this member. For VOW authorizations, this could respond with a token that identifies the MLS member's customer.

4. The API consumer requests Site/MLS data, same as Use Case 6.1.1. (Use Case: SP to IdP to SP Typical three-way authorization).
5. At some point in the future, the MLS member authenticates against the MLS, similar as Use Case 6.1.1. (Use Case: SP to IdP to SP
Typical three-way authorization). The RETS server does not need to ask for authorization again, since this happened in step 1 (VOW

customers would have a similar authentication experience).

6. The MLS member or VOW customer has access to previously loaded Site/MLS data.

6.2.3 SP to SP/IdP Transparent, recurring "on behalf of" authorization

Transparent, recurring "“on behalf of"” authorization of a user.
(Persistent, transient authentication of an APl consumer on behalf of a user without human intervention)

Example: Lead Management software that pulls leads from multiple sources for a given customer.

Copyright 2014 RESO

Page 26

RESO
Authentication &

Authorization
Use Case #4

Auth Reqguest

AR

Auth Respanse

_

MLS Data

—

Taken Push

API

=

Local DB

1. The Site/MLS (or an MLS member) gives an authentication token to the API consumer. This could be a manual process, or a batch
process of tokens for many users. This token must have an infinite lifetime (Or perhaps very long).

2. The API consumer uses the token to request authorization from the RETS server. The API consumer could also request VOW
authorization of a customer on behalf of an MLS member using that token.

3. The RETS server verifies the token. They respond with a success or failure. For VOW authorizations, this could respond with a token
that identifies the MLS member's customer.

4. The API consumer requests Site/MLS data, same as Use Case #1.2.2 (Use Case: SP to IdP to SP Typical three-way authorization).
5. At some point in the future, the MLS member authenticates against the Site/MLS, similar as Use Case #1.2.2 (Use Case: SP to IdP to SP
Typical three-way authorization). The RETS server does not need to ask for authorization again, since this happened in step 1 (VOW

customers would have a similar authentication experience).

6. The MLS member or VOW customer has access to previously loaded Site/MLS data.

Note: The last two Use Cases are actually very similar - in terms of what standards may be called upon to service them, they are effectively the
same.

6.3 Explicitly Disallowed Use Cases

6.3.1 2-legged Client-Server Auth

A client browser MUST NOT connect directly to a RETS API Server. While this was typical behavior in RETS 1.x, this authentication flow solicits
too many security vulnerabilities with a modern API. OAuth2's Implicit Grant is a workaround to attempt to solve this problem. RESO is explicitly

disallowing the OAuth2 Implicit Grant for the same reasons. The client browser should never have direct access to a client_id, secret, access
token, or refresh token.

Copyright 2014 RESO

http://members.reso.org/pages/createpage.action?spaceKey=APISEC&title=1.2.2+Use+Case%3A+SP+to+IdP+to+SP+Typical+three-way+authorization&linkCreation=true&fromPageId=16254314
http://members.reso.org/pages/createpage.action?spaceKey=APISEC&title=1.2.2+Use+Case%3A+SP+to+IdP+to+SP+Typical+three-way+authorization&linkCreation=true&fromPageId=16254314
http://tools.ietf.org/html/rfc6749#section-1.3.2

Page 27

Auth Request

Alth Response |

MLS Data RETS

6.3.2 4-legged Federated Identities

Federated identity systems are out of the scope for this version of RESO Web API Security. From the very beginning, RESO decided that
federated systems are too complex to tackle for the average developer. The complexity is introduced when an IdP is separated from the MLS's
RETS Server. The two systems must maintain a constant communication in order to validate and invalidate identity sessions. Other solutions
involve self-signed tokens and access control systems. Both of these solutions create a disconnect between the RETS Server and IdP, which
results in the Site/MLS losing active control over Member's sessions.

Stay tuned in, as RESO may include support for OpenID Connect after this standard is adopted by the IETF as a published RFC.

>

OAuth2 IdP

A

Auth Request

Auth Response |

MLS Data

—_—

Token

STETEITTTITT =

V)

TETTYYETTEY 2

S TETTTTTEERTTITE

TTTTTTT TP T TEREEECLTT TR T, 2

<

RETS

API
Server

Consumer

Copyright 2014 RESO

http://openid.net/connect/

	RESO Web API Security v1.0.1
	Section 1 - Five Minute OAuth2
	1.1 HTTP Client Requirements
	1.1 - OAuth2 API Consumer
	1.1.1 OAuth2 Client Toolkits
	1.1.2 Step 1 - Authorize
	1.1.3 Step 2 - Callback
	1.1.4 Step 3 - DATA!
	1.1.5 Step 6 - Refresh

	1.2 - OAuth2 RETS API Server
	1.2.1 OAuth2 Server Toolkits
	1.2.2 Register New API Consumers
	1.2.3 Authorize Endpoint
	1.2.4 Grant Endpoint
	1.2.5 Verify Access Tokens
	1.2.6 Extra Security Measures

	Section 2 - OAuth2 Implementation Recommendations
	2.1 Client Password Credentials
	2.2 Token Expirations
	2.3 Format and Construction of Tokens
	2.4 Redirect_uri Enforcement
	2.5 Refreshing an Access Token
	2.5.1 An expired access token returns HTTP 401
	2.5.2 API Consumer makes a request to the RETS Server's authorize endpoint
	2.5.3 API Consumer saves the access and refresh tokens

	Section 4 - Authors
	Section 5 - Revision List
	Section 6 - Appendices
	6.1 Intended Use Cases
	6.1.1 SP to IdP to SP Typical three-way authorization

	6.2 Unsuppported Use Cases
	6.2.1 SP (Service Provider) to SP/IdP (Identity Provider)
	6.2.2 SP to SP/IdP Transparent three-way authorization
	6.2.3 SP to SP/IdP Transparent, recurring "on behalf of" authorization

	6.3 Explicitly Disallowed Use Cases
	6.3.1 2-legged Client-Server Auth
	6.3.2 4-legged Federated Identities

