
Real Estate Data Interchange Standard:

Real Estate Transaction Specification
Version 1.7.2

August 29, 2008

Version 1.7.2 Real Estate Transaction Specification i

1. Introduction 1-1
Purpose . 1-1
Scope . 1-1
Requirements . 1-1

Required Features 1-1
Compatibility with Prior Versions. 1-2

Terminology . 1-2

2. Notational Conventions 2-1
Augmented BNF. . 2-1
Typographic Conventions 2-1
Rules . 2-2
Atoms and Primitive Entities 2-2

3. Message Format 3-1
General Message Format 3-1

RETS HTTP/1.1 Encapsulation 3-1
Request Arguments 3-1
Response Bodies 3-2

Request Format . 3-2
Required Client Request Header Fields 3-2
Optional Client Request Header Fields 3-3
Response Format . 3-4
Required Server Response Header Fields 3-5
Optional Server Response Header Fields 3-6
Data Compression in RETS Transactions 3-7
General Status Codes 3-8
Computing the RETS-UA-Authorization Value . . . 3-9

4. Login Transaction 4-1
Security . 4-1

User Authentication 4-1
Client Authentication 4-1
Data Security. . 4-1

Authorization Example 4-2
Required Request Arguments 4-2
Optional Request Arguments 4-2

BrokerCode Argument. 4-2
SavedMetadataTimestamp Argument. 4-2

Optional Response Header Fields. 4-3
Login Response Body Format 4-3
Required Response Arguments 4-3

Broker . 4-3
Member Name. . 4-4
Metadata Version Information 4-4
User information 4-4
Capability URL List 4-5

Optional Response Arguments 4-5
Accounting Information. 4-5
Access Control Information. 4-5
Office List Information. 4-6

Well-Known Names. 4-6
Capability URL List . 4-6
Reply Codes . 4-8

5. GetObject Transaction 5-1
Required Client Request Header Fields 5-1
Optional Client Request Header Fields5-2
Required Request Arguments 5-2
Optional Request Arguments 5-3

Location .5-3
Required Server Response Header Fields 5-3
Optional Server Response Header Fields 5-4

Location .5-4
Description .5-4

Required Response Arguments 5-4
Optional Response Arguments. 5-5
Metadata .5-5
Resources .5-5
Multipart Responses 5-5

General Construction. 5-5
Error Handling .5-6

Reply Codes . .5-7

6. Logout Transaction 6-1
Required Request Arguments 6-1
Optional Request Arguments 6-1
Required Response Arguments 6-1
Optional Response Arguments. 6-1
Logout Response Body Format 6-2
Reply Codes . .6-2

7. Search Transaction 7-1
Search Types .7-1
Search Terminology. 7-2

Field Delimiter .7-2
Field Name .7-2
Record Count . .7-2
Other terms . .7-2

Required Request Arguments 7-2
Search Type and Class 7-2
Query Specification7-3

Optional Request Arguments 7-3
Count . .7-3
Format .7-3
Limit .7-4
Offset . .7-4
Select . .7-5
Restricted Indicator7-5
StandardNames .7-6

Required Response Arguments 7-6
Search Response Body Format7-6
Query language .7-8

Query language BNF 7-8
Query parameter interpretation7-9
Sub-queries . 7-10

Reply Codes . 7-11

8. Get Transaction 8-1
Required Request Arguments 8-1
Optional Request Arguments 8-1

Table of Contents

ii Real Estate Transaction Specification Version 1.7.2

Required Response Arguments 8-1
Optional Response Arguments 8-1
Status Conditions . 8-1

9. Change Password Transaction 9-1
Required Request Arguments 9-1
Optional Request Arguments 9-1
Required Response Arguments 9-1
Optional Response Arguments 9-1
Reply Codes . 9-2
Encryption Key Construction 9-2
ECB Padding . 9-2
Effect of change . 9-2

10. Update Transaction 10-1
Required Request Arguments 10-1
Optional Request Arguments 10-2
Required Response Arguments 10-2
Optional Response Arguments 10-2
Update Response Body Format 10-2

Error block . 10-3
Warning block . 10-4

Validation . 10-4
Lookup . 10-5
MultiSelect Lookup. 10-5
Range . 10-5
Test Expression 10-5
External . 10-5

Reply Codes . 10-5

11. Metadata Format 11-1
Organization and Retrieval 11-1

Metadata Organization 11-1
General Rules for Interpretation 11-1
Metadata Retrieval Hierarchy 11-3
Metadata Format 11-3

System-Level Metadata 11-4
System. . 11-4
Resources . 11-5

Resource Metadata Content 11-6
Foreign Keys . 11-8

ForeignKeys Metadata Content 11-9
Metadata Format for Class Elements 11-10

Class . 11-10
Table . 11-11
Update. 11-16
Update Type . 11-16

Metadata Format for Shared Elements 11-18
Object . 11-18
Lookup . 11-19
Lookup Type . 11-19
Search Help. 11-20
Edit Mask . 11-21

RETS Regular Expression Specification . 11-22
Update Help . 11-22
Validation Lookup 11-23
Validation Lookup Type 11-24

Validation Expression. 11-25
Validation External 11-27
Validation External Type 11-28

12. GetMetadata Transaction 12-1
Required Client Request Header Fields. 12-1
Required Request Arguments 12-1
Optional Request Arguments. 12-1
Required Server Response Header Fields 12-2
Required Response Arguments 12-2
Optional Response Arguments. 12-2
Metadata Response Body Format 12-2
Reply Codes . 12-3

13. Compact Data Format 13-1
Overall format . 13-1
Decoded Format . 13-1
Multivalued Fields . 13-2
Transmission standards 13-2

14. Session Protocol 14-1
Connection Establishment 14-1
Authorization . 14-1
Session . 14-2
Termination . 14-2

15. [deprecated] ServerInformation
Transaction 15-1

Required Request Arguments 15-1
Optional Request Arguments. 15-1
Response Format . 15-1
Well-known names 15-2
Reply Codes . 15-3

16. Acknowledgments 16-1

17. Authors 17-1

18. References 18-1

DTD References A-1

Sample COMPACT Metadata Responses B-1
System . B-1
Resource . B-1
Foreign Keys . B-2
Class. B-2
Table . B-3
Update . B-3
Update Type . B-3
Object . B-4
Lookup . B-4
Lookup Type . B-4

Version 1.7.2 Real Estate Transaction Specification iii

Search Help. . B-5
Edit Mask . B-5
Update Help . B-5
Validation Lookup . B-6
Validation Lookup Type B-6
Validation Expression B-6
Validation External . B-7
Validation External Type B-7

Summary of RETS Reply Codes C-1

Maximum Field Length and Display
Information D-1

Datatype Boolean . D-1
Datatype Character D-2
Datatype Decimal . D-2

Document Revision History E-1

Index of Compliance Items 1-1

Index Index-1

iv Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 Real Estate Transaction Specification v

11.1 Metadata Structure 11-2

List of Figures

vi Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 Real Estate Transaction Specification vii

3-1 General Status Codes. 3-8
4-1 Well-Known Names for Input Fields 4-6
4-2 Capability URL Descriptions 4-7
4-3 Valid Reply Codes for Login Transaction . . . 4-8
5-1 GetObject Reply Codes 5-7
6-1 Logout Reply Codes 6-2
7-1 Search Transaction Reply Codes. 7-11
9-1 Change Password Reply Codes 9-2
10-1 Update Transaction Reply Codes 10-5
11-1 MetadataSystem Compact Header Attributes11-5
11-2 System Compact Header Attributes 11-5
11-3 Metadata: System Field 11-5
11-4 Well-Known Resource Names 11-5
11-5 Resource Metadata Compact Header Attributes11-6
11-6 Metadata: Resource Description Fields . . 11-6
11-7 ForeignKeys Metadata Compact Header Attributes

11-9
11-8 Metadata Content: Foreign Keys. 11-9
11-9 Class Metadata Compact Header Attributes11-10
11-10 Metadata Content: Resource Class . . . 11-11
11-11 Table Metadata Compact Header Attributes11-12
11-12 Metadata Content - Tables. 11-12
11-13 Update Metadata Compact Header Attributes11-16
11-14 Metadata Content – Update. 11-16
11-15 UpdateType Metadata Compact Header Attributes

11-17
11-16 Metadata Content – Update Type 11-17
11-17 Well-known Object Types 11-18
11-18 Object Metadata Compact Header Attributes11-18
11-19 Metadata Content: Resource Object . . 11-18
11-20 Lookup Metadata Compact Header Attributes11-19
11-21 Metadata Content: Lookup 11-19
11-22 Lookup Type Metadata Compact Header Attributes

11-20
11-23 Metadata Content: Lookup Type. 11-20

11-24 Search Help Metadata Compact Header Attributes
11-21

11-25 Metadata Content: Search Help. 11-21
11-26 EditMask Metadata Compact Header Attributes

11-21
11-27 Metadata Content: Edit Mask 11-21
11-28 RETS Regular Expression Metacharacters11-22
11-29 Update Help Metadata Compact Header Attributes

11-23
11-30 Metadata Content: Update Help 11-23
11-31 ValidationLookup Metadata Compact Header

Attributes. . 11-23
11-32 Metadata Content: Validation Lookup . 11-23
11-33 Validation Lookup Type Metadata Compact Header

Attributes. . 11-24
11-34 Metadata Content: Validation Lookup Type11-24
11-35 Validation Expression Types 11-25
11-36 Validation Expression Operators 11-26
11-37 Validation Expression Special Operand Tokens

11-26
11-38 Validation Expression Metadata Compact Header

Attributes. . 11-27
11-39 Metadata Content: Validation Expression11-27
11-40 Validation External Metadata Compact Header

Attributes. . 11-28
11-41 Metadata Content: Validation External . 11-28
11-42 Validation External Type Metadata Compact

Header Attributes 11-29
11-43 Metadata Content: Validation External Type11-29
12-1 GetMetadata Reply Codes 12-3
13-1 Compact Data Field Format Representation13-2
15-1 Well-Known Parameter Names 15-2
15-2 ServerInformation Reply Codes 15-3
A-1 DTD References A-1
C-1 Consolidated list of RETS reply codes. C-1

List of Tables

viii Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 1-1

S E C T I O N

CHAPTER 0INTRODUCTION

1.1 Purpose

The Real Estate Transaction Standard (RETS) is a specification for a standard
communication method between computer systems exchanging real estate information. It
defines a standard interface for use by applications such as agent desktop software, IDX
(Internet Data Exchange) systems, data aggregation systems, and many other systems that
store, display or operate on real estate listing, sales and other data.

This specification describes the Real Estate Transaction Standard communication
protocol. Together with the companion XML DTDs (Document Type Definitions) listed
in Appendix A, it constitutes the specification for the standard.

1.2 Scope

This specification is intended to define only the minimum a product or service must do in
order to be considered “compliant”. This specification is extensible and nothing in the
specification precludes a vendor from adding data or functionality over and above that
detailed here. However, when a function is provided or a data element is stored by a
compliant system, it must offer access to the function or mechanism in a way that
complies with the specification in order to be considered compliant.

1.3 Requirements

1.3.1 Required Features

This specification uses the same words as RFC 1123 [1] for defining the significance of
each particular requirement. These words are:

MUST This word or the adjective "required" means that the item is an
absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an
implementation in order to be considered compliant.

1-2 Real Estate Transaction Specification Version 1.7.2

SHOULD This word or the adjective “recommended” means that there may
exist valid reasons in particular circumstances to ignore this item,
but the full implications should be understood and the case
carefully weighed before choosing a different course. A feature
that the specification states SHOULD be implemented is treated
for compliance purposes as a feature that may be implemented.

MAY This word or the adjective “optional” means that this item is truly
optional. A feature that the specification states MAY be
implemented need not be implemented in order to be considered
compliant. However, if it is implemented, the feature MUST be
implemented in accordance with the specification.

An implementation is not compliant if it fails to satisfy one or more of the MUST
requirements for the protocols it implements. An implementation that satisfies all the
MUST and all the SHOULD requirements for its protocols is said to be “unconditionally
compliant”; one that satisfies all the MUST requirements but not all the SHOULD
requirements for its protocols is said to be “conditionally compliant.”

Client and server implementations should generally follow the Internet protocol
convention of being strict in what they generate, but tolerant in what they accept.
However, in cases where tolerance of deviations from the specification could result in an
incorrect interpretation of user data or intentions, implementers are urged to reject
transactions rather than supplying possibly-incorrect defaults.

1.3.2 Compatibility with Prior Versions

The RETS 1.7.2 specification supersedes previous versions of the RETS specification.
There is no requirement for a client or server that advertises itself as “compliant with RETS
1.7.2” to interoperate with earlier versions. However, client and server implementers are
urged to support the prior versions, RETS 1.7 and RETS 1.5, in order to insure a smooth
transition.

1.4 Terminology

Arguments Tag/value pairs passed to a transaction as part of the Argument-
List.

Class A subset of data elements within a Resource that share common
metadata elements.

Client The system requesting data. This may well be a server seeking to
update itself from another server. The specification does not
assume any particular kind of client.

Endpoint Either a server or client.

Metadata The set of data that describes data fields in detail.

Metadata Dictionary The set of data that describes the available metadata. It is used to
determine the different classes of accessible data on the server and
does not describe the fields within the those classes. It also defines

Version 1.7.2 1-3

what different types of searches are available (tax, open house,
etc.).

Object For purposes of RETS and its GetObject transaction, a collection
of octets treated as a unit and associated with a unique resource
element.

Optional A field or feature described by this specification but not required
for an endpoint to be considered compliant. The specification
states the action to be taken by a compliant system in the absence
of an optional field. The fact that the specification designates a
field as optional does not mean that the recipient of a transaction
that is missing optional fields is required to provide all services
that could be required if the field were present.

Required A compliant server or client MUST include any field designated
as required. A transaction that does not include every required
field MUST be rejected by the recipient.

Resource A collection of data having the external appearance of belonging
to a single database and being accessible for search or update via
RETS transactions.

Resource Element An individual record from a resource identified by a Resource
Key.

Resource Key The unique key that identifies a resource element.

Server The system providing data (also referred to as the “host”).

Request ID A client-provided character string of up to 64 printable characters
which uniquely identifies a request to a client. The contents are
implementation-defined. Defined in Section 3.4, “Optional Client
Request Header Fields”.

StandardName The name of a data field as it is known in the Real Estate
Transaction Standard Data Dictionary.

SystemName The name of a data field as it is known in the metadata.

1-4 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 2-1

S E C T I O N

CHAPTER 0NOTATIONAL CONVENTIONS

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented
Backus-Naur Form (BNF) similar to that used by RFC 2822 [4] and defined in RFC 2234
[22].

2.2 Typographic Conventions

Parsing constructs and examples are set in a monospaced font:

Server: Microsoft-IIS/4.0

In parsing constructs, textual elements that are required exactly as shown are indicated by
boldface type., while textual elements that represent placeholders for actual data are
indicated by a slanted font:

Server: server identifier

Entities designated by a textual definition contain that definition enclosed in angle
brackets:

<any 8-bit sequence of data>

Atoms and primitive entities are indicated by ITALIC CAPS:

1*64ALPHANUM

Two nonprinting characters also have significance in some RETS constructs. These may be
represented by special printing graphics:

→ Tab character, ASCII HT, an octet with a value of 09

⋅ Space character, ASCII SP, an octet with a value of 32. The symbol is used
where needed for clarity.

Certain features of the standard may be superseded as the standard develops. These
features should be avoided and are indicated by the text [deprecated] which will follow the
first use of the feature terminology. Future releases of the standard may remove
deprecated features.

2-2 Real Estate Transaction Specification Version 1.7.2

2.3 Rules

The following rules are used throughout this specification to describe basic parsing
constructs. The US-ASCII coded character set is defined by ANSI X3.4-1986 [5].

Parsed entities are constructed combinations of atoms or other entities as defined below.
Atoms may be combined and repeated to form longer constructs. When there are
constraints on the repetition of atoms, the constraints are expressed by a notation of the
form:

m * n

where both m and n are integers. m represents the minimum allowed number of
repetitions, and n represents the maximum. If m is omitted, it is presumed to be zero; if n
is omitted, it is presumed to be infinite. For example, the syntactic construct

1*64ALPHANUM

means a string of ALPHANUMs containing at least 1 and at most 64.

When a parsing construct is represented by a string of entities, some of which are optional,
the optional entities are enclosed in square brackets. For example, in the string

error-number [error-code]

the error-number entity is required, while the error-code entity is optional.

Elements separated by the vertical bar are alternatives. The entity description

ALPHA | DIGIT

means “either an ALPHA or a DIGIT”.

2.4 Atoms and Primitive Entities
Note The definitions for ALPHA, CHAR, CTL, DIGIT , HEXDIG and OCTET are derived from RFC

2234.

ALPHA ::= %x41-5A | %x61-7A

; A-Z | a-z

CHAR ::= %x01-7F

; ANY 7-BIT US-ASCII CHARACTER,

; EXCLUDING NUL

CTL ::= %x00-1F | %x7F

; controls

DIGIT ::= %x30-39

; 0-9

HEXDIG ::= DIGIT | "A" | "B" | "C" | "D" | "E" | "F"

OCTET ::= %x00-FF
; any 8-bit sequence of data

Version 1.7.2 2-3

BOOLEAN ::= TRUE | FALSE

TRUE ::= “1”

FALSE ::= “0”

RETSID ::= 1*32ALPHANUM

RETSNAME ::= 1*64IDALPHANUM

IDALPHANUM ::= ALPHANUM | “_”

ALPHANUM ::= ALPHA | DIGIT

SQLFIELDNAME ::= ALPHA *31ALPHANUM <except ANSI SQL 92 reserved words>

CR ::= <US-ASCII CR, carriage return (13)>

LF ::= <US-ASCII LF, linefeed (10)>

SP ::= <US-ASCII SP, space (32)>

HT ::= <US-ASCII HT, horizontal-tab (9)>

<"> or " ::= <US-ASCII double-quote mark (34)>

NULL ::= <no character>

CRLF or ↵ ::= CR LF

LWS ::= [CRLF] 1*(SP | HT)

HEX ::= "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c"
| "d" | "e" | "f" | DIGIT

LHEX ::= "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

OPTNONNEGATIVENUM ::= NULL | NONNEGATIVENUM

; null or >= 0

OPTPOSITIVENUM ::= NULL | POSITIVENUM

; null or >= 1

NONNEGATIVENUM ::= “0” | POSITIVENUM

; also known as cardinal numbers or counting numbers

; consisting of integers greater than 0

NONZERODIGIT ::= %x31-39

; 1-9

PLAINTEXT ::= <any OCTET except CTLs>

POSITIVENUM ::= NONZERODIGIT *DIGIT

; > 0

SERIAL ::= “-1” | NONNEGATIVENUM

;

2-4 Real Estate Transaction Specification Version 1.7.2

TEXT ::= <any OCTET except CTLs, but including LWS>
Note Implementers are cautioned that the definition of the TEXT atom may conflict with

certain outputs, in particular a collision between the delimiter octet of Section 7.2.1 and
the output information when using the formats COMPACT or COMPACT-DECODED.
Further, the definition may conflict with escaping rules for well-formed XML responses.
The responsibility for resolving these conflicts lies with the transmitting party. In
particular, the responses to Search, Update and GetMetadata may have this conflict.

TOKENCHAR ::= <any CHAR except CTLs or TSPECIALS>

TOKEN ::= 1*TOKENCHAR

TSPECIALS ::= "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\"
| <"> | "/" | "[" | "]" | "?" | "=" | "{" | "}" | SP
| HT

QUOTED-STRING ::= (<"> *(QDTEXT) <">)

QDTEXT ::= <any TEXT except <">>

RETSDATETIME ::= date-time | partial-date-time

RETSTIME ::= full-time | partial-time

DATE ::= Date using the format defined in RFC 2616 as rfc1123-date.
Note The definitions for the date and time are derived from RFC 3339.

date-fullyear ::= 4DIGIT

date-month ::= 2DIGIT ; 01 - 12

date-mday ::= 2DIGIT ; 01 - 28, 01-29, 01-30, 01-31, based on month/year

time-hour ::= 2DIGIT ; 00 - 23

time-minute ::= 2DIGIT ; 00 - 59

time-second ::= 2DIGIT ; 00 - 58, 00 - 59, 00 - 60 based on leap second rules

time-secfrac ::= “.”1DIGIT

time-numoffset ::= (“+”|”-”) time-hour “:” time-minute

time-offset ::= “Z” | time-numoffset

partial-time ::= time-hour “:” time-minute ”:” time-second [time-
secfrac]

full-date ::= date-fullyear “-” date-month “-” date-mday

full-time ::= partial-time time-offset

date-time ::= full-date “T” full-time

partial-date-time ::= full-date “T” partial-time
Note ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats.

Based on common usage patterns, this standard applies the following additional
constraints to improve interoperability and compatibility. The representation of the time
offset UTC character ‘Z’ and the date-time separator character ‘T’ MUST be upper case.

Version 1.7.2 2-5

The time-secfrac is limited to one digit only. The date and time representations are
intended for machine processing, therefore, no whitespace is expected in any of the atoms.
Examples of the format are similar to that of the W3C note, for example, 1997-07-
16T19:20:30.4+01:00 or 1997-07-16T18:20:30.4Z. Servers and Clients MUST treat the
time-offset ‘Z’ and “+00:00” as identical times. Servers and Clients MAY use the
interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-
offset “-00:00” is semantically different from “+00:00” and represents a known UTC time
but unknown local time.

URI ::= scheme “:” hier-part [“?” query] [“#” fragment]

hier-part ::= "//" authority path-abempty

| path-absolute

| path-rootless

|path-empty

scheme ::= ALPHA *(ALPHA |DIGIT |"+" |"-" |".")

authority ::= [userinfo "@"] host [":" port]

userinfo ::= *(unreserved |pct-encoded |sub-delims |":")

host ::= IP-literal |IPv4address |reg-name

port ::= *DIGIT

IP-literal ::= "[" (IPv6address |IPvFuture) "]"

IPvFuture ::= "v" 1*HEXDIG "." 1*(unreserved |sub-delims |":")

IPv6address ::= 6(h16 ":") ls32

|"::" 5(h16 ":") ls32

|[h16] "::" 4(h16 ":") ls32

|[*1(h16 ":") h16] "::" 3(h16 ":") ls32

|[*2(h16 ":") h16] "::" 2(h16 ":") ls32

|[*3(h16 ":") h16] "::" h16 ":" ls32

|[*4(h16 ":") h16] "::" ls32

|[*5(h16 ":") h16] "::" h16

|[*6(h16 ":") h16] "::"

h16 ::= 1*4HEXDIG

ls32 ::= (h16 ":" h16) / IPv4address

IPv4address ::= dec-octet "." dec-octet "." dec-octet "." dec-octet

dec-octet ::= DIGIT ; 0-9

|%x31-39 DIGIT ; 10-99

|"1" 2DIGIT ; 100-199

|"2" %x30-34 DIGIT ; 200-249

2-6 Real Estate Transaction Specification Version 1.7.2

|"25" %x30-35 ; 250-255

reg-name ::= *(unreserved / pct-encoded / sub-delims)

path ::= path-abempty ; begins with "/" or is empty

| path-absolute ; begins with "/" but not "//"

|path-noscheme ; begins with a non-colon segment

|path-rootless ; begins with a segment

|path-empty ; zero characters

path-abempty ::= *("/" segment)

path-absolute := "/" [segment-nz *("/" segment)]

path-noscheme ::= segment-nz-nc *("/" segment)

path-rootless ::= segment-nz *("/" segment)

path-empty ::= 0<pchar>

segment ::= *pchar

segment-nz ::= 1*pchar

segment-nz-nc ::= 1*(unreserved |pct-encoded |sub-delims |"@")

; non-zero-length segment without any colon ":"

pchar ::= unreserved |pct-encoded |sub-delims |":" |"@"

query ::= *(pchar |"/" |"?")

fragment ::= *(pchar |"/" |"?")

pct-encoded ::= "%" HEXDIG HEXDIG

unreserved ::= ALPHA |DIGIT |"-" |"." |"_" |"~"

reserved ::= gen-delims |sub-delims

gen-delims ::= ":" |"/" |"?" |"#" |"[" |"]" |"@"

sub-delims ::= "!" |"$" |"&" |"'" |"(" / ")"| "*" |"+" |","| ";" |"="
Note The definition for URI is derived from RFC 3986.

Version 1.7.2 3-1

S E C T I O N

CHAPTER 0MESSAGE FORMAT

RETS uses HTTP version 1.1 [2] for sending messages between clients and servers. It
defines three additional HTTP headers, and some RETS transactions constrain the values
of certain headers defined by HTTP 1.1 and/or make certain headers designated as
optional in HTTP 1.1 mandatory when used for RETS. In addition, RETS requests use
HTML 4.01 [16] form encoding to encapsulate request parameters. In addition, a
compliant RETS client MUST implement cookie handling as specified in RFC 2109 [15].

The information below summarizes some of the requirements of HTTP 1.1 and
HTML 4.01 for ease of reference. However, in all cases, the underlying standards are the
normative references for message formats.

3.1 General Message Format

3.1.1 RETS HTTP/1.1 Encapsulation

RETS messages are encapsulated as the bodies of HTTP/1.1 requests and responses. The
request body may be null, depending on the request. The response body is never null

Note that, per RFC 2822, keywords in header key-value pairs are not case-sensitive. The
values, however, may be case-sensitive depending on context.

3.1.2 Request Arguments

RETS requests are HTML 4.01-compliant form submissions, following all of the
specifications in the HTML 4.01 recommendation. Note that the HTML 4.01 specification
provides that:

• Key names in key/value pairs are not case-sensitive.
• Both key names and key values MUST be encoded as specified in HTML 4.01 section

17.13.4, with + characters replacing spaces, and then reserved characters being
escaped per RFC 2396 [13], unless the client uses a content-type of multipart/form-
data.

3-2 Real Estate Transaction Specification Version 1.7.2

3.1.3 Response Bodies

The body of a response to most RETS requests is a well-formed XML document; the
exceptions are the Get transaction (section 8) and the GetObject transaction (section 5).
This means that servers must construct the body in accordance with the XML specification
[17], and that clients must parse the body in accordance with that specification.

3.2 Request Format

A RETS request is either an HTTP GET request or an HTTP POST request. In the case of
the GET-request the Argument-List is appended to the Request-URI after a delimiting
question mark (“?”). For the post-request the Argument-List is sent as the first entity body
for the POST method.

get-request ::=GET⋅Request-URI [? Argument-List] ⋅HTTP-Version CRLF
*message-header
CRLF

post-request ::=POST⋅Request-URI ⋅ HTTP-VersionCRLF
*message-header
CRLF
[Argument-List]

The Request-URI, HTTP-Version and message-header are defined in RFC 2616. The
detailed construction of the Argument-List is defined in HTML 4.01.

3.3 Required Client Request Header Fields

The HTTP header of any messages sent from the client MUST contain the following
header fields:

User-Agent This header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing
of protocol violations, and automated recognition of user agents
for the sake of tailoring responses to avoid particular user agent
limitations, as well as providing enhanced capabilities to some
user-agents. All client requests MUST include this field. This is a
standard HTTP header field as defined in RFC 2616.

User-Agent ::= User-Agent: 1* product

product ::= TOKEN [/ product-version]

product-version ::= TOKEN

Example: User-Agent: CMAZilla/4.00

Product tokens should be short and to the point: use of them for advertising or other non-
essential information is explicitly forbidden. Although any token character may appear in
a product-version, this token SHOULD only be used for a version identifier (i.e.,
successive versions of the same product SHOULD only differ in the product-version
portion of the product value). For more information about User-Agent see RFC 2616.

Version 1.7.2 3-3

A server MAY advertise additional capabilities based on the client application User-Agent,
and MAY refuse to proceed with the authorization if an acceptable User-Agent has not
been supplied. A server MAY also choose to authenticate the client application identity
cryptographically using the RETS-UA-Authorization header; see section 3.4 for
additional information.

RETS-Version The client MUST send the RETS-Version. The convention used is
a “<major>.<minor>.<release>” numbering scheme similar to the
HTTP Version in Section 3.1 of RFC 2616. The version of a RETS
message is indicated by a RETS-Version field in the header of the
message.

Cookie The client MUST implement cookie handling as specified in
RFC 2109. If any server response has included a valid Set-Cookie
header, and the cookie in that header has not expired, the client
MUST return the corresponding Cookie header. See RFC 2109
for the full specification.

3.4 Optional Client Request Header Fields

Authorization Authorization header field as defined in RFC 2617. See 4.1,
“Security”, as well as RFC 2617, for additional information.

RETS-Request-ID A character string of printable characters which the client can use
to identify this request. The contents are implementation-
defined. If this field is included in a request from the client then
the server MUST return it in the response.

RETS-Request-ID ::= 1*64ALPHANUM

Accept-Encoding A comma-separated list of MIME types indicating the content
encoding schemes that the client is willing to accept. This is
intended to support the use of compression in data returns; see
section 3.8 for additional information.

Accept-Encoding ::= 1*64ALPHANUM/1*64ALPHANUM *[,1*64ALPHANUM/

1*64ALPHANUM…]

RETS-UA-Authorization A client MAY support authentication of its User-Agent value
by including the RETS-UA-Authorization header. Servers MAY
require this header with a valid value before providing services.

RETS-UA-Authorization::= ua-method ua-digest-response

ua-method::= Digest

ua-digest-response::="*LHEX "

See section 3.10 for the method of computing the ua-digest-
response value.

The client MAY send this header under any circumstances. It
need not send this header if the server has not indicated that it

3-4 Real Estate Transaction Specification Version 1.7.2

requires user-agent authentication by responding to a transaction
with a RETS error code of 20037.

In addition to the header fields listed here, the client may send any header compliant with
HTTP 1.1.

3.5 Response Format

The general server response to a request is either a well-formed XML document returning
RETS-encapsulated data or error information, or, for the Get transaction and for
successful GetObject transactions, the content of the requested object in the format given
in the response’s HTTP Content-Type header. Note that this is an ordinary HTTP
response per RFC 2616.

The more common HTTP Status-Codes are provided in Section 3.9, though any status
code defined in RFC 2616 is permissible. Servers MUST use appropriate predefined status
codes when communicating with the client.

The Status-Code is intended to provide HTTP level errors to the client (Authorization,
URI, etc.). Software level errors (search queries, invalid argument values, etc.) should be
returned in the reply-code. If the server is unable to determine that a particular request is
in fact a RETS request, it MUST return an HTTP status code indicating the type of error.

Except in those transactions specifically stating otherwise, a RETS response body is a well-
formed XML document with the following general form:

response-body ::= RETS-response

RETS-response ::=body-start-line
response
[rets-status]
body-end-line]

body-start-line ::= <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP>

response ::= {key-value-body | data}

key-value-body ::= <RETS-RESPONSE>CRLF
*(key = value CRLF)
</RETS-RESPONSE>

rets-status ::= <RETS-STATUS [1*SP ReplyCode=quoted-end-reply-code
1*SP ReplyText=quoted-string *SP]/>

The rets-status MAY be included in the response if the ReplyCode or ReplyText given
in the body-start-line becomes invalid during the creation of the response. If the server
includes a rets-status in its reply, the client MUST use the ReplyCode and ReplyText
from the rets-status rather than from the body-start-line.

body-end-line ::= </RETS>

If a body-start-line is returned in the response then the body-end-line MUST also be
returned.

Version 1.7.2 3-5

quoted-reply-code::=<">1*5DIGITS<">

The reply-code is included to provide a mechanism to pass additional information to the
client in the event that the request is processed OK (Status-Code = 200) but some
condition still exist that may require an action by the client. A value of '0' indicates success.
Applicable reply-codes can be found under specific transactions.

quoted-end-reply-code::= <">1*5DIGITS<">

The end-reply-code is included to provide a mechanism to pass additional information
to the client in the event that the request being processed by the server errors before the
request has been completed. This allows the server to start streaming out data before it has
completed processing the request. A value of 0 indicates success, however the server
SHOULD only send an end-reply-code if there is an error.

The valid <key>, <value> and <data> elements are defined in the Response Arguments
section for each transaction.

NOTE

An example server-reply where the reply body consists of key-value pairs:
HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Sun, 20 Mar 2005 12:03:38 GMT
Content-Type: text/xml
Cache-Control: private
RETS-Version: RETS/1.7.2

<RETS ReplyCode="0" ReplyText="SUCCESS">
<RETS-RESPONSE>
Key1=Value1
Key2=Value2
</RETS-RESPONSE>
</RETS>

3.6 Required Server Response Header Fields

The HTTP header of any messages sent from the server MUST contain the following
header fields:

Date The server MUST send the date using the format defined in RFC
2616 using format rfc1123-date.

Example: Date: Sun, 20 Mar 2005 12:03:38 GMT

As defined by rfc1123-date, the Date MUST be represented in
Greenwich Mean Time (GMT), without exception.

Cache-Control The RFC 2616 standard general-header field is used to specify
directives that MUST be obeyed by all caching mechanisms along

RETS 1.7.2 requires all server responses to be well-formed XML, In addition, this specification requires that
clients parse RETS responses as XML, not as simple text streams. The response formats shown here are
normative with respect to content, but not normative with respect to form. That is, servers are free to produce
response XML in any format that complies with the W3C XML 1.0 recommendation. XML escaping of
content is implied, as is XML processing of line endings and whitespace. See the W3C XML Recommendation
1.0, Third Edition, for full information on XML.

3-6 Real Estate Transaction Specification Version 1.7.2

the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the
request or response. This field SHOULD be set to "private" for all
transaction in this specification.

Example: Cache-Control: private

Content-Type This is a standard HTTP header field as defined in RFC 2616. It
specifies the media type of the underlying data. The server MUST
return this field in all replies. For most replies this will be set to
"text/xml". See Section 5.5 in the GetObject Transaction for
exceptions and more information on this field.

Example: Content-Type: text/xml

RETS-Version The server MUST send the RETS-Version. The convention used
is a “<major>.<minor>.<revision>” numbering scheme similar to
the HTTP Version in Section 3.1 of RFC 2616. The version of a
RETS message is indicated by a RETS-Version field in header of
the message.

RETS-Version ::= "RETS-Version:" version-info

version-info ::= "RETS/" 1*DIGIT "." 1*DIGIT "." 1*DIGIT

Example: RETS-Version: RETS/1.7.2

Applications sending request or response messages, as defined by this specification,
MUST include a RETS-Version of "RETS/1.7.2". Use of this version number indicates
that the sending application is compliant with this specification.

3.7 Optional Server Response Header Fields

Content-Length The Content-Length entity-header field indicates the size of the
message-body, in decimal number of octets. This is a standard
header field defined in RFC 2616 and is required for all requests
containing a message-body not using Chunked transfer encoding.

Transfer-Encoding The Transfer-Encoding entity-header field when set to the
Chunked value, indicates the size of the message-body is in the
chunk stream. This is a standard header field defined in RFC 2616
and is required for all responses with a body not using Content-
Length or a Content-Type: Multipart response.

Content-Encoding The Content Encoding entity-header field MAY be returned by
the server if the client has included an AcceptEncoding header in
its request () indicating that it can accept one or more
compression types supported by the server. It is recommended
that servers accept at least application/gzip (see 3.8, “Data
Compression in RETS Transactions”).

Content-Encoding::= 1*64ALPHANUM / 1*64ALPHANUM

Version 1.7.2 3-7

RETS-Request-ID The contents of the RETS-Request-ID header, if any, sent by the
client in the request. If a RETS-Request-ID is included in a
request from the client then the server MUST return it in the
response.

RETS-Request-ID ::= 1*64ALPHANUM

Server The server standard response-header field contains information
about the software used to handle the request. The format of this
field specified in RFC 2616 Section 3.8.

Example: Server: Microsoft-IIS/4.0

RETS-Server The RETS server vendor and server-controlled version number.
This is not necessarily the same as the Server response-header
field; it will be different if the HTTP server is separate from the
RETS server. The format of this field is specified in RFC 2616
Section 3.8.

Example: RETS-Server: AcmeRETS/1.0

Set-Cookie The server MAY use HTTP cookies to maintain state
information. See RFC 2109 for the format of the Set-Cookie
header.

A cookie having a name of RETS-Session-ID defines the RETS
session ID, which is used in calculating the RETS User-Agent
Authentication (section 3.10). Cookies with other names have no
special meaning in RETS but MAY be used when necessary.

In addition to the header fields listed here, the server may send any header compliant with
HTTP 1.1.

3.8 Data Compression in RETS Transactions

Clients and servers may choose to support data compression in data returned from the
server. To indicate its willingness to accept compressed data, a client includes an
Accept-Encoding header in its request. If the server supports one of the compression
methods accepted by the client, it can include a Content-Encoding header in its response
indicating the compression method it has chose.

Clients and servers choosing to implement compression SHOULD at least support GZip
compression. This method is implemented by freely-available source code in a number of
languages, as well as in several proprietary software development environments. A second
freely-available alternative is BZIP. Clients and servers are free to choose other encoding
methods as well.

3-8 Real Estate Transaction Specification Version 1.7.2

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in RFC 2616) may be
returned by a server in response to any request:

Table 3-1 General Status Codes

Status Meaning
200 Operation successful.
400 Bad Request

The request could not be understood by the server due to malformed syntax.
401 Not Authorized

Either the header did not contain an acceptable Authorization or the username/
password was invalid. The server response MUST include a WWW-
Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be authorized.

403 Forbidden
The server understood the request, but is refusing to fulfill it.

404 Not Found
The server has not found anything matching the Request-URI.

405 Method Not Allowed
The method specified in the Request-Line is not allowed for the resource
identified by the Request-URI.

406 Not Acceptable
The resource identified by the request is only capable of generating response
entities which have content characteristics not acceptable according to the accept
headers sent in the request.

408 Request Timeout
The client did not produce a request within the time that the server was prepared
to wait.

411 Length Required
The server refuses to accept the request without a defined Content-Length.

412 Precondition Failed
Transaction not permitted at this point in the session

413 Request Entity Too Large
The server is refusing to process a request because the request entity is larger than
the server is willing or able to process.

414 Request-URI Too Long
The server is refusing to service the request because the Request-URI is longer
than the server is willing to interpret. This error usually only occurs for a GET
method.

500 Internal server error.
The server encountered an unexpected condition which prevented it from
fulfilling the request.

501 Not Implemented
The server does not support the functionality required to fulfill the request.

503 Service Unavailable
The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol version
that was used in the request message.

Version 1.7.2 3-9

HTTP error status returns are only to be used for system level, transport syntax, and
invalid transaction errors. RETS error status codes are used to indicate errors in the
request arguments or the transaction processing.

3.10 Computing the RETS-UA-Authorization Value

The RETS User Agent Authorization digest response value is used in the RETS-UA-
Authorization header specified in section 3.4. It is computed as follows:

a1 ::= MD5(product : UserAgent-Password)

ua-digest-response::= HEX(MD5(HEX(a1): RETS-Request-ID : session-id :
version-info))

where:

product The first product value taken from the User-Agent header
(section 3.3). Note that the product value consists of both the
product token and version.

UserAgent-Password::=TOKEN

This value is a secret shared between the client and server.

RETS-Request-ID ::= RETS-Request-ID

This value MUST be the same as that sent with the RETS-
Request-ID header. If the client does not use the RETS-
Request-ID header, this token is empty in the calculation.

session-id ::= If the server has sent a Set-Cookie header with a cookie name
of RETS-Session-ID, session-id is the value of that cookie. If
the server has not sent a cookie with that name, or if the cookie
by that name has expired, this token is empty in the
calculation.

version-info ::= The value of the RETS-Version header sent by the client with
this transaction.

Each individual value in the concatenated string is included with whitespace removed
from the beginning and end of that element, that is, there is no whitespace on either side of
the delimiting colon characters.

The method of performing the MD5 calculation is given in RFC 1321.

3-10 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 4-1

S E C T I O N

CHAPTER 0LOGIN TRANSACTION

A client MUST issue a login request prior to proceeding with any other request. The Login
transaction verifies all login information provided by the user and begins a RETS session.
Subsequent session control may be mediated by HTTP cookies or any other method,
though clients are required to support at least session control via HTTP cookies. Section
14 describes the session protocol in detail.

The server’s response to the Login transaction contains the information necessary for a
client to issue other requests. It includes URLs that may be used for other RETS requests,
and may also contain identity and parameter information if required by the functions
supported by the server.

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it is permissible, for
example, to operate a publicly-accessible RETS server — most operators of RETS servers
will wish to authenticate users. A server that requires that users be authenticated MAY
implement RFC 2617, HTTP Authentication. The use of at least digest authentication is
strongly recommended.

4.1.2 Client Authentication

Client authentication may be performed through the use of the optional RETS-UA-
Authorization header (section 3.4). Prior versions of this specification used a specially-
calculated cnonce value in the Authorization header to implement this function. A server
implementing this version of the RETS specification MUST accept the RETS-UA-
Authorization header for client authentication. It MAY accept RFC 2617-style
authentication as in prior versions of the RETS specification.

4.1.3 Data Security

Needs for secure HTTP transactions cannot be met by authentication schemes. For those
needs, HTTP-over-TLS (commonly known as HTTPS) is a more appropriate protocol. A

4-2 Real Estate Transaction Specification Version 1.7.2

compliant server MAY support only HTTP-over-SSL. In this case, the server SHOULD
listen on port 12109 rather than the standard RETS port, 6103.

4.2 Authorization Example

The following example assumes that a client application is trying to access the Login URI
on the server using the POST method, and without using client authentication. The URI is
“http://www.example.com/login”. Both client and server know that the username is
“joesmith”, and the password is “SuperAgent”. The example also assumes the use of
authentication using RFC 2617.

The first time the client requests the document, no Authorization header is sent, so the
server responds with:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="Users@example.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0"
opaque="5ccdef346870ab04ddfe0412367fccba"

The client may prompt the user for the username and password, after which it will
respond with a new request, including the following Authorization header:

Authorization: Digest username=“joesmith”,
realm=“Users@example.com”,
nonce=“dcd98b7102dd2f0e8b11d0f600bfb0c0”,
opaque=“5ccdef346870ab04ddfe0412367fccba”,
uri=“/login",
response=“13258d9b0bc217c9502b47e32dff8ee9”

4.3 Required Request Arguments

There are no required request arguments.

4.4 Optional Request Arguments

4.4.1 BrokerCode Argument

brokerCodeArgument::= BrokerCode = broker-code [, broker-branch]

Some servers may support the scenario where a user belongs to multiple brokerages. If this
is the case then the broker information (broker-code and broker-branch) must be input
during login. If they are not included then the list of broker codes/branches is passed back
to the client application through the response along with a “20012 Broker Code Required”
reply-code.

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

4.4.2 SavedMetadataTimestamp Argument

savedMetadataTimestamp::=SavedMetadataTimestamp = saved-timestamp

Version 1.7.2 4-3

The client MAY inform the server of the timestamp associated with the version of
metadata that it has currently saved. The server MAY use this to adapt to an earlier version
of metadata than it chooses to advertise, or simply log the value to note out-of-date client
metadata, or ignore the value entirely. In particular, the server is not required to alter its
behavior in any way based on the value of this argument.

saved-timestamp ::= RETSDATETIME

4.5 Optional Response Header Fields

There are no additional optional response header fields.

4.6 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The
simplest form is when there is an error:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP />

The second case is where the user belongs to more than one broker and they have not
provided broker information as part of the login. The reply contains a list of all brokerages
the user belongs to.

<RETS ReplyCode = “20012” 1*SP ReplyText = quoted-string *SP >
<RETS-RESPONSE>CRLF
2*(Broker = broker-code [, broker-branch] CRLF)
</RETS-RESPONSE>
</RETS>

The third case is the normal “OK” response. In this case several arguments are passed back
to the client in the response.

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP >

<RETS-RESPONSE>
member-name-key
user-info-key
broker-key
metadata-ver-key
metadata-timestamp-key
min-metadata-timestamp-key
[office-list-key]
[balance-key]
[timeout-key]
[pwd-expire-key]
capability-url-list

</RETS-RESPONSE>
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=
quoted-string *SP]/>
</RETS> CRLF

4.7 Required Response Arguments

4.7.1 Broker

broker-key ::= Broker = broker-code [, broker-branch] CRLF

Broker information for the logged in user is returned to the client.

4-4 Real Estate Transaction Specification Version 1.7.2

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

These parameters are used in the validation routines of the Update transaction (see
Section 10 for more information).

4.7.2 Member Name

member-name-key ::= MemberName = member-name CRLF

The member's full name (display name) as it is to appear on any printed output, for
example “Jane T. Row”.

member-name ::= 1*48TEXT

4.7.3 Metadata Version Information

The metadata version and timestamp keys indicate the current and minimum-acceptable
versions of metadata.

metadata-ver-key ::= MetadataVersion = metadata-version CRLF

This is the most current version of the metadata that is available on the server.
metadata-version ::=1*2DIGITS . 1*2DIGITS [. 1*5DIGITS]

It uses a “<major>.<minor>.<release>” numbering scheme. The version is advisory and is
not used by the metadata currency scheme.

metadata-timestamp-key::= MetadataTimestamp = RETSDATETIME CRLF

This is the timestamp associated with the current version of metadata on the host. If the
client has cached an earlier version of metadata, it SHOULD take whatever action is
necessary to load the current version of metadata.

min-metadata-timestamp-key::= MinMetadataTimestamp = RETSDATETIME CRLF

This is the earliest version of the metadata that the host will support. If the version of the
metadata being used by the client has a timestamp earlier than this time the client
SHOULD retrieve the newer metadata from the host. In any case, the client MUST NOT
send transactions using metadata older than MinMetadataTimestamp.

The definition of the minimum version of the metadata is to permit clients to ignore non-
essential changes to components such as help text and user-readable descriptions.

4.7.4 User information

user-info-key ::= User = user-id , user-level , user-class ,
agent-code CRLF

This key contains basic information about the user that is stored on the server. If a server
does not support one of these fields then it MUST set the returned value to empty (a zero-
length string).

user-id ::= 1*30ALPHANUM

user-class ::= 1*30ALPHANUM

Version 1.7.2 4-5

user-level ::= 1*5DIGIT

agent-code ::= 1*30ALPHANUM

The agent-code is the code that is stored in the property records for the listing agent,
selling agent, etc. In some implementations this may be the same as the user-id. The fields
user-class and user-level are implementation dependent and may not exist on some
systems, in which case, an empty string should be returned. These parameters are used in
the validation routines of the Update transaction (see Section 10 for more information).

4.7.5 Capability URL List

capability-url-list::= see Section 4.10 for format information

The server MUST return a capability list that includes at least Search, Login and
GetMetadata. The server MAY in addition return any of the other types in Section 4.10. If
the server supports any of the additional functions (and the client is entitled to access the
function by virtue of the supplied login information), it MUST provide URLs for those
functions. The server MAY supply URLs in addition to those in Section 4.10 based on the
user-agent. If it does, it MUST follow the format specified in Section 4.10.

4.8 Optional Response Arguments

4.8.1 Accounting Information

balance-key ::= Balance = balance CRLF

If the server supports an active billing account then this value SHOULD represent a user-
readable indication of the money balance in the account.

balance ::= 1*32ALPHANUM

4.8.2 Access Control Information

timeout-key ::= TimeoutSeconds = 1*5DIGIT CRLF

The number of seconds after a transaction that a session will remain alive, after which the
server will terminate the session automatically (e.g. invalidate the session-id). This is
commonly referred to as the inactivity timeout. A server need not provide this capability;
however, if it does use session timeouts in order to prevent monopolization of resources, it
MUST inform the client of the timeout interval by returning this response field.

pwd-expire-key ::= Expr = pwd-expire-date , pwd-expire-warn CRLF

pwd-expire-date ::= RETSDATETIME

pwd-expire-warn ::= [“-”]1*3DIGIT

The pwd-expire-key indicates when a user password will expire. The pwd-expire-date is
the date that the current user password becomes invalid. The pwd-expire-warn is the
number of days before the expiration date that the user should be warned of the upcoming

4-6 Real Estate Transaction Specification Version 1.7.2

password expiration. A pwd-expire-warn value of “-1” indicates that the password
expiration is disabled.

4.8.3 Office List Information

office-list-key ::= OfficeList = broker-code [; broker-branch]
*(, broker-code [; broker-branch]) CRLF

If the logged in user is a company owner or manager they may have rights to login to
multiple offices. The office-list-key is an enumeration of the offices to which the server
will permit login.

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

4.9 Well-Known Names

Some fields returned from the login are considered “Well-Known” and are used in the
validation routines of the Update transaction. Those fields are as follows:

The client MUST assume a blank value for any well-known name for which the server
does not supply an input field.

These values are used in Table 11-37, “Validation Expression Special Operand Tokens”.

4.10 Capability URL List

The capability-url-list is the set of functions or URLs to which the login grants access. A
capability consists of a key and a URL. The list returned from the server in the login reply
has the following format:

[Action = action-URL CRLF]
[ChangePassword = change-password-URL CRLF]
[GetObject = get-object-URL CRLF]
Login = login-URL CRLF
[LoginComplete = login-complete-URL CRLF]
[Logout = logout-URL CRLF]
Search = search-URL CRLF
GetMetadata = get-metadata-URL CRLF

Table 4-1 Well-Known Names for Input Fields

Well-Known name Input Return Field
.USERID. user-id
.USERCLASS. user-class
.USERLEVEL. user-level
.AGENTCODE. agent-code
.BROKERCODE. broker-code
.BROKERBRANCH. broker-branch

Version 1.7.2 4-7

[ServerInformation = server-information-URL CRLF]
[Update = update-URL CRLF]

The URLs in the capability-url-list may be specified in any order. Since the list is returned
in the body, servers MAY include whitespace between the parameter, equals sign and URL.
Clients SHOULD be prepared to receive the capability-url-list either with or without
whitespace in the response. The format of each URL follows the pattern defined in the URL
atom. In addition, the table is extensible; servers may define additional transactions for
clients to access. If a transaction is offered only to particular user agents, the keys for those
additional transactions MUST begin with the user-agent token, followed by a dash “-”,
followed by an implementation-defined function name. Note that this definition does not
permit spaces in the additional-transaction definition per the ABNF rules.

additional-transaction ::= (“X” | user-agent-token) “-” function-name CRLF

user-agent-token ::= <token portion of the User-Agent (Section 3.3)>

function-name ::= 1*ALPHA

Example: MLSWindows-special = /special_function

Example: X-Delete = http://www.example.com:6103/deletemyrecord

A compliant client need not recognize any transaction that is not included in this
specification. If some extended transactions are offered to any user-agent, the keys for
those transactions MUST begin with an “X” followed by a dash, followed by an
implementation-defined function name. Server implementers who implement potentially-
unrestricted extension transactions are urged to register their keys and service descriptions
on the RETS web site to encourage wider adoption.

URLs other than the Login URL may be relative URLs. The Login URL MUST be an
absolute URL. If a URL is not absolute, the client application should canonicalize it
according to the rules in RFC 2396, section 5. The “base URL” (as defined in RFC 2396,

Table 4-2 Capability URL Descriptions

Parameter Purpose
action-URL A URL on which the client MUST perform a GET immediately after

login. This might include a bulletin or the notification of email. The
client application SHOULD provide a means for the user to view
the retrieved document. A server is not required to supply an
Action URL.

change-password-URL A URL for the ChangePassword transaction.
get-metadata-URL A URL for the Get Metadata transaction.
get-object-URL A URL for the Get Object transaction.
login-URL A URL for the Login Transaction. The client software should use

this URL the next time it performs a Login. If this URL is different
from the one currently stored by the client the client, MUST update
the stored one to the new one. This provides a mechanism to move
the Login server.

login-complete-URL RESERVED
logout-URL A URL for the Logout transaction.
search-URL A URL for the Search transaction.
update-URL A URL for the Update transaction.
server-information-URL A URL for the System Information transaction

4-8 Real Estate Transaction Specification Version 1.7.2

section 5.1.1) for this operation is the URL used for the current login transaction, not the
new Login URL.

URLs MUST be URL-encoded per RFC 2396.

4.11 Reply Codes

Table 4-3 Valid Reply Codes for Login Transaction

Reply Code Meaning
0 Operation successful
20003 Zero Balance

The user has zero balance left in their account.
20004 thru 20011 RESERVED
20012 Broker Code Required

The user belongs to multiple broker codes and one must be supplied as part of
the login. The broker list is sent back to the client as part of the login response
(see section 4.6).

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019 RESERVED
20022 Additional login not permitted

There is already a user logged in with this user name, and this server does not
permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037 User-agent authentication failed.
The server requires the use of user-agent authentication (section 4.1.2), and
the client either did not supply the correct user-agent password or did not
properly compute its challenge response value.

20041 User-agent authentication required.
The server requires the use of user-agent authentication (section 4.1.2), and
the client did not supply the user-agent header values.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

Note: RETS does
not require that

a server
maintain user

accounts.

Version 1.7.2 5-1

S E C T I O N

CHAPTER 0GETOBJECT TRANSACTION

The GetObject transaction is used to retrieve structured information related to known
system entities. It can be used to retrieve multimedia files and other key-related
information. Objects requested and returned from this transaction are requested and
returned as MIME media types. The message body for successful retrievals contains only
the objects in the specified MIME media type. Error responses follow the normal response
format (section 3.9).

5.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in Section 3.3, the
header of any messages sent from the client MUST contain the following header fields:

Accept The client MUST request a media type using the standard HTTP
Accept header field. Media-type formats (subtypes) are registered
with the Internet Assigned Number Authority (IANA) and use a
format outlined in RFC 2045 [8]. When submitting a request the
client MUST specify the desired type and format. If the server is
unable to provide the desired format it SHOULD return a “406
Not Acceptable” status. However, if there are no objects of any
subtype available for the requested object the server SHOULD
return “404 Not Found.” The format of the Accept field is as
follows:

Accept ::= Accept: type / subtype [; parameter]
*(, SP type / subtype [; parameter])

type ::= * | <a publicly-defined type>

subtype ::= * | <A publicly-defined extension token that
has been registered with IANA>

parameter ::= q = < qvalue scale from 0 to 1 >

A complete list of media types and subtypes is available at:

http://www.iana.org/assignments/media-types/

5-2 Real Estate Transaction Specification Version 1.7.2

The qvalue is used to specify the desirability of a given media type/subtype, with “1” being
the most desirable, “0” being the least desirable, and a range in between. The default qvalue
is “1”.

Example: Accept: image/jpeg, image/tiff;q=0.5,
image/gif;q=0.1

Verbally, this would be interpreted as “image/jpeg is the preferred media type, but if that
does not exist, then send the image/tiff entity, and if that does not exist, send the image/gif
entity.”

The types supported by the server are defined in the Metadata Dictionary as defined in
section 11.4.1.

5.2 Optional Client Request Header Fields

The GetObject transaction has no optional request header fields.

5.3 Required Request Arguments

Resource A resource defined in the metadata dictionary (see Section 11.2.2)

The resource from which the object should be retrieved is specified by this entry. For more
information see 5.9. The resource MUST be a resource defined in the metadata (section
11.4.1).

Type The object type as defined in the metadata (see Section 11.4.1)

The grouping category to which the object belongs. Type MUST be an ObjectType
defined in the Object metadata for this Resource. For more information see section 11.4.1.

ID A string identifying the object or objects being requested:

ID ::= resource-set *(, resource-set)

resource-set ::= resource-entity [: object-id-list]

resource-entity ::= 1*ALPHANUM

object-id-list ::= * | object-id *(: object-id)

object-id ::= 1*5DIGIT

For objects, the resource-entity is a value (e.g., MLS number, AgentID) from the
KeyField of the Resource for which the object is to be retrieved.

The object-id is the particular object to be retrieved. Objects are assumed to be stored
sequentially on the host beginning with an object-id of “1”. If the object-id is 0 (zero or
not provided), the designated preferred object of the given type is returned. If the object-id
is set to “*” then all objects corresponding to the resource-entity are returned. This
parameter can be used to specify the photo number, e.g. a value of “3” would indicate
photo number 3.

If multiple resource-entity or object-id values are sent, or if any object-id-list is “*”,
then the host MUST respond with a multipart MIME [8] response. See 5.11, “Multipart
Responses”, for more detail.

Version 1.7.2 5-3

5.4 Optional Request Arguments

5.4.1 Location

Location 0| 1

This parameter indicates whether the object or a URL to the object should be returned.
This is used to provide access to the semi-permanent storage location of information for
access outside of the transaction (e.g. for use in email to a customer). The lifetime of this
semi-permanent storage is not defined by this specification.

If Location is set to “1” the server MAY return a URL to the given object. The default is
“0”. The server MAY support this functionality (Location=1) but MUST support
Location=0. In other words, some servers may store the objects in a database or generate
them dynamically. Therefore, it may not be possible for those servers to return a URL to
the requested object. In these cases the server MAY choose not to support Location=1.
However, all servers MUST support a method to get the object and therefore, MUST
support the case where Location=0.

When the Location=1, the message body SHOULD contain a RETS response as described
in Section 3.5.

5.5 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.6 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. Additionally, this field MUST be returned
as part of the header for each body part. This field MUST be set to
the type of media returned. See Section 5.1 for more information
on <type> and <subtype>.

Content-Type ::= Content-Type: type /subtype

Example: Content-Type: image/jpeg

If the client has requested multiple IDs, the server MUST return a multipart message. If it
does, it MUST return a Content-Type of “multipart/parallel” along with a boundary
delimiter in the response header. See Section 5.11 for more information on multipart
responses.

Example: Content-Type: multipart/parallel; boundary=AAABBBCCC

Content-ID An ID for the object. This field MUST be returned as part of the
header for each body part in a multipart response. A value for this
field MUST be returned for each body part. This value is the
resource-entity from the GetObject request and MUST match the
corresponding Resource KeyField value.

Content-ID ::= Content-ID: 1*128PLAINTEXT

Example: Content-ID: 123456

5-4 Real Estate Transaction Specification Version 1.7.2

Object-ID The object number being returned. This field MUST be returned
as part of the header for each body part in a multipart response.
Object-ID::= Object-ID: 1*5DIGIT |“*”

Example: Object-ID: 2

Note: The Object-ID may only have the value of “*” in the response when there is an error
in the response and the request was for all objects using the wildcard request of “*”.

MIME-Version All responses MUST include a MIME-Version of “1.0” in the
response header.

Example: MIME-Version: 1.0

5.6 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.7 the
following response header fields are also optional.

5.6.1 Location

Location If the client has submitted a request with “Location=1” the
header of the response MUST contain the Location header field.
If the server does not support this functionality for a specific
object, then “Location:” without a URI MUST be returned. If the
server does not support this functionality for any object, the
server should return an error type of 20414.

Location ::= Location: URI

Example: Location: http://www.example.com/pic/123456.jpg

If the server is returning a multipart response, then this header MUST be included in the
MIME part headers for each object successfully requested.

5.6.2 Description

Description A text description of the object.

Description ::= Content-Description: *1024<PLAINTEXT, EXCLUDING CR/
LF>

Example: Content-Description: Front View

If the object does not have a description or if the server does not support this feature, the
header MAY not be returned. If the object has a description and the server is returning a
multipart response, then this header MUST be included in the MIME part headers for the
object.

5.7 Required Response Arguments

There are no required response arguments.

Version 1.7.2 5-5

5.8 Optional Response Arguments

There are no optional response arguments.

5.9 Metadata

To retrieve objects the client MAY first retrieve the metadata that describes the Resources
and Objects that are available with the GetMetadata transaction described in section 12. A
full description of the Metadata Dictionary is provided in Section 11.

5.10 Resources

RETS does not require that any particular type of object be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard.

5.11 Multipart Responses

As described in Section 5.3, in the case where the client has requested multiple resource-
entity or object-id values or if any object-id-list is “*”, the server MUST return a
multipart response. In the case of multipart responses, in which one or more different sets
of data are combined in a single body, a “multipart” media type field must appear in the
entity's header.

5.11.1 General Construction

RFC 2045 describes the format of an Internet message body containing a MIME message.
The body contains one or more body parts, each preceded by a boundary delimiter line,
and the last one followed by a closing boundary delimiter line. After its boundary delimiter
line, each body part then consists of a header area, a blank line, and a body area.

Example:
HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 22 OCT 2004 12:03:38 GMT
Cache-Control: private
RETS-Version: RETS/1.0
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
Object-ID: 1

<binary data>
--simple boundary
Content-Type: image/jpeg
Content-ID: 123457
Object-ID: 1

<binary data>

5-6 Real Estate Transaction Specification Version 1.7.2

--simple boundary--

5.11.2 Error Handling

When a client requests multiple objects in a single transaction, one or more of those
objects may be unavailable. In this case, the server communicates the failure by including a
RETS return message in place of the unavailable object. In this case, the Content-Type will
be text/xml, and the content will be a RETS response:

Example:
HTTP/1.1 200 OK
Server: Apache/2.0.13
Date: Fri, 22 OCT 2004 12:03:38 GMT
Cache-Control: private
RETS-Version: RETS/1.7.2
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
Object-ID: 1

<binary data>
--simple boundary
Content-Type: text/xml
Content-ID: 123457
Object-ID: 1

<RETS ReplyCode=”20403” ReplyText=”There is no listing with that ListingID”/>

--simple boundary--

If the server is supplying an error message for a wild-card object request (Object-ID of *),
the Object-ID for the error part SHOULD be * as well.

Version 1.7.2 5-7

5.12 Reply Codes

Table 5-1 GetObject Reply Codes

Reply Code Meaning
20400 Invalid Resource

The request could not be understood due to an unknown resource.
20401 Invalid Type

The request could not be understood due to an unknown object type for the
resource.

20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.

20403 No Object Found
No matching object was found to satisfy the request.

20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.

20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the
supplied login does not grant access.

20408 Resource Unavailable
The requested resource is currently unavailable.

20409 Object Unavailable
The requested object is currently unavailable.

20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.

20411 Timeout
The request timed out while executing

20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.

20413 Miscellaneous error
The server encountered an internal error.

20414 URL Location Not Supported
The server does not support retrieving Objects by URL.

5-8 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 6-1

S E C T I O N

CHAPTER 0LOGOUT TRANSACTION

The Logout transaction terminates a session. Except in cases where connection failure
prevents it or the user has requested an immediate shutdown of the client, the client
SHOULD send the Logout transaction. If the client sends a Logout transaction, the server
MUST attempt to send a response before terminating the session.

The server MAY send accounting information back to the client in the response to this
transaction. The client is not required to display or otherwise process the accounting
information.

6.1 Required Request Arguments

There are no required request arguments.

6.2 Optional Request Arguments

There are no optional request arguments.

6.3 Required Response Arguments

There are no required response arguments.

6.4 Optional Response Arguments

ConnectTime The amount of time that the client spent connected to the server,
specified in seconds.

connect-time ::= ConnectTime=1*9DIGITS CRLF

Billing If the server supports an active billing account, this is total
amount billed for this session, specified as TEXT which is
implementation-defined

billing ::= Billing=*<TEXT, EXCLUDING CR/LF> CRLF

SignOffMessage Any text. The client MAY display this message, if the server
includes it in the response. Servers should not expect, however,

6-2 Real Estate Transaction Specification Version 1.7.2

that users would read or see the message, since communication
failure may make it impossible for the client to receive the Logoff
response.

sign-off-message::= SignOffMessage=*<TEXT, EXCLUDING CR/LF> CRLF

6.5 Logout Response Body Format

The Logout response body is a key/value response (see section 3.5, “Response Format”).
<RETS 1*SP ReplyCode= quoted-reply-code 1*SP

ReplyText= quoted-string *SP >

[<RETS-RESPONSE>
[connect-time]
[billing]
[sign-off-message]
</RETS-RESPONSE>]
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=
quoted-string *SP]/>]
</RETS>

6.6 Reply Codes

Table 6-1Logout Reply Codes

Reply Code Meaning
0 Operation successful
20701 Not logged in

The server did not detect an active login for the session in which the Logout
transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional
information.

Version 1.7.2 7-1

S E C T I O N

CHAPTER 0SEARCH TRANSACTION

The Search transaction requests that the server search one or more searchable databases
and return the list of qualifying records. The body of the response contains the records
matching the query, presented in the requested format. The data can be returned in one of
three formats: COMPACT, COMPACT-DECODED or STANDARD-XML.

7.1 Search Types

Searches are performed on logical groupings of records called Resources. The definition of
the grouping of records for a specific resource is determined by the server implementation.
Different server implementations may have different available resources, depending on
local rules, practises or conditions. Servers may further group the records by Class.
Different users or different client applications may be provided with different sets of
Resources and different sets of Classes. A specific value for Resource or Class is referred to
in this document as a type. For example, a type of Resource is Property using the Standard
Names definition. Another example may be a type of Resource called Appraisers, being a
collection of locally licensed real estate property value appraisers. As defined below, a
server only searches on a single Resource per request. A server MAY provide more than
one type of Resource in the metadata. The server MUST support searching at least one
type of resource. The types of resources supported by the server MUST be specified in the
metadata. Each of the resource searches may by conducted against different databases or
tables depending on the server implementation.

Some resources are specified by well-known names. If a server implementation supports
searches of any of these resources, it MUST use the well-known resource name to identify
that resource. The list of well-known resource names is provided in Table 11-4, “Well-
Known Resource Names” on page 11-5;s well-known classes for those resources are given
in Table 11-10, “Metadata Content: Resource Class”.

StandardNames for classes are given in Table 11-10, “Metadata Content: Resource Class”.
Note RETS does not require that a server support any specific resource type or class. The user or

maintainer of a server is responsible for deciding which resources should be made
searchable.

7-2 Real Estate Transaction Specification Version 1.7.2

7.2 Search Terminology

7.2.1 Field Delimiter

A server may designate a particular OCTET to be used as a delimiter for separating entries
in both the COLUMNS list and the DATA returned using the COMPACT and
COMPACT-DECODED formats. The octet should be chosen to avoid the need to escape
data within a record

field-delimiter ::= HEX HEX

7.2.2 Field Name

A field is the keyword or code that the server uses to identify a particular column in the
database table. Each field may be either a System-Name, as defined in the metadata, or a
Standard-Name, as defined in the Real Estate Transaction XML DTD. The server MUST
accept either set of names interchangeably.

7.2.3 Record Count

This value indicates the number of records on the server matching the search criteria sent
in the search query.

record-count ::= 1*9DIGITS

Note that this value may be greater than the number of records returned, if the server has
limited the size of the return for any reason.

7.2.4 Other terms

XML-data-record ::= <A data record as defined by the RETS Data XML DTD>.

7.3 Required Request Arguments

7.3.1 Search Type and Class

The SearchType and Class arguments specify the data that the server is to search.

SearchType ::= ResourceID

The type of search to perform as discussed in Section 7.1 and defined in the Metadata (see
section 11.2.2).

Class :: = 1*32ALPHANUM

This parameter is set to a value that represents the class of data within the SearchType,
taken from the Class metadata (section 11.3.1). If the resource represented by the
SearchType has no classes, the Class parameter will be ignored by the server and MAY be
omitted by the client. If the client does include the Class parameter for a classless search,
the value SHOULD be the same as the ResourceID in order to insure forward
compatibility.

Version 1.7.2 7-3

Note that if StandardNames (Section 7.4.7) is set to 1, then both the SearchType and Class
are specified using StandardNames.

7.3.2 Query Specification

The specification consists of the query itself together with a designation of the query
language.

Query ::= <The query to be executed by the server>

The query is specified in the language described in Section 7.7.

QueryType ::= DMQL2

An enumeration giving the language in which the query is presented. The only valid value
for RETS 1.7.2 is “DMQL2” which indicates the query language described in Section 7.7

7.4 Optional Request Arguments

7.4.1 Count

The Count argument controls whether the server’s response includes a count.

Count ::= 0 | 1 | 2

If this argument is set to one (“1”), then a record-count is returned in the response in
addition to the data. Note that on some servers this will cause the search to take longer
since the count must be returned before any records are received. If this entry is set to two
(“2”) then only a record-count is returned; no data is returned, but all matches are counted
regardless of any Offset or Limit parameter. If the Count argument is not present or set
to zero (“0”) there is no record count returned.

Example: Count=2

Instructs the server to return only a count of the records matching the query.

7.4.2 Format

The Format argument selects one of the three supported data return formats for the query
response.

Format ::= COMPACT | COMPACT-DECODED | STANDARD-XML |
STANDARD-XML:dtd-version

“COMPACT” means a field list <COLUMNS> followed by a delimited set of the data
fields <DATA>. “COMPACT-DECODED” is the same as COMPACT except the data for
any field with an interpretation of Lookup, LookupMulti, LookupBitString or
LookupBitMask, is returned in a fully-decoded format using the LongValue. See Section
13 for more information on the COMPACT formats and section 11.4.3 for more
information on the Lookup types. “STANDARD-XML” means an XML presentation of
the data in the format defined by the RETS Data XML DTD. Servers MUST support all
formats. If the format is not specified, the server MUST return STANDARD-XML.

Example: Format=COMPACT-DECODED

7-4 Real Estate Transaction Specification Version 1.7.2

If the client requests STANDARD-XML, it MAY also append a preferred DTD version.
The server MUST support the current version and SHOULD additionally support at least
the prior version.

Example: Format=STANDARD-XML:1.0

7.4.3 Limit

The Limit argument requests the server to apply or suspend a limit on the number of
records returned in the search.

Limit ::= “NONE” | 1*9DIGIT

In general, the Limit argument operates without consideration of other factors like the
settings in the system metadata or the fields selected in the Select argument. A special case
when the Limit=”NONE” is described below.

If this entry is set to a number greater than zero, the server MUST not return more than
the specified number of records. If the request results in more matches than the server
returns, the <MAXROWS> tag MUST be sent at the end of the data stream, regardless of
any Limit parameter specified in the client request.

In general, if this entry is set to (“NONE”) or is not present, the server SHOULD treat this
as a request to suspend enforcement of any internal download limit. Servers that permit
the suspension of the limit MUST disable both the <MAXROWS> tag and the return code
20208, Maximum Records Exceeded when responding to a Limit=”NONE” request.
Servers that do not permit the suspension of the limit MUST apply the <MAXROWS> and
return code 20208 in the cases where the query results in more rows than permitted. Client
implementers should be aware that some server implementations might not honor the
request to disable the limit or may restrict the request to the selection of certain fields as
described below; the server operator’s business rules take precedence over the request to
waive the system download limit.

A server may only support the suspension of the limit for a certain scenario of requests.
When a server has Classes with a HasKeyIndex value of TRUE in the Class Metadata the
server MUST suspend enforcement of the download limit for such a Class when the
Limit=”NONE” and the Select argument contains only field names that have the
InKeyIndex value of TRUE in the Table Metadata. A server SHOULD support
HasKeyIndex for each Class and MUST have the InKeyField value of TRUE for at least the
KeyField of the Class when the HasKeyIndex is TRUE for that Class. A server MAY have
more than one field with the InKeyField value of TRUE for any Class.

Any request that sets a numeric Limit disables support for unlimited key index results as
described in section 7.4.5 Select.

7.4.4 Offset

The client may specify that a retrieval start at other than the first record in the set of
records matching the query by specifying the Offset argument.

Offset ::= 1*9DIGIT

Version 1.7.2 7-5

This argument indicates to the server that it SHOULD start sending the data to the client
beginning with the record number indicated, with a value of “1” indicating to start with
the first record. This can be useful when requesting records in batches, however, client
implementers should be aware that data on the server MAY change as they iterate through
the batches and it is possible that some records may be missed or added. In other words,
the server is not required to maintain a cursor to the data.

Any time an Offset argument is supplied, the resulting data SHOULD be returned in a
consistent order based on an ordering of the KeyField of the Resource. This ordering
should be applied to the entire data set and not just the returned data which may be less
that the total number of records matching the criteria. It is a recommended practice that
an ascending order be used as the ordering scheme when the KeyField value is a
sequentially increasing unique identifier, however, servers MAY choose to implement
some other ordering scheme. This practice will help to ensure subsequent requests will not
contain duplicate records. Ascending order of the KeyField in this case will also provide
assurance that newly added records will be more reliably contained in the final Offset
record set.

Clients iterating over the entire record set on systems that implement this practices MUST
provide Offset=1 in the first request to assist the server to order the results.

The offset value of ‘0’ is not defined in this standard.

7.4.5 Select

By default, the server MUST return all fields accessible to the client. The client may select a
subset of those fields by specifying the Select argument.

Select ::= field *(, field)

This parameter is used to set the fields that are returned by the query. If this entry is not
present then all allowable fields for the search/class are returned. The server MAY return
an error when there are unknown fields in the select list. The server MUST NOT return
more fields than are specified in the Select argument when the client requests COMPACT
or COMPACT-DECODED data. It MAY return fewer if some of the field names are
invalid or if a requested field is unavailable to the user based on security or other
restrictions.

7.4.6 Restricted Indicator

In some instances, the server may withhold the values of selected fields on selected records.
When business rules withhold the value but the field is returned as part of a response, a
RestrictedIndicator MUST be used in place of the value.

RestrictedIndicator ::=1*9TOKENCHAR

This entry indicates to the server that it MUST set the restriction indicator to the value
specified by this tag. The default restricted indicator is a NULL value.

Example: RestrictedIndicator = ####

7-6 Real Estate Transaction Specification Version 1.7.2

This would mean that all fields that the user is not allowed to see within a record (e.g.
ExpirationDate) are returned with a value of ####.

Note that if the client requests fields that the server would withhold for every record, the
server MAY choose to omit the field from the list returned rather than use the
RestrictedIndicator for every record.

7.4.7 StandardNames

Queries may use either standard names or system names in the query (Section 7.7). If the
client chooses to use standard names, it MUST indicate this using the StandardNames
argument.

StandardNames ::= 0 | 1

If this entry is set to (“0”) or is not present the field names passed in the search are the
SystemNames, as defined in the metadata. If this entry is set to (“1”) then the
StandardNames are used for the field names passed in the search. The StandardName
designation applies to all names used in the query: SearchType, Class, Query and Select.

7.5 Required Response Arguments

There are no required response arguments.

7.6 Search Response Body Format
NOTE

The body of the search response has the following format when replying to a request with
the format set to "COMPACT" or "COMPACT-DECODED":

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP >

[count-tag]
[delimiter-tag]
[column-tag]
*(compact-data)
[max-row-tag]
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP]/>]
</RETS> CRLF

The body of the search response has the following format when replying to a format
request of “STANDARD-XML” data:

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires search transaction
responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that
complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
So, for example, when the response format below calls out an empty XML tag, either the abbreviated tag
format (<MAXROWS/>) or the full format (<MAXROWS></MAXROWS>) may be sent by the server and
should be interpreted appropriately by the client. In addition, XML escaping of content is implied. See the
W3C XML Recommendation 1.0, Third Edition, for full information on XML.

Version 1.7.2 7-7

<?xml version="1.0" ?>
[doctype]
<RETS 1*SP ReplyCode= quoted-reply-code 1*SP

ReplyText= quoted-string *SP >
[count-tag]
*(XML-data-record)
[max-row-tag]
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP]/>]
</RETS> CRLF

doctype ::= <!DOCTYPE RETS PUBLIC "-//RETS//DTD RETS XML Search

Response 1.7.2//EN>" "http://www.rets.org/dtd/2008/

08/RETS-20080829.dtd">

dtd-version ::= <Name of the RETS DTD used to produce this document>

When the client requests the STANDARD-XML representation, it may also specify a DTD
version. The server MUST support the current version and SHOULD support the previous
version. Data DTD versions are of the form

RETS-yyyymmdd.dtd

where yyyymmdd is the release date of the DTD.

compact-data ::= <DATA> field-delimiter *(field-data field-delimiter
) </DATA>

If a “COMPACT” or “COMPACT-DECODED” format is specified in the request then a
“<DATA>” tag, a delimited list of field-data and a “</DATA>” end tag are returned to the
client for each record returned. The field-delimiter is determined by the delimiter-tag.

count-tag ::= <COUNT 1*SP Records="record-count" 1*SP />

When the client application specifies that a count should be returned (count-type = "1" |
"2") a count-tag MUST be sent by the server in the response. The “<COUNT>” tag MUST
be on the first line following the reply-code line. The record-count value indicates the
number of records on the server matching the search criteria sent in the search query.

column-tag ::= <COLUMNS> field-delimiter 1*(field field-delimiter)
</COLUMNS>

If a "COMPACT" or “COMPACT-DECODED” format is specified in the request then a
“<COLUMNS>” tag, including a delimited list of the names of all the fields of data being
returned, is sent back in the response. These names are the system-names unless standard-
names were used in the query.

The field-delimiter is determined by the delimiter-tag.

delimiter-tag ::= <DELIMITER value =" field-delimiter "/>

This parameter tells the client which character (OCTET) is used as a delimiter for both the
COLUMNS list and the DATA returned. The server MUST send this parameter for
“COMPACT” or “COMPACT-DECODED” formats. The “<DELIMITER>” tag MUST
precede column-tag.

max-row-tag ::= <MAXROWS/> CRLF |

<MAXROWS></MAXROWS>

7-8 Real Estate Transaction Specification Version 1.7.2

A tag that indicates the maximum number of records allowed to be returned by the server
has been exceeded, or alternatively, the Limit number passed by the client in the request
has been exceeded.

7.7 Query language

The query takes the form indicated below. This is the actual search criteria passed to the
server. The server parses this query and generates a server-compatible query based on the
parameters passed in the query-list.

7.7.1 Query language BNF

search-condition::= query-clause | (search-condition or query-clause)

query-clause ::= boolean-element | (query-clause and boolean-element)

boolean-element :: = [not] query-element

query-element ::= field-criteria | ((search-condition))

or ::= “OR” | “|”

and ::= “AND” | “,”

not ::= “NOT” | “~”

field-criteria ::= “(“ field “= “field-value “)“

field-value ::= lookup-list | string-list | range-list | period | number |
string-literal | “.EMPTY.”

lookup-list ::= lookup-or | lookup-not | lookup-and |“.ANY.”

lookup-or ::= “|“ lookup *(,lookup)

lookup-not ::= “~“ lookup *(, lookup)

lookup-and ::= “+“ lookup *(, lookup)

lookup ::= 1*128ALPHANUM | string-literal

string-list ::= string *(, string)

string ::= string-eq | string-start | string-contains | string-char

string-eq ::= 1*ALPHANUM

string-start ::= 1*ALPHANUM *

string-contains ::= * 1*ALPHANUM *

string-char ::= *ALPHANUM *(? *ALPHANUM)

string-literal ::= "(PLAINTEXT except ") *(2" *(PLAINTEXT except ")) "

range-list ::= range *(, range)

range ::= between | greater | less

between ::= (period | number) “-“ (period | number)

Version 1.7.2 7-9

greater ::= (period | number | string-eq) “+”

less ::= (period | number | string-eq) “-”

period ::= (dmqldate | dmqldatetime | partial-time)

number ::= [-]1*DIGIT ["." *DIGIT]

dmqldate ::= full-date | “TODAY”

dmqldatetime ::= RETSDATETIME | “NOW”

dmqltime ::= partial-time

7.7.2 Query parameter interpretation

Query literal values are interpreted in the value space of the searched field. That is, the data
type of the searched field determines the interpretation of the search literal values, which
MUST be valid in that value space.

Dates and times submitted in a query MAY utilize time offsets relative to UTC using the
dmqldatetime If a dmqldatetime is submitted with time offset information, the server
system MUST interpret the request using the time offset information. If the time offset is
not declared in the query, the server system MUST interpret the request using the default
System time zone offset. This default must match the advertised time zone offset of the
SYSTEM-METADATA. If no time zone offset is advertised for the server system system,
the default time zone offset MUST be UTC. The server system MUST interpret the TODAY
token as the current date and time of the server system. For backward compatibility, the
server system MUST treat clients with version less than 1.7.2 as submitting dates and times
using a time zone offset of UTC/GMT. In this case, the advertised time zone offset is
ignored since the client is not expected to be aware of the time zone offset. The server
system MUST interpret the token NOW as the current date and time of the server system.

In processing a literal string, a server MAY substitute a string-char expression (?s) for
the range of characters that contain any non-ALPHANUM not supported by that server.

In processing decimal numbers, where rounding is necessary, a server SHOULD round
down for the bottom of ranges or values less than 0.5 and round up for the tops of ranges
or values 0.5 or greater.

There are four types of field values that can be passed in the query string. They are a
lookup-list, a range, a string and the special token .EMPTY.. A lookup-list is a field
that may only contain predefined values, or the special token .ANY., indicating that any
value is acceptable. “Status” and “Type” are typical examples of fields with a limited range
of predefined values.

The .ANY. token, if used, is to be interpreted exactly as if it contained all possible values for
the given field. In particular, the use of .ANY. does not alter any limitation on the number
of lookup values allowed for the field. It is merely a shorthand method of specifying all
possible lookup values.

range fields can be searched based on a range of values. “ListPrice” and “ListDate” fall
into this category. All values specified in a range are to be treated as inclusive (e.g. 2+ is
the same as 2 or greater, inclusive of 2; 2-3 is the same as 2 to 3, inclusive of 2 and 3; 2- is

7-10 Real Estate Transaction Specification Version 1.7.2

the same as 2 or less, inclusive of 2). The types of the range endpoints MUST match the
data type of the field being searched. In addition, the range-start value MUST be less
than the range-end value in the value space defined by the searched field, or the result is
undefined.

A string field is any other character field not falling into the other two categories. These
are usually freeform text fields. An example of this kind of field is “OwnerName”.

The special value .EMPTY. is to be interpreted as whatever the value of the field would be if
no value had been entered. Note that this is implementation-defined: it may be the same as
a search for a null value, or it may be blank or zero. A client should not expect to be able to
distinguish unentered values from any other values using this search token.

Each field MUST be a SystemName, as defined in the metadata, unless the
StandardName argument is set to “1”, in which case the field MUST be a StandardName.
All values submitted for lookup-lists must be the Value in compact format, as defined in
Section 13.

The data types for field values may be determined by examining the metadata for the
searched field. In a query using StandardNames, the RETS Data Dictionary gives the
acceptable data type for search values.

Within range criteria, the datatype of the start and end range values MUST be identical.
That is, no mixing of datatypes within a specific range is permitted.

If a client submits alookup value containing non-alphanumeric characters, the client
MUST use the string-literal representation of the Lookup value.

7.7.3 Sub-queries

This query language provides for a nesting of sub-queries. For example:
Query=((AREA=|1,2)|(CITY=ACTON)),(LP=200000+)

Example: Query=(ST=|ACT,SOLD),
(LP=200000-350000),
(STR=RIVER*),
(STYLE=RANCH),
(EXT=+WTRFRNT,DOCK),
(LDATE=2000-03-01+),
(REM=*FORECLOSE*),
(TYPE=~CONDO,TWNHME),
(OWNER=P?LE)

Verbally, this would be interpreted as “return properties with (ST equal ACT or SOLD) and
(LP between 200000 and 350000, inclusive) and (STR beginning with RIVER) and (STYLE
equal RANCH) and (EXT equal WTRFRNT and DOCK) and (LDATE greater than or equal to 2000-
03-01) and (REM containing FORECLOSE) and (TYPE not equal to CONDO and not equal to
TWNHME) and (OWNER starting with P and having LE in the 3rd and 4th characters).”

Version 1.7.2 7-11

7.8 Reply Codes

Table 7-1 Search Transaction Reply Codes

Reply Code Meaning
0 Operation successful.
20200 Unknown Query Field

The query could not be understood due to an unknown field name.
20201 No Records Found

No matching records were found.
20202 Invalid Select

The Select statement contains field names that are not recognized by the server.
20203 Miscellaneous Search Error

The quoted-string of the body-start-line contains text that MAY be displayed to
the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the supplied
login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This reply
code indicates that the maximum records allowed to be returned by the server
have been exceeded. Note: reaching/exceeding the "Limit" value in the client
request is not a cause for the server to generate this error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be accepted
at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains too
many nesting levels or too many values for a lookup field.

20212 [deprecated] Invalid key request [deprecated]
The transaction does not meet the server’s requirements for the use of the Key
option.

20213[deprecated] Invalid Key[deprecated]
The transaction uses a key that is incorrect or is no longer valid. Servers are not
required to detect all possible invalid key values.

20514 Requested DTD version unavailable.
The client has requested the data in STANDARD-XML format using a DTD
version that the server cannot provide.

7-12 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 8-1

S E C T I O N

CHAPTER 0GET TRANSACTION

Gets an arbitrary file from the server or performs an arbitrary action, specified by URI.
This is a standard HTTP GET, per RFC 2616. The file to get is passed as part of the
Request-URI.

RETS servers need not support the GET transaction to any greater extent than is necessary
to implement the functionality of the Action URL (see 4.10, “Capability URL List”). If a
RETS server does not intend to include an Action URL in its login responses, it need not
support the GET transaction.

8.1 Required Request Arguments
There are no required request arguments.

8.2 Optional Request Arguments
There are no optional request arguments.

8.3 Required Response Arguments
There are no required response arguments.

8.4 Optional Response Arguments
There are no optional response arguments.

8.5 Status Conditions
See the General Status Codes in Section 3.9 for typical Status-Codes.

8-2 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 9-1

S E C T I O N

CHAPTER 0CHANGE PASSWORD TRANSACTION

The Change Password transaction provides a means for the user to change their password.
The new password is appended to the username and encrypted using the Data Encryption
Standard (DES), ANSI X3.92, using a hash of the old password as the key.

9.1 Required Request Arguments

PWD ::= PWD= <BASE64(<DES(Password : UserName)>)

This is the Base64 representation of the DES-encrypted UserName and Password. The
new Password and the UserName are appended together with a colon (“:”) between and
the resulting string is encrypted using DES in Electronic Code Book (ECB) mode. The
DES key is constructed using the procedure in Section 9.6. Base64 encoding is defined in
RFC 2045 section 6.8.

9.2 Optional Request Arguments

There are no optional request arguments.

9.3 Required Response Arguments

There are no required response arguments.

9.4 Optional Response Arguments

There are no optional response arguments.

9-2 Real Estate Transaction Specification Version 1.7.2

9.5 Reply Codes

9.6 Encryption Key Construction

The new password is communicated to the host as a string encrypted with the Data
Encryption Standard, ANSI X3.92. DES requires a 64-bit key, which is constructed as
follows:

1 The old password and username are converted to uppercase and concatenated together.
2 The resulting string is hashed using MD5.
3 The key is taken as the first 64 bits of the resulting hash value. Parity bits must be

corrected for encoders that check parity.

9.7 ECB Padding

The input to the DES ECB encryption process shall be padded to a multiple of 8 octets in
the following manner:

Let n be the length in octets of the input. Pad the input by appending 8 – (n mod 8) octets
to the end of the input, each having the value 8 – (n mod 8), the number of octets being
added. In hexadecimal, the possible paddings are 0x01, 0x0202, 0x030303, 0x04040404,
0x0505050505, 0x060606060606 and 0x07070707070707 and 0x0808080808080808. All
input is padded with 1 to 8 octets to produce an input string that is a multiple of 8 octets in
length. The padding can be unambiguously removed after decryption.

This padding method is compatible with RFC 2315 section 10.3, note 2.

9.8 Effect of change

Servers that return a success status MUST accept the new password and reject the old
password for all subsequent Login transactions and sessions. Servers that return a success
status MAY require the use of the new password for all subsequent transactions in the
current session by issuing a WWW-Authenticate challenge for transactions that do not
contain the correct credentials.

If a client fails to receive a response to this transaction, it SHOULD retain both the old and
new passwords until the effect of the Change Password transaction can be ascertained via a
successful login.

Table 9-1Change Password Reply Codes

Reply Code Meaning
0 Operation successful.
20140 Insecure password.

The password does not meet the site’s rules for password security.
20141 Same as Previous Password.

The new password is the same as the old one.
20142 The encrypted user name was invalid.

Version 1.7.2 10-1

S E C T I O N

CHAPTER 0UPDATE TRANSACTION

The update transaction is used to modify data on the server. The client transmits
information describing the update to perform. The information is then validated by the
server. If there are errors in the data, the server returns an error reply. If there are no
errors, the record as it was inserted/updated on the server will be returned. The record is
returned in the same manner as a record is returned from a search.

Update requests MUST use the POST method (rather than the GET method). This allows
the client to transmit characters beyond the HTTP length limit for the GET method. The
request MUST use a content-type appropriate to the encoding of the request, per [16]. A
content-type of text/www-url-formencoded is recommended, but any other method of
encoding HTML form parameters may be used.

10.1 Required Request Arguments

The request has the following format:
Resource= resource-name
&ClassName= class-name
&Validate= validate-flag
&Type= update-type
&Delimiter= field-delimiter
&Record= field-name = field-value *(field-delimiter field-name =
field-value)
[&WarningResponse= warning-response *(field-delimiter warning-
response)]

resource-name ::= 1*32ALPHANUM

The name of the resource to be updated, as specified in the metadata. This is the
SystemName as defined in Section 11.2.2.

class-name ::= 1*24ALPHANUM

The name of the class to be updated, as defined in the metadata. This is the ClassName as
defined in section 11.3.1.

validate-flag ::= 0 | 1 | 2

If this parameter is set to one (“1”), then the record is validated by the host. Any fields with
metadata field “Attributes” set to “Autopop” in the metadata (see Section 11.3.4) will have
their field values filled in by the server and returned to the client. The record in the server

10-2 Real Estate Transaction Specification Version 1.7.2

database is not updated. If this entry is set to zero (“0”) and there are no errors in the
record the record is updated on the server. If this entry is set to two (“2”), the server
validates all fields and returns any errors found, but does not store the record.

update-type ::= 1*24 ALPHANUM

The type of update to perform, as specified by the metadata. This is the UpdateType as
defined in Section 11.3.4.

field-name ::= 1*32ALPHANUM

The name of the field to be updated, as specified in the metadata. This is the SystemName
as defined in Section 11.3.2.

field-delimiter ::= OCTET

The octet which will separate fields in the record. If this is not specified, an ASCII HT
character is assumed.

field-value ::= <varies depending on the field>

The text representation of the field value as defined by the metadata in Section 11.3.2
subject to the business rules. The value MUST be submitted as if in COMPACT format.

warning-response::= warning-num = user-response

warning-num ::= 1*5DIGIT

user-response ::= *256TEXT excluding delimiter

The warning-num value is the host warning number that was returned in the prior Update
Response body. The user-response value is the text of the warning response in response
to the specified warning. If a warning-num sent in the prior UpdateResponse body had a
response-required value of 2, then the user-response value MUST NOT be NULL.

10.2 Optional Request Arguments

There are no optional request arguments.

10.3 Required Response Arguments

There are no required response arguments.

10.4 Optional Response Arguments

There are no optional response arguments.

10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:
<RETS 1*SP ReplyCode= quoted-reply-code 1*SP

ReplyText= quoted-string *SP > CRLF
transaction-id-tag
[delimiter-tag]
column-tag

Version 1.7.2 10-3

compact-data
[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP/>]
</RETS> CRLF

The body of the update response has the following format when there are errors or
warnings:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP > CRLF

transaction-id-tag
[delimiter-tag]
column-tag
compact-data
[error-block]
[warning-block]
</RETS> CRLF

error-block = <ERRORBLOCK> CRLF
1*(<ERRORDATA>→field→error-num→error-

offset→error-text→

</ERRORDATA>)
</ERRORBLOCK>

warning-block = <WARNINGBLOCK>
1*(<WARNINGDATA>→field→warning-num→warning-

offset→warning-text→response-required→

</WARNINGDATA>)
</WARNINGBLOCK>

The format of the <ERRORDATA> and <WARNINGDATA> tag content is identical to
COMPACT format.

10.5.1 Error block

An Error Block is returned when there is a problem with one or more of the fields. The
error block contains information about the fields that have errors. It contains the field
name, an error number, some additional text about the error (error-text), and where in the
field data the error occurred (error-offset).

error-num ::= 1*5DIGIT

This is the host error number. This number along with the error-text MAY be displayed to
the user when looking at the corresponding field in the client application.

error-offset ::= 1*5DIGIT

This is the offset into the field data that was sent by the client application to the server. It
indicates at what character in the field data the problem was encountered. This number is
set to zero (“0”) if the offset of the error is unknown.

error-text ::= *64ALPHANUM

This is the error text generated by the host to assist the user in determining the problem
with the field data. This text is associated with the error-num.

The error return format follows the COMPACT data format in all particulars. This affects
primarily the quoting of special characters and the selection of the delimiter that separates

10-4 Real Estate Transaction Specification Version 1.7.2

the field values. In effect, the error return is a COMPACT data block without the usual
COLUMNS element.

10.5.2 Warning block

A Warning Block is returned when there is a problem with one or more of the fields that
would not prevent the record from being saved in the database. It contains a field name, a
warning number, some additional text about the warning (warning-text), where in the
field data the warning occurred (warning-offset) and an indicator whether an end-user
response to this warning is requested or required. The delimiter is the same as the one
defined for the error-block.

field ::= 1*32ALPHANUM

The SystemName of the field to which the warning applies.

warning-num ::= 1*5DIGIT

The host warning number. This number, along with the warning-text, MAY be
displayed to an end-user in association with the corresponding field in the client
application.

warning-text ::= TEXT

warning-offset ::= 1*5DIGIT

The offset into the field data that was sent by the client application to the server. It
indicates at what character in the field data the problem was encountered. This number is
set to zero if the offset of the error is unknown or if an offset is inapplicable.

response-required::= 0 | 1 | 2

The response-required value indicates whether an end-user response is requested or
required:

0 No response is permitted.
1 A response is requested.
2 A response is mandatory.

If the response-required field indicates that a response is mandatory, the client MUST
send the end-user response for the specific warning-num in the WarningResponse request
argument in order for this record to be saved to the database.

10.6 Validation

Validation routines are indications of the checks the host system will perform against a
field value before it is accepted for storage on the host. Some of these routines require data
available only on the host system. However, others are relatively simple and could be
performed by any RETS client to prevent invalid field values from being submitted. There
are several different types of validation to be performed by the client.

A compliant client is not required to enforce the local validations provided in this section.
However, if a client does not enforce the validations then the likelihood of the server
rejecting the record is greatly increased.

Version 1.7.2 10-5

10.6.1 Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as Lookup the only acceptable values for the field
are defined in the METADATA-LOOKUP referenced by LookupName. Alternatively, if the
metadata specifies a ValidationLookup the only acceptable values for the field are defined
in the METADATA-VALIDATION_LOOKUP referenced by the ValidationLookup field.

10.6.2 MultiSelect Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as LookupMulti, LookupBitstring or
LookupBitmask the only acceptable values for the field are defined in the METADATA-
LOOKUP referenced by LookupName. The maximum number of values that can be selected is
defined by MaxUpdate.

10.6.3 Range

The entry must be between the Minimum and Maximum values specified in the metadata (see
Section 11.3.2).

10.6.4 Test Expression

The parameter list contains an expression evaluated by the routine. If the expression is
true, the value of the field is acceptable. If the expression is false, the value is rejected. See
Section 11.4.9 for more information on Test Expressions. Test expressions are always
executed in the order in which they are presented in the metadata.

10.6.5 External

The entry may be validated by searching a server resource. The Resource is defined for
searching and the parameter list includes a set of suggested input fields, a set of result fields
to display and a set of result fields to populate into the fields of the resource being updated.
Information for external validation is provided in Section 11.4.10.

10.7 Reply Codes

The quoted-string of the body-start-line contains text that MAY be displayed to the user.

Table 10-1 Update Transaction Reply Codes

Reply Code Meaning
0 Operation successful.
20301 Invalid parameter. Additional information is provided in the error block.
20302 Unable to save record on server.
20303 Miscellaneous Update Error.
20311 WarningResponse was not given for all warnings that contained a

response-required value of 2.
20312 WarningResponse was given for a warning that contained a response-

required value of 0.

10-6 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 11-1

S E C T I O N

CHAPTER 0METADATA FORMAT

Metadata enables a client that receives data from a compliant server to better format the
data for display, and to store it efficiently for future retrieval. While use of the metadata is
not necessary to retrieve data for simple display purposes, more sophisticated clients will
want to use the metadata to make more intelligent use of the information retrieved.
Metadata MUST be supplied by a compliant server.

11.1 Organization and Retrieval

11.1.1 Metadata Organization

Metadata is organized by table/object, with each table having its own unique set of
metadata describing the fields available in that table/object. The organization permits
access to summary or detailed information about one or more resources (see Figure 11.1,
“Metadata Structure”).

The client retrieves the metadata by using the GetMetadata Transaction specifying the
METADATA table/object(s) of interest as the Type, and the specific instance in the ID (see
Section 5). The server supplies the metadata as documents using the formats described in
this section. The client MUST accept fields and attributes in the metadata that are not
defined in this standard, although it is not required to process those fields in any way.

The client may cache the metadata between sessions. If it does, it MUST record the value
of the METADATA-SYSTEM timestamp attribute from each session in which it caches
retrieved metadata, and MUST request new metadata whenever the MetadataTimestamp
Login response value changes except when previous versions are permitted by the
MinMetadataTimestamp value. If a client continues to send transactions using outdated
metadata, the server’s operation is undefined.

11.1.2 General Rules for Interpretation

In general, metadata keywords defined in this standard such as field names and reserved
values are not case-sensitive. However, implementers are urged to adopt the strict-
generation/tolerant-acceptance rule and follow the case shown in this standard.

11-2 Real Estate Transaction Specification Version 1.7.2

Servers may choose to extend the content of any metadata table by including additional
keywords. Metadata field names for such extensions SHOULD begin with the letter “X”
followed by a hyphen, followed by an implementation-defined token in order to insure
compatibility with future versions of the standard.

Clients requesting metadata in COMPACT format MUST ignore any metadata fields
which they do not understand. In addition, the servers are permitted to send columns in
any order. The order shown in the examples is not normative.

System Resource Class

Object

SearchHelp

EditMask

Lookup

Validation-

Validation-

Validation-

Lookup

External

Expression

Table

Update

UpdateType

Validation-

LookupType

Validation-

LookupType

ExternalType

ForeignKey

UpdateHelp

Figure 11.1 Metadata Structure

Version 1.7.2 11-3

Clients requesting metadata in XML format MUST ignore any <EXTENSION> or
<PROPRIETARY> elements that they do not understand.

NOTE

11.1.3 Metadata Retrieval Hierarchy

The ID argument in the GetMetadata transaction reflects the metadata hierarchy as shown
in Figure 11.1. For any metadata element, the ID argument is a list of the names of the
parent elements for the desired element, separated by colons. For example, to retrieve the
EditMask table for a given named Resource, the argument is simply the ResourceID:

Type: METADATA-EDITMASK
ID: Property

where Property is the ID of one of the Resources listed in the Metadata-Resource table.

Since Tables are children of Classes, which are in turn children of Properties, the ID
parameter contains both parents:

Type: METADATA-TABLE
ID: Property : Res

where Res is a class listed in the Metadata-Class table under the resource Property.

11.1.4 Metadata Format

Compliant RETS servers MUST supply metadata in both formats: COMPACT, described
below and valid according to the RETS Compact DTD (public identifier -//RETS//DTD
Compact Metadata 1.7.2//EN), and XML, valid according to the RETS XML Metadata
DTD (public identifier -//RETS//DTD Metadata Content 1.7.2//EN). See Appendix A
for system identifiers.

The COMPACT metadata format consists of a sequence of segments with identical
structure, except for System-level metadata, which has its own structure. The general
structure for non-System metadata is a tab-delimited table, XML-encapsulated with the
header record contained within a <COLUMNS> element, and each successive row contained
within a <DATA> element.:

<METADATA-HEADER header-attributes>
<COLUMNS>→fieldname *(→fieldname)→</COLUMNS>
*(<DATA>→fielddata *(→fielddata)→</DATA>)
</METADATA-HEADER>

METADATA-HEADER is the header name for the segment, given with the description of each
type of metadata, as are the header-attributes associated with each header. Each
fieldname is the name of one of the metadata fields given below. Each fielddata value

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires GetMetadata
responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that
complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML
Recommendation 1.0, Third Edition, for full information on XML.

11-4 Real Estate Transaction Specification Version 1.7.2

corresponds to the similarly-positioned fieldname, first to first, second to second and so
on.

11.2 System-Level Metadata

Clients can determine the number and type of searchable and updateable entities by
referencing the Resources. A server MUST advertise its resources. It MAY advertise all of
its available resources or MAY restrict the advertised list by logon or other criteria. A
server’s advertisement of a resource does not require that the server be able to
accommodate any arbitrary search for that user; the server MAY restrict access to
resources that it advertises. If the server supports multimedia objects then it MUST
advertise the supported types.

All resources that can be searched or updated are defined in the metadata described in this
section. There are three parts to the metadata. The first part provides system information
and describes the available resources, the second part describes the class specific metadata
for a resource, and the third part describes the shared metadata for a resource.

11.2.1 System

The System metadata starts with a <METADATA-SYSTEM> tag with Version and Date
attributes. This tag is followed by a <SYSTEM> section, which contains the system
identification information and time offset. An optional <COMMENTS> section completes the
System metadata. The System metadata has the following format:

<METADATA-SYSTEM ⋅ Version="system-version" ⋅ Date="system-date" >
<SYSTEM ⋅ SystemID="code-name" ⋅ SystemDescription="long-name"
[TimeZoneOffset=”time-zone-offset”]/>
[<COMMENTS>
*(comment)
</COMMENTS>]

</METADATA-SYSTEM>

system-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

system-date ::= RETSDATETIME

code-name ::= 1*10ALPHANUM

long-name ::= 1*64PLAINTEXT

time-zone-offset::= time-offset

comments ::= TEXT

Version 1.7.2 11-5

COMPACT header tag: METADATA-SYSTEM

COMPACT header tag: SYSTEM

11.2.2 Resources

RETS does not require that any particular type of data be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard. Table 11-4 contains the
list of well-known resource names.

Table 11-1 MetadataSystem Compact Header Attributes

Attribute Content
Version This is the version of the Resource metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Table 11-2 System Compact Header Attributes

Attribute Content
SystemId An identifier for the system
SystemDescription An implementation defined description of the system
TimeZoneOffset The Time Zone Offset is the time offset of the server relative to

UTC. The server MAY provide the TimeZoneOffset to assist in
correctly calculating date and time values for requests to this
server. The format is defined in Section 2.4 for the atom time-
offset. Any server that provides the TimeZoneOffset value in
System Metadata MUST adhere to this value when responding
to requests. Client applications SHOULD use this value to calcu-
late the correct date and time criteria for requests.

Table 11-3 Metadata: System Field

Field Name Content Type Description

COMMENTS TEXT Optional comments about the system. The context
where the field contains characters may require that
those characters are escaped by other rules like entity
encoding.

Table 11-4 Well-Known Resource Names

Resource Name Purpose

ActiveAgent A resource that contains information about active agents. These are agents that
are currently authorized to access the server (paid-up, not retired, etc.)

Agent A resource that contains information about agents.

History A resource that contains information about the accumulated changes to each list-
ing.

Office A resource that contains information about broker offices.

11-6 Real Estate Transaction Specification Version 1.7.2

Resource Metadata Content

COMPACT header tag: METADATA-RESOURCE

OpenHouse A resource that contains information about open-house activities.

Property A resource that contains information about listed properties. Information in this
resource is described by Real Estate Transaction XML DTD in addition to appro-
priate metadata.

Prospect A resource that contains information about sales or listing prospects.

Tax A resource that contains tax assessor information.

Tour A resource that contains information about tour activities.

Table 11-5 Resource Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Resource metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Table 11-6 Metadata: Resource Description Fields (Sheet 1 of 3)

Field Name Content Type Description

ResourceID RETSID The name which acts as a unique ID for this resource.

StandardName 1*64ALPHANUM The name of the resource. This must be a well-known
name if applicable.

VisibleName 1*64PLAINTEXT The user-visible name of the resource.

Description 1*64PLAINTEXT A user-visible description of the resource.

KeyField RETSID The SystemName (see 11.3.2) of the field that pro-
vides a unique ResourceKey for each element in
this resource. All classes within a resource must use
the same KeyField.

ClassCount POSITIVENUMc The number of classes in this resource. There MUST
be ClassCount METADATA_CLASS descriptions
for the resource. There MUST be at least one Class for
each Resource.

ClassVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of the Class metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only.

ClassDate RETSDATETIME The date on which the Class metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management.

Table 11-4 Well-Known Resource Names (continued)

Resource Name Purpose

Version 1.7.2 11-7

ObjectVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the Object metadata for this Resource.
The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no Object metadata is available for this
Resource.

ObjectDate RETSDATETIME The date on which the Object metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
Object metadata is available for this Resource.

SearchHelpVer-
sion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the SearchHelp metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no SearchHelp is available for this Resource.

SearchHelpDate RETSDATETIME The date on which the SearchHelp metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
SearchHelp is available for this Resource.

EditMaskVer-
sion

11*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the EditMask metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no EditMask is available for this Resource.

EditMaskDate RETSDATETIME The date on which the EditMask metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
EditMask is available for this Resource.

LookupVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the Lookup metadata for this Resource.
The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no Lookup is available for this Resource.

LookupDate RETSDATETIME The date on which the Lookup metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
Lookup is available for this Resource.

UpdateHelpVer-
sion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the UpdateHelp metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no UpdateHelp is available for this Resource.

UpdateHelpDate RETSDATETIME The date on which the UpdateHelp metadata for this
Resource was last changed. Clients MAY rely on this
date for cache management. A blank date indicates no
UpdateHelp is available for this Resource.

Table 11-6 Metadata: Resource Description Fields (Sheet 2 of 3)

Field Name Content Type Description

11-8 Real Estate Transaction Specification Version 1.7.2

11.2.3 Foreign Keys

The ForeignKeys metadata table allows a server to advertise relationships among its
offered resources. A RETS client MAY use this information to provide a richer display of
related information. The ForeignKeys metadata consists of tuples containing a parent
resource type, a child resource type, and the foreign keys used to traverse the relation.

The nesting of foreign keys MUST be such that recursive searches are NOT REQUIRED to
obtain data for well-known fields as defined in the RETS DTD. However, nesting of
foreign keys is allowed except in these cases.

Validation-
ExpressionVers
ion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the ValidationExpression metadata for
this Resource. The convention used is a
"<major>.<minor>.<release>" numbering scheme.
The version number is advisory only. A blank version
indicates no ValidationExpression is available for this
Resource.

Validation-
ExpressionDate

RETSDATETIME The date on which the ValidationExpression metadata
for this Resource was last changed. Clients MAY rely
on this date for cache management. A blank date indi-
cates no ValidationExpression is available for this
Resource.

Validation-
LookupVersion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the ValidationLookup metadata for
this Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no ValidationLookup is available for this
Resource.

Validation-
LookupDate

RETSDATETIME The date on which the ValidationLookup metadata
for this Resource was last changed. Clients MAY rely
on this date for cache management. A blank date indi-
cates no ValidationLookup is available for this
Resource.

ValidationEx-
ternalVersion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the ValidationExternal metadata for
this Resource. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
The version number is advisory only. A blank version
indicates no ValidationExternal is available for this
Resource.

ValidationEx-
ternalDate

RETSDATETIME The date on which the ValidationExternal metadata
for this Resource was last changed. Clients MAY rely
on this date for cache management. A blank date indi-
cates no ValidationExternal is available for this
Resource.

Table 11-6 Metadata: Resource Description Fields (Sheet 3 of 3)

Field Name Content Type Description

Version 1.7.2 11-9

ForeignKeys Metadata Content

COMPACT header tag: METADATA-FOREIGN_KEYS

Table 11-7 ForeignKeys Metadata Compact Header Attributes

Attribute Content
Version This is the version of the ForeignKeys metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Table 11-8 Metadata Content: Foreign Keys (Sheet 1 of 2)

Metadata Field Content Type Description

ForeignKeyID RETSID A Unique ID that represents the foreign key com-
bination.

ParentResourceID RETSID The ResourceID (Table 11-6) of the resource
for which this field functions as a foreign key. The
name given MUST appear in the METADATA-
RESOURCE table..

ParentClassID RETSID The name of the resource class for which this field
functions as a foreign key. This name MUST
appear in the RESOURCE-CLASS table for the
given ParentResourceID.

ParentSystemName RETSNAME The SystemName of the field in the given resource
class that should be searched for the value given in
the this field. This name must appear as a Sys-
temName in the METADATA-TABLE section of
the metadata for the ParentClassID, and the
named item must have its Searchable attribute set
to TRUE.

ChildResourceID RETSID The ResourceID (Table 11-6) of the resource
for which this field functions as a foreign key. The
name given MUST appear in the METADATA-
RESOURCE table.

ChildClassID RETSID The name of the resource class for which this field
functions as a foreign key. This name MUST
appear in the RESOURCE-CLASS table for the
given ChildResourceID.

ChildSystemName RETSNAME The SystemName of the field in the given
resource class that should be searched for the value
given in this field. This name must appear as a Sys-
temName in the METADATA-TABLE section of
the metadata for the ChildClassID, and the named
item must have its Searchable attribute set to
TRUE.

11-10 Real Estate Transaction Specification Version 1.7.2

11.3 Metadata Format for Class Elements

All tables that can be searched are defined in a document with the format defined in this
section. There are three parts to this section. The first part describes the searchable tables,
the second part describes the lookups referenced within the table section, and the third
describes the help text associated with searches and edit masks associated with updates.

11.3.1 Class

A given data resource may contain multiple classes of entries that can be searched or
updated separately. The metadata for a resource supporting searchable classes MUST
contain a class description for each class supported.

COMPACT header tag: METADATA-CLASS

ConditionalParent-
Field

RETSNAME The SystemName of a field in the parent’s
METADATA-TABLE that should be examined to
determine whether this parent-child relationship
should be used. If this is blank, the relationship is
unconditional. If ConditionalParent-
Field is present and nonblank, then Condi-
tionalParentValue MUST be present and
nonblank.

ConditionalParent-
Value

RETSNAME The value of the field designated by Condi-
tionalParentField indicating that this rela-
tion should be used. If the type of the field named
in ConditionalParentField is numeric,
then this value is converted to numeric type before
comparison. If the type of the field named in Con-
ditionalParentField is character, then the
shorter of the two values is padded with blanks and
the comparison made for equal length. If Condi-
tionalParentField is present and nonblank,
then ConditionalParentValue MUST be
present and nonblank.

Table 11-8 Metadata Content: Foreign Keys (Sheet 2 of 2)

Metadata Field Content Type Description

Table 11-9 Class Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Class metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this class resides.

Version 1.7.2 11-11

11.3.2 Table

The following table lists the minimum acceptable content for server-supplied metadata
used in describing a table.

Table 11-10 Metadata Content: Resource Class

Metadata Field Content Type Description

ClassName RETSID The name which acts as a unique ID for the class.

StandardName 1*64PLAINTEXT The XML standard name. This is the name from the
Real Estate Transaction XML DTD. Examples include
ResidentialProperty, LotsAndLand,
CommonInterest,MultiFamily for the
Resource type of Property.

VisibleName 1*64PLAINTEXT The user-visible name of the class.

Description 1*128PLAINTEXT A user-visible description of the class.

TableVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the Table metadata that describes this
Class. The convention used is a
"<major>.<minor>.<release>" numbering scheme.
The version number is advisory only.

TableDate RETSDATETIME The date on which the Table metadata for this Class
was last changed. Clients MAY rely on this date for
cache management.

UpdateVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of any of the Update metadata for
this Class. The convention used is a
“<major>.<minor>.<release>” numbering scheme. A
blank version indicates no Update is available for this
Class. The version number is advisory only.

UpdateDate RETSDATETIME The date on which any of the Update metadata for this
Class was last changed. Clients MAY rely on this data
for cache management. A blank date indicates no
Update is available for this Class.

ClassTimeStamp RETSNAME The SystemName of the field in the METADATA-
TABLE that acts as the last-change timestamp for this
class.

DeletedFlag-
Field

RETSNAME The SystemName of the field in the METADATA-
TABLE that indicates that the record is logically
deleted. If this element is specified, then Deleted-
FlagValue MUST be specified as well.

Deleted-
FlagValue

1*32ALPHANUM The value of the field designated by DeletedFlag-
Field indicating that a record has been logically
deleted. If the type of the field named by Deleted-
FlagField is numeric, then this value is converted
to a number before comparison. If the type of the field
named by DeletedFlagField is character, then
the shorter of the two values is padded with blanks
and the comparison made for equal length.

HasKeyIndex BOOLEAN When true, indicates that the Class supports the
retrieval of key data for fields advertised in the Table
Metadata as InKeyIndex.

11-12 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA-TABLE

Table 11-11 Table Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Table metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.
Class The ClassName for the class in which this table resides.

Table 11-12 Metadata Content - Tables (Sheet 1 of 4)

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that never changes as long as the semantic
definition of this field remains unchanged. In particu-
lar, it should be managed so as to allow the client to
detect changes to the SystemName.

SystemName RETSNAME The name of the field as it is known to the native
server. The system name MUST be unique within the
Table.

StandardName RETSNAME The name of the field as it is known in the Real Estate
Transaction XML DTD.

LongName 1*256TEXT The name of the field as it is known to the user. This is
a localizable, human-readable string. Use of this field
is implementation-defined; it is expected that clients
will use this value as a title for this datum when it
appears on a report.

DBName 1*10ALPHANUM A short name that can be used as a database field
name. This name may not start with a number nor can
it be an ANSI-SQL92 reserved word. This value can be
used by a client as the name of an internal database
field, so servers should attempt to provide a value for
this field that is unique within the table.

ShortName 1*64TEXT An abbreviated field name that is also localizable and
human-readable. Use of this field is implementation-
defined. It is expected that clients will use this field in
human-interface elements such as pick lists.

MaximumLength POSITIVENUM The maximum possible unencoded length of a value
of this field. Given that the HTTP transport specifica-
tion converts all data types to a string representation
and that certain characters and entities may be
encoded for transmission, this is the maximum num-
ber of unencoded characters that can be expected for a
single instance of this field. See Appendix D for inter-
pretation.

Version 1.7.2 11-13

DataType Boolean A truth-value, stored using TRUE and FALSE. That
is 1 for true and 0 for false.

Character An arbitrary sequence of printable characters.

Date A date in RETSDATE format.

DateTime A date and time in full-date format.

Time A time in RETSTIME format.

Tiny A signed numeric value that can be stored in no more
than 8 bits.

Small A signed numeric value that can be stored in no more
than 16 bits.

Int A signed numeric value that can be stored in no more
than 32 bits.

Long A signed numeric value that can be stored in no more
than 64 bits.

Decimal A decimal value that contains a decimal point (see
Precision).

Precision OPTNONNEGATIVENU
M

The number of digits to the right of the decimal point
when formatted. Applies to Decimal fields only.

Searchable BOOLEAN When true, indicates that the field is searchable.

Table 11-12 Metadata Content - Tables (Sheet 2 of 4)

Field Name Content Type Description

11-14 Real Estate Transaction Specification Version 1.7.2

Interpretation Number An arbitrary number.

Currency A number representing a currency value.

Lookup A value that should be looked up in the Lookup Table.
This is a single selection type lookup (e.g. STATUS).
This interpretation is also valid for Boolean data types,
in which case the LookupType specified by the
LookupName entry MUST contain exactly two ele-
ments, one with a Value of 0, and the other with a
Value of 1.

LookupMulti A value that should be looked up in the Lookup Table.
This is a multiple-selection type lookup (e.g. FEA-
TURES) where the character strings representing each
selection are separated by commas.The character
strings MAY be quoted text following the rules for
Value of section 11.4.3 Lookup Type.

LookupBit-
string[depre-
cated]

[deprecated]A value that should be looked up in the
Lookup Table. This is a multiple-selection lookup that
is stored as a bit string. The bit string is represented as
a character string containing only the characters 0 and
1. The leftmost character represents the least-signifi-
cant bit. The lookup value of the bitstring element is
the ordinal position of each bit with the rightmost bit
designated as bit 0.

LookupBit-
mask[deprecated]

[deprecated]A value that should be looked up in the
Lookup Table. This is a multiple-selection type lookup
that is stored as a bitmask field. Fields of this type are
limited to 31 choices.(e.g. VIEW). When converted to
binary, each bit represents one of the possible choices.
The choices are from lsb to msb. Lookup values are
the numeric equivalent of each bit’s binary value (i.e.,
the low order bit represents the first lookup and the
high order bit represents the last lookup choice).
2(value–1) is added to the total choice when querying
for its applicability.

Alignment Left The value MAY be displayed left aligned.

Right The value MAY be displayed right aligned.

Center The value MAY be centered in its field when dis-
played.

Justify The value MAY be justified within its field when dis-
played.

UseSeparator BOOLEAN When true, indicates that the numeric value MAY be
displayed with a thousands separator.

EditMaskID RETSNAME *(“,”
RETSNAME)

For each RETSNAME, the name of the METADATA-
EDITMASK EditMaskID containing the edit mask
expression for this field (see Section 11.4.5). Multiple
masks are permitted and are separated by commas.

LookupName RETSNAME The name of the METADATA-LOOKUP containing
the lookup data for this field (see Section 11.4.2).
Required if Interpretation is Lookup, LookupMulti,
LookupBitstring or LookupBitmask.

Table 11-12 Metadata Content - Tables (Sheet 3 of 4)

Field Name Content Type Description

Version 1.7.2 11-15

MaxSelect Numeric This field is required if Interpretation is Lookup-
Multi, LookupBitstring or LookupBit-
mask. This value indicates the maximum number of
entries that may be selected in the lookup.

Units (Feet | Meters |
SqFt | SqMeters |
Acres | Hectares)

Unit of measure.

Index BOOLEAN When true, indicates that this field is part of an index.
The client MAY use this information to help the user
create faster queries.

Minimum Numeric The minimum value that may be stored in a field
(applies to numeric fields only).

Maximum Numeric The maximum value that may be stored in a field
(applies to numeric fields only).

Default SERIAL The order that fields should appear in a default one-
line search result. Fields that should not appear in the
default one-line format should have a value of 0,
Fields that should never be visible to the user should
have a value of –1.

Required Numeric A non-zero value indicates the field is required when
searching. This value should be sequential starting
with one. If multiple fields share the same value, then
one of the fields with the same value is required. (e.g.
City = 1 & ZipCode = 1 implies that the user is
required to include either City or ZipCode in their
query).

SearchHelpID RETSNAME The name of the entry in the METADATA-
SEARCH_HELP table (see Section 11.4.4).

Unique BOOLEAN When true, indicates that this field is a unique identi-
fier for the record that it is part of.

ModTimeStamp BOOLEAN When true, indicates that changes to this field update
the class’s ModTimeStamp field.

ForeignKeyName RETSID When nonblank, indicates that this field is normally
populated via a foreign key. The value is the For-
eignKeyID from the METADATA-FOREIGNKEYS
table.

ForeignField RETSNAME The SystemName from the child record accessed via
the specified foreign key.

KeyQuery[depre-
cated]

BOOLEAN When true, indicates that this field may be included in
a query that uses the Key optional argument.[depre-
cated]

KeySelect[depre-
cated]

BOOLEAN When true, indicates that this field may be included in
the Select list of a query that uses the Key optional
argument.[deprecated]

InKeyIndex BOOLEAN When true, indicates that this field may be included in
the Select argument of a Search to suppress normal
Limit behavior following the rule described in Section
7.4.5

Table 11-12 Metadata Content - Tables (Sheet 4 of 4)

Field Name Content Type Description

11-16 Real Estate Transaction Specification Version 1.7.2

11.3.3 Update

A given data resource may contain multiple classes of entries that can be updated
separately. The metadata for a resource supporting updateable classes MUST contain a
Class Table description for each class supported.

COMPACT header tag: METADATA-UPDATE

11.3.4 Update Type

A given resource may contain multiple classes of entries that can be updated separately.
Each of these classes may have different types of updates that can be performed. There
might be different test expressions or sequences. This section describes how each of those
are specified.

Table 11-13 Update Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Update metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.
Class The ClassName for the class to which this metadata table applies.

Table 11-14 Metadata Content – Update

Metadata Field Content Type Description

MetadataEn-
tryID

RETSID A value that never changes so long as the semantic definition of this entry
remains unchanged.

UpdateName 1*24ALPHANUM This identifies the nature of the update, such as "add" or "modify". Some
update types, such as changes to a property record (e.g. "Sell", "Back on
Market"), will imply a set of business rules specific to the server. However,
where possible, the following standard type names should be used:

Description 1*64PLAINTEXT A user visible description of the Update Type.

KeyField RETSNAME The SystemName (see Section 11.3.2) of the field that must be used to
retrieve an existing record for the update.

UpdateTypeVer-
sion

1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of this Update Type metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. The version number is
advisory only.

UpdateTypeDate RETSDATETIME The date on which any of the content of this Update Type was last
changed. Clients MAY rely on this date for cache management.

Update Name Function

Add Add a new record

Clone Create a new record by copying an old one

Change Change an existing record

Delete Delete an existing record

Version 1.7.2 11-17

COMPACT header tag: METDATA-UPDATE_TYPE

Table 11-15 UpdateType Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Update Type metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.
Class The ClassName for the class to which this metadata table applies.
Update The UpdateName for the Update to which this metadata table applies.

Table 11-16 Metadata Content – Update Type

Metadata Field Content Type Description

MetadataEn-
tryID

RETSID A value that never changes as long as the semantic definition of this entry
remains unchanged.

SystemName RETSNAME This is the SystemName of the field as defined in Section 11.3.2.

Sequence 1*5DIGIT Sequence number of the field, representing the order of entry

Attributes 1*(1 | 2 | 3 | 4 | 5 [,]) Multiple entries are separated by commas.

Default <PLAINTEXT> Default value of field (i.e. value if not specified by user)

ValidationEx-
pressionID

RETSNAME *(“,”
RETSNAME)

<multiple entries are separated by commas>
The names of the ValidationExpressions to use. See section 11.4.9

UpdateHelpID RETSNAME The name of the entry in the METADATA-UPDATE_HELP table (see Sec-
tion 11.4.6).

Validation-
LookupName

RETSNAME The name of the ValidationLookup to use. See section 11.4.7

ValidationEx-
ternalName

RETSNAME The name of the ValidationExternal to use. See section 11.4.10

MaxUpdate 1*5DIGIT For LookupMulti fields, the maximum number of values that may be spec-
ified for the field. This value has no meaning for fields with any other
interpretation.

Value Meaning Description

1 DisplayOnly Field may not be changed.

2 Required Field may not be left blank.

3 Autopop Field is populated by the server.

4 Interactive-
Validate

When changed, the client can validate
the field only by contacting the server.
All fields listed as “AdditionalField”
MUST also be passed.

5 ClearOnCloning The field should be cleared when the
containing record is cloned.

11-18 Real Estate Transaction Specification Version 1.7.2

11.4 Metadata Format for Shared Elements

11.4.1 Object

Object type names allow the operator of a particular server to advertise its supported
multimedia types. These types are standard MIME types as registered with IANA. RETS
does not require that a server make available any particular type of multimedia object.
However, a server MUST use a standard well-known name under which to make its
multimedia objects available, if a suitable well-known name is defined in the standard.
Multimedia names are defined in Table 11-17.

COMPACT header tag: METDATA-OBJECT

Table 11-17 Well-known Object Types

Object Name Purpose

Photo A representation image related to the element defined by the resource Key-
Field.

Plat An image of the property boundaries related to the element defined by the
resource KeyField

Video A moving image with or without sound related to the element defined by the
resource KeyField.

Audio A sound clip related to the element defined by the resource KeyField.

Thumbnail A lower-resolution image related to the element defined by the resource Key-
Field.

Map A location image related to the element defined by the resource KeyField.

VRImage A multiple-view, possibly-interactive image related to the element defined by
the resource KeyField.

Table 11-18 Object Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Object metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-19 Metadata Content: Resource Object (Sheet 1 of 2)

Metadata Field Content Type Description

MetadataEn-
tryID

RETSID A value that never changes as long as the semantic defi-
nition of this field remains unchanged.

ObjectType 1*24ALPHANUM The classification of the object. If one of the well-known
object types in Table 11-17 applies, then it MUST be
used.

MIMEType A MIME type per
RFC 2045

The name of the object type. This is the MIME type that
a client can pass to the "Accept" parameter in the Get
Object transaction (see Section 5.1).

Version 1.7.2 11-19

11.4.2 Lookup

This section describes the lookup tables that are referenced by the LookupName in the
Table section. There MUST be a corresponding lookup table for every "LookupName".

COMPACT header tag: METADATA-LOOKUP

11.4.3 Lookup Type

This section describes the content of a lookup table that is referenced by the LookupName
in the Table section. There MUST be a corresponding lookup table for every "Lookup",
“LookupMulti”, “LookupBitstring” and “LookupBitmask”.

VisibleName 1*64PLAINTEXT The user-visible name of the object type.

Description 1*128PLAINTEXT A user-visible description of the object type.

ObjectTime-
Stamp

RETSNAME The SystemName of the field in a METADATA-
TABLE that acts as the timestamp for objects of this
type. This SystemName MUST be one that appears in
every class that has objects of this type.

ObjectCount RETSNAME The SystemName of the field in a METADATA-
TABLE that acts as the count for objects of this type.
This SystemName MUST be one that appears in every
class that has objects of this type.

Table 11-19 Metadata Content: Resource Object (Sheet 2 of 2)

Metadata Field Content Type Description

Table 11-20 Lookup Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Lookup metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.

Table 11-21 Metadata Content: Lookup

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that never changes as long as the semantic defini-
tion of this entry remains unchanged.

LookupName RETSNAME The name of Lookup Table. There MUST be an entry for
each LookupName value used in the Table metadata.

VisibleName 1*64PLAINTEXT A description of the table that is human-readable.

Version 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of this Lookup Table metadata. The
convention used is a “<major>.<minor>.<release>” num-
bering scheme. The version number is advisory only.

Date RETSDATETIME The date on which any of the content of this Lookup was
last changed. Clients MAY rely on this date for cache
management.

11-20 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA-LOOKUP_TYPE

11.4.4 Search Help

This section describes the Search Help text tables that are referenced in the Table section.
There MUST be a corresponding table entry for each Search HelpTextID referenced in the
METADATA-TABLE.

Table 11-22 Lookup Type Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Lookup Type metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.
Lookup The LookupName for the class in which this table resides.

Table 11-23 Metadata Content: Lookup Type

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that never changes so long as the semantic definition
of this entry remains unchanged. In particular, it should be
managed so as to allow the client to detect changes to the
Value.

LongValue 1*128PLAINTEXT The value of the field as it is known to the user. This is a
localizable, human-readable string. Use of this field is imple-
mentation-defined; expected uses include displays on reports
and other presentation contexts. This is the value that is
returned for a COMPACT-DECODED or STANDARD-
XML format request.

ShortValue 1*32PLAINTEXT An abbreviated field value that is also localizable and human-
readable. Use of this field is implementation-defined;
expected uses include picklist values and other human inter-
face elements.

Value 1*128PLAINTEXT The value to be sent to the server when performing a search.
[(deprecated)This field must be numeric for LookupBitmask
and LookupBitstring types. For LookupBitmask fields,
2(value-1) is used to compute this component as part of the
applicable choices. For LookupBitstring fields, this is the
position with in the field, 1-based, at which the value con-
tains a“1”.] This is the value that is returned for a COM-
PACT format request.

Version 1.7.2 11-21

COMPACT header tag: METADATA-SEARCH_HELP

11.4.5 Edit Mask

This section describes the Edit Mask table that is referenced in the Table section. There
MUST be a corresponding table entry for each Search EditMaskID referenced in the
METADATA-TABLE.

A Regular Expression is used to define the edit mask. Table 11-28 describes the structures
that make up RETS regular expressions.

COMPACT header tag: METADATA-EDITMASK

Table 11-24 Search Help Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Search Help metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-25 Metadata Content: Search Help

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that never changes so long as the semantic
definition of this entry remains unchanged.

SearchHelpID RETSNAME A unique ID for the help text. This ID is referenced as
the SearchHelpID in section 11.3.2

Value 1*1024TEXT The value to be displayed to the user.

Table 11-26 EditMask Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Edit Mask metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-27 Metadata Content: Edit Mask

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the seman-
tic definition of this field remains unchanged.

EditMaskID RETSNAME A unique ID for the Edit Mask. This ID is referenced
as the EditMaskID in section 11.3.2

Value 1*256TEXT The Regular Expression to be used.

11-22 Real Estate Transaction Specification Version 1.7.2

RETS Regular Expression Specification

RETS regular expressions are a subset of POSIX 1003.2 extended regular expressions [12],
supporting the metacharacters in Table 11-28.

The following is a simple example:
[0-9]+[a-fA-F][1-8][A]?[0-9]{2}[A-C]{1,3}

One or more digits, followed by an upper or lower case letter A - F, followed by a digit 1 –
8, optionally followed by one letter A, followed by two digits 0 – 9, followed by between
one and three of the letters A – C.

A phone number example:
[0-9]{3}-[0-9]{4}

11.4.6 Update Help

This section describes the Update Help Text tables that are referenced in the Update Type
section of the document. There MUST be a corresponding table entry for each Update
Help Text ID referenced in any of the METADATA-UPDATE_TYPEs.

Table 11-28 RETS Regular Expression Metacharacters

Metacharacter Function

. (period) Matches any single character

* Matches zero or more of the preceding pattern

+ Matches one or more of the preceding pattern

? Matches zero or one of the preceding pattern

| Alternation: used between two subpatterns, matches either the one to its left
or the one to its right.

() parentheses Grouping: causes the enclosed pattern to be treated as atomic. Parentheses
may not be nested; that is, only one level of grouping is required.

{min[,max]}
(braces)

Quantifier: matches at least min and at most max of the preceding pattern,
where min and max are both nonnegative integer values. If max is omitted,
matches exactly min of the preceding pattern.

[] brackets Character class: matches any of the characters contained in the brackets.
Except for the circumflex, described below, and the closing bracket, charac-
ters within a character class are never treated as metacharacters.

^ (circumflex) Used as the first character of a character class, reverses the sense of the charac-
ter class; for example, [^0] matches any character except a “0”.

- Operates only within brackets. Except as the first or last character, denotes a
range of characters on the default host collating sequence. For example, [0-9]
matches any digit. When - is the first or the last character, it is treated as a
member of the character class.

\ Escape: treats the following character as an ordinary character rather than a
metacharacter. For example, * matches a single asterisk. The \ character itself
must be escaped. The escape character is not needed within character classes.

Version 1.7.2 11-23

COMPACT header tag: METADATA-UPDATE_HELP

11.4.7 Validation Lookup

This section describes the Validation Lookup tables that are referenced in the Update Type
section of the document. There MUST be a corresponding Validation Lookup Table for
each one referenced in the METADATA-UPDATE_TYPEs.
COMPACT header tag: METADATA-VALIDATION_LOOKUP

Table 11-29 Update Help Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Update Help metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata segment belongs.

Table 11-30 Metadata Content: Update Help

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the seman-
tic definition of this entry remains unchanged.

UpdateHelpID RETSNAME A unique ID for the help text. This ID is referenced as
the UpdateHelpID in section 11.4.6.

Value 1*1024TEXT The value to be displayed to the user.

Table 11-31 ValidationLookup Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Table metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.

Table 11-32 Metadata Content: Validation Lookup (Sheet 1 of 2)

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the semantic
definition of this entry remains unchanged.

Validation-
LookupName

RETSNAME The unique name of this Validation Lookup. Each Name in
the Update Type ValidationLookupName field MUST have
a definition.

Parent1Field RETSNAME If a value is present, it is a SystemName field in the same
table as defined in Section 11.3.2 and indicates a depen-
dency on this field.

Parent2Field RETSNAME If a value is present it is a SystemName field in the same
table as defined in Section 11.3.2 and indicates an addi-
tional dependency on this field.

11-24 Real Estate Transaction Specification Version 1.7.2

11.4.8 Validation Lookup Type

This section describes the content of the Validation Lookup tables that are referenced in
the Table section of the document. There MUST be a corresponding Validation Lookup
Type table for each one referenced in the METADATA-UPDATE_TYPE.

The Validation Lookup Type provides a list of all the valid values for a field. This is
different than the Lookup described in Section 11.4.2. The Validation Lookup is used for
two cases: 1) the list is too long to be provided as a standard lookup (e.g. Street Name) and
2) there is a dependency on the value in another field. For example, a valid entry for a
School District might depend on the Area and SubArea that is entered.

COMPACT header name: METADATA-VALIDATION_LOOKUP_TYPE

Version 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of this Validation Lookup metadata. The con-
vention used is a “<major>.<minor>.<release>” numbering
scheme. This version number is advisory only.

Date RETSDATETIME The date on which any of the content of this Validation
Lookup metadata was last changed. Clients MAY rely on
this date for cache management.

Table 11-32 Metadata Content: Validation Lookup (Sheet 2 of 2)

Field Name Content Type Description

Table 11-33 Validation Lookup Type Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Validation Lookup metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource in which this table resides.
Validation-
Lookup

The ValidationLookupName for the METADATA-VALIDATION_LOOKUP entry to
which this entry belongs.

Table 11-34 Metadata Content: Validation Lookup Type

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the semantic
definition of the entry remains unchanged.

ValidText RETSNAME A valid value for the field.

Parent1Value RETSNAME If this field is present then the ValidText can be used if
the data in the Parent1 field is set to this value. If Parent1
is present in the PARENTFIELDS tag then this field is
required.

Parent2Value RETSNAME If this field is present then the ValidText can be used if
the data in the Parent2 field is set to this value. If Parent2
is present in the PARENTFIELDS tag then this field is
required.

Version 1.7.2 11-25

11.4.9 Validation Expression

This section describes the ValidationExpression table that is referenced in Section 11.3.4.
There MUST be a corresponding table entry for each ValidationExpressionID referenced
in the METADATA-UPDATE_TYPEs for a Resource.

The table contains expressions that are to be evaluated when a field value is entered by the
user. Expressions in the list MUST be evaluated in the order in which they appear in the
list. There are three types of validation expressions, each introduced by a reserved token
preceding the expression, given in Table 11-35:

Expressions are algebraic formulas containing keywords and operators. Expressions may
contain parentheses, and consist of keywords representing any of:

• The current value of any field in the input list
• The current value of any Well-Known Name field in the user’s agent record that is

returned in the response to the login transaction (see 4.9, “Well-Known Names”).
• Literal values.
• A special token (Table 11-18 Metadata Content – Validation Expression Special

Operand Tokens).
together with the operators in Table 11-36. Arithmetic operations MUST be carried out
using IEEE-754 arithmetic with a representation of at least 64 bits. Comparison operations
on strings MUST use simple binary collation. If an error or arithmetic exception occurs

Table 11-35 Validation Expression Types

Keyword Type Purpose

ACCEPT Boolean If the expression is true, the field value is considered accepted without
further testing. Subsequent SET expressions MUST be executed.

REJECT Boolean If the expression is true, the field value is considered rejected without
further testing. Subsequent SET expressions MUST NOT be evaluated.

SET Assignment The expression MUST begin with a field name and an equal sign (“=”).
The following expression is evaluated and the result stored in the desig-
nated field.

11-26 Real Estate Transaction Specification Version 1.7.2

during expression evaluation, field value is considered erroneous, regardless of the
expression type.

Literal values to be compared against dates or times are expressed in the ISO8601 format.

Table 11-36 Validation Expression Operators

Operator
Prece-
dence Operation

/, *, .MOD. 1 Division, multiplication, and remainder (modulo)

+,– 2 Addition and subtraction, applied as follows:
1. If both operands are numeric, the operation is algebraic.
2. If either operand is a string, it is converted to numeric and the oper-
ation is algebraic. If an error occurs during the conversion, the field
value MUST be rejected.
3. For “+”, if either operand is a date, the other must be an integer, a
string that can be converted to an integer, or a string representing an
interval in ISO8601 format. If no conversion is possible, the field value
MUST be rejected
4. For “-”, if the left operand is a date or time, the other operand must
be a date, a time, or a string representing an interval, and the result
must be a string representing an interval in ISO8601 format.

.CONTAINS. 2 A Boolean operator taking strings as its left and right operands. The
operation is TRUE if the left operand contains the right operand as a
substring anywhere within it.

<, >, <=, >=, 3 Comparison operators with their conventional meaning. If one oper-
and is numeric and the other is a string, the string MUST be converted
to a number prior to the comparison. If an error occurs during the con-
version, the field value must be rejected.

=, != 4 Comparison operators with their conventional meaning. If one oper-
and is numeric and the other is a string, the string MUST be converted
to a number prior to the comparison. If an error occurs during the con-
version, the field value must be rejected.

.AND. 5 A Boolean operator that takes two Boolean operands, and whose value
is TRUE if and only if both of its operands are TRUE.

.OR. 6 A Boolean operator that takes two Boolean operands, and whose value
is TRUE if either of its operands is TRUE.

.NOT. 7 A Boolean operator that takes a single Boolean operand and returns its
inverse.

Table 11-37 Validation Expression Special Operand Tokens (Sheet 1 of 2)

Token Value

.TODAY. The current date.

.NOW. The current time.

.ENTRY. The current field text, as a string.

.EMPTY. A value that matches an empty or all-blank field. Supplies an empty (zero-
length) field when used in a SET expression.

.OLDVALUE. The text that was in the field as returned from the host in the search opera-
tion. If the field is new, .OLDVALUE. is an empty string.

.USERID. The value of the user-id field returned in the Login transaction (Section 4.9).

Version 1.7.2 11-27

The Validation Expression metadata starts with a <METADATA-VALIDATION_EXPRESSION>
tag

COMPACT header tag: METADATA-VALIDATION_EXPRESSION

11.4.10 Validation External

This section describes the Validation External tables that are referenced in the Update
Type section of the document. There MUST be a corresponding Validation External table
for each one referenced in any of the METADATA-UPDATE_TYPEs for the Resource.

.USERCLASS. The value of the user-class field returned in the Login transaction (Section
4.9).

.USERLEVEL. The value of the user-level field returned in the Login transaction (Section
4.9).

.AGENTCODE. The value of the agent-code field returned in the Login transaction (Section
4.9).

.BROKERCODE. The value of the broker-code field returned in the Login transaction (Section
4.9).

.BROKERBRANCH. The value of the broker-branch field returned in the Login transaction (Sec-
tion 4.9).

Table 11-38 Validation Expression Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Validation Expression metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-39 Metadata Content: Validation Expression

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the semantic
definition of this entry remains unchanged.

Validation-
ExpressionID

RETSNAME A unique ID for the ValidationExpression. This ID is
referenced as the ValidationExpression in Section
11.3.4.

Validation-
ExpressionType

1*32ALPHANUM A validation expression type from Table 11-35.

Value 1*512TEXT The test expression to be evaluated.

Table 11-37 Validation Expression Special Operand Tokens (Sheet 2 of 2)

Token Value

11-28 Real Estate Transaction Specification Version 1.7.2

COMPACT header tag: METADATA-VALIDATION_EXTERNAL

11.4.11 Validation External Type

This section describes the content of the Validation External Type tables that are
referenced in the Table section of the document. There MUST be a corresponding
Validation External Type table for each one referenced in the METADATA-UPDATE_TYPEs
for the Resource.

The Validation External Type provides lists of search, display, and results fields. The
Validation External may be used for several cases: 1) The database involved is too large or
dynamic to be provided as a standard lookup (e.g. Tax). 2) There are business rules that
can only be enforced on the server (e.g. expiration dates). 3) The content of a field
populates fields from another database (e.g. Sale_agent_name, Sale_office_name,
Sale_office_id from Sale_agent_id).

Table 11-40 Validation External Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Validation External metadata. The convention used is a

"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the format
described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.

Table 11-41 Metadata Content: Validation External

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the semantic
definition of this entry remains unchanged.

ValidationEx-
ternalName

RETSNAME The unique name of this Validation External. Each Name
in the Update Type ValidationExternalName field MUST
have a definition.

SearchResource RETSNAME The ResourceID of the Resource to be searched from
11.2.2.

SearchClass RETSNAME The ClassName within the Resource to be searched
from 11.3.1.

Version 1*2DIGITS "."
1*2DIGITS "."
1*5DIGITS

The latest version of this Validation External metadata.
The convention used is a “<major>.<minor>.<release>”
numbering scheme. The version number is advisory only.

Date RETSDATETIME The date on which any of the content of this Validation
External was last changed. Clients MAY rely on this date
for cache management.

Version 1.7.2 11-29

COMPACT header tag: METADATA-VALIDATION_EXTERNAL_TYPE

Table 11-42 Validation External Type Metadata Compact Header Attributes

Attribute Content
Version This is the version of the Validation External Type metadata. The con-

vention used is a "<major>.<minor>.<release>" numbering scheme.
Every time any contained metadata element changes the version num-
ber MUST be increased.

Date The latest change date of any contained metadata. This MUST be in the
format described in chapter 2 for RETSDATETIME.

Resource The ResourceID for the resource to which this metadata table applies.
ValidationExternalName The ValidationExternalName to which this entry type applies.

Table 11-43 Metadata Content: Validation External Type

Field Name Content Type Description

MetadataEn-
tryID

RETSID A value that remains unchanged so long as the seman-
tic definition of this entry remains unchanged.

SearchField 1*512PLAINTEXT A comma separated list of valid fields using System-
Name from Section 11.3.2.

DisplayField 1*512PLAINTEXT A comma separated list of valid fields using System-
Name from Section 11.3.2.

ResultFields 1*1024PLAINTEXT A comma separated list of valid field pairs joined by =
(equal) the first is a target field in the table being
updated and the second is a source field in the table
being searched. The fields use a SystemName from
Section 11.3.2.

11-30 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 12-1

S E C T I O N

CHAPTER 0GETMETADATA TRANSACTION

The GetMetadata transaction is used to retrieve structured information known as
metadata related to the system entities. Metadata requested and returned from this
transaction are requested and returned as MIME media types.

12.1 Required Client Request Header Fields

There are no additional required client header fields.

12.2 Required Request Arguments

Type ::= <A grouping of related metadata elements (see Section 11)>

The type of metadata being requested. The Type MUST begin with METADATA and
MAY be one of the defined metadata types (see Section 11).

 ID ::= metadata-id[: metadata-id]

metadata-id ::= 1*ALPHANUM | *

Metadata is organized hierarchically. Each level specifies in its first field an identifier for
the metadata contained within that level (e.g. for the Resource level: ResourceID--Agent,
Property, etc. for the Lookup level: LookupName—Status, Area, etc.). This identifier can
be used to restrict requests to the Type metadata contained within specific instances of
higher levels. If the last metadata-id is 0 (zero), then the request is for all Type metadata
contained within that level; if the last metadata-id is “*”, then the request is for all Type
metadata contained within that level and all metadata Types contained within the
requested Type. This means that for a metadata-id of METADATA-SYSTEM, for example, the
server is expected to return all metadata.

Note: The metadata-id for METADATA-SYSTEM and METADATA-RESOURCE must be 0 or *.

12.3 Optional Request Arguments

Format = COMPACT | STANDARD-XML | STANDARD-XML:version

version ::= <RETS metadata public identifier>

12-2 Real Estate Transaction Specification Version 1.7.2

“COMPACT” means a table descriptor, field list <COLUMNS> followed by a delimited set of
the data fields. See Section 11 for more information on the COMPACT formats.
“STANDARD-XML” means an XML presentation of the data in the format defined by the
RETS Metadata XML DTD. Servers MUST support all formats. If the format is not
specified, the STANDARD-XML presentation will be returned.

When the client requests the STANDARD-XML representation, it MAY also specify the
public identifier of the DTD that it expects. The server MUST support the current version
and SHOULD support the prior version.

12.4 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.3 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. This field MUST be set to the type of media
returned.

Content-Type ::= Content-Type : type / subtype

Example: Content-Type: text/xml

12.5 Required Response Arguments

There are no required response arguments.

12.6 Optional Response Arguments

There are no optional response arguments.

12.7 Metadata Response Body Format

The body of the metadata response has the following format when replying to a request
with the format set to “COMPACT”:

<RETS 1*SP ReplyCode=quoted-reply-code 1*SP
ReplyText=quoted-string *SP > CRLF

[*metadata-segment]
[rets-status-tag]
</RETS> CRLF

metadata-segment::= <A metadata segment as defined in Section 11.>

The body of the metadata response has the following format when replying to a format
request of "STANDARD-XML" data:

<?xml version="1.0" ?>
[doctype]
<RETS 1*SP ReplyCode=quoted-reply-code 1*SP

ReplyText=quoted-string *SP >
[*XML-metadata-segment]
[rets-status-tag]
</RETS> CRLF

Version 1.7.2 12-3

doctype ::= <!DOCTYPE RETS PUBLIC "-//RETS//DTD Metadata

Content 1.7.2//EN">

XML-metadata-segment::=A metadata segment as defined by the RETS Metadata XML
DTD.

NOTE

12.8 Reply Codes

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires GetMetadata
responses to be valid XML. In addition, RETS requires that clients parse server responses as XML, not as
simple text streams. The response formats shown here are normative with respect to content, but not
normative with respect to form. That is, servers are free to produce response XML in any format that
complies with the W3C XML 1.0 recommendation, so long as it is valid with respect to the appropriate DTD.
XML escaping of content is implied, as is XML processing of whitespace and line endings. See the W3C XML
Recommendation 1.0, Third Edition, for full information on XML.

Table 12-1 GetMetadata Reply Codes (Sheet 1 of 2)

Reply Code Meaning

20500 Invalid Resource
The request could not be understood due to an unknown resource.

20501 Invalid Type
The request could not be understood due to an unknown metadata type.

20502 Invalid Identifier
The identifier is not known inside the specified resource.

20503 No Metadata Found
No matching metadata of the type requested was found.

20506 Unsupported MIMEType
The server cannot return the metadata in any of the requested MIME types.

20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which
the supplied login does not grant access (e.g. Update Type data).

20508 Resource Unavailable
The requested resource is currently unavailable.

20509 Metadata Unavailable
The requested metadata is currently unavailable.

20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.

20511 Timeout
The request timed out while executing.

20512 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.

12-4 Real Estate Transaction Specification Version 1.7.2

20513 Miscellaneous error
The server encountered an internal error.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using a
DTD version that the server cannot provide.

Table 12-1 GetMetadata Reply Codes (Sheet 2 of 2)

Reply Code Meaning

Version 1.7.2 13-1

S E C T I O N

CHAPTER 0COMPACT DATA FORMAT

Clients may choose to access data from a server in a compact data format that does not use
full XML representation. When a client requests information from a compliant server in
“COMPACT” or “COMPACT-DECODED” format, it will typically need to interpret the
result by using the metadata that the server makes available.

13.1 Overall format

Compact format records are sequences of fields separated by delimiter. A tab character (an
octet with a value of 09) is the default delimiter unless another is specified as part of the
transaction. The delimiter MUST be some character other than the comma “,” character.
This character is reserved for separating values in any field with an interpretation of
LookupMulti where more than one value may be applied to that field. The sequence of
fields MUST be described by a <COLUMNS> tag in the body of the message that carries the
compressed records. No field described in the <COLUMNS> tag may be omitted from the
<DATA>; if the value of a particular field for some record is undefined or is suppressed for
authorization reasons, the value MUST be represented by two delimiters with no
intervening space. No field omitted in the COLUMNS tag may be added in any DATA tag. The
number of fields in the <COLUMNS> tag MUST match the number of fields in the <DATA>
tags.

Each compact records is enclosed within a <DATA> start tag and a </DATA> end tag.

Fields with an interpretation of Lookup, LookupMulti, LookupBitstring or
LookupBitMask contains the LookupType Value from Table 11-20 when the format is
COMPACT and the LookupType LongValue from Table 11-20 when the format is
COMPACT-DECODED.

13.2 Decoded Format

COMPACT-DECODED format requires sending field data in an expanded form. For
example, if a field representing data for City is given the interpretation of Lookup in the
Metadata, there will be a corresponding LookupType table that contains at least two
values, Value and LongValue. It may also contain a ShortValue, but that is not relevant to
the example. For this example, the Value is 101 and the LongValue is Anytown. In the

13-2 Real Estate Transaction Specification Version 1.7.2

COMPACT format, the returned data for this field is 101. This is referred to as the coded
value. In the COMPACT-DECODED format case, the returned data for this field is
Anytown. This is referred to as the decoded value. A server MUST perform the expansion
from the Value to the LongValue for fields with an interpretation of Lookup,
LookupMulti, LookupBitString or LookupBitMask.

13.3 Multivalued Fields

If the field is multivalued, values MUST be separated by commas and an optional space
between each value. The final value does not have the comma or space before the field
delimiter.

13.4 Transmission standards

A client or server transmitting a compact record MUST encode the data according to
Table 13-1.

Table 13-1 Compact Data Field Format Representation

Type Encoding Format

Numeric An optional negative sign, followed by zero or more digits, followed by an
optional period, followed optionally by zero or more digits. The interpreta-
tion determines if an optional character may be included. A valid number
MUST contain at least one digit if it includes a decimal point or sign. The
value may contain leading zeros before the decimal point. The value may con-
tain trailing zeros after the decimal point and fraction, if any. Data types Tiny,
Small, Int and Long (Table 11-12) may be signed but may not have a decimal
point or fraction. Values with the interpretation LookupBitmask must not be
signed, nor may they have nonzero digits after the decimal point.

Character The plain character sequence, except for LookupMulti, which contains multi-
ple sequences of characters separated by commas. Values with the interpreta-
tion LookupBitstring must contain only the characters “0” and “1”.

Date A date in full-date RETSDATE format.

Time A date in RETSTIME format.

Date-Time A date in RETSDATETIME format.

MultiSelect A string consisting of one or more substrings, comma-delimited, each of
which corresponds to an entry in the field’s associated MetadataLookup table.

Boolean A single character, either 1 for true or 0 for false.

Version 1.7.2 14-1

S E C T I O N

CHAPTER 0SESSION PROTOCOL

A RETS session follows a well-defined timing sequence in becoming established and in
terminating. In particular, the authorization sequence MUST be followed in order to begin
using other transactions within the protocol. The protocol contains four phases:
connection establishment, authorization, session and termination.

14.1 Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any
mutually agreed TCP port, with the default being 6103 for unencrypted connections, and
port 12109 for SSL-encrypted connections. When the TCP connection has entered the
Established state, the session proceeds to the start of the Authorization phase.

14.2 Authorization

Authorization begins when the client sends the server a Login transaction. The Login
transaction contains the basic information that the server requires in order to start an
authorization decision: the user ID and optionally, some information about the client
software.

A server responds to the Login request by sending back a “401 Unauthorized” status code
and a WWW-Authenticate header. This is part of an authentication challenge to the client.
Part of the WWW-Authenticate header may contain a checksum (nonce) of a
concatenation of the following:

1 The client-IP.
2 The server-supplied timestamp.
3 The server’s private-key.
Server implementers should note that because of intervening proxy servers, the client IP
address may change from connection to connection.

The client concatenates the nonce to the checksum of the Request-URI; then performs an
MD5 digest using a concatenation of the username, realm and password as the secret. This
result is then returned to the server as part of an Authorization header. The server MUST

14-2 Real Estate Transaction Specification Version 1.7.2

then compute the equivalent function using its own stored copy of the user’s password. If
the two match and the nonce is the same, the user is considered authenticated, and the
login can proceed with the server informing the client of the available capabilities. The
login has been accomplished without actually sending the password. A server MAY
provide an anonymous login. A client wishing an anonymous login sends an empty
Authentication field in its Login transaction, after which the authorization proceeds as
before.

14.3 Session

Once the Authorization phase has been completed, both endpoints enter the Session
phase. During the Session phase, clients may issue any combination of requests for which
they are authorized. The first of these MUST be to issue a GET requests for the “Action”
URL, if any, included in the Login response (Section 4.10). After this, clients may issue
other transactions.

Clients MAY issue multiple transactions without waiting for responses. However, servers
are not required to process these requests in parallel, nor are servers required to complete
the requests in the order in which they were issued. If a client issues a request before
receiving a response to some earlier request, the client MUST be prepared to receive the
responses in any order. The only way for a client to guarantee sequential execution of
requests on every server is to wait for a response to any outstanding request before issuing
a new request.

14.4 Termination

A client SHOULD initiate termination of the session by sending a Logoff transaction. If a
server receives a Logoff transaction while other operations are pending, it SHOULD abort
those pending operations. However, a server MUST NOT rely on receiving a Logoff
transaction in order to terminate a session, due to the possibility of communications
problems preventing the transmission of the Logoff transaction by the client.

Servers SHOULD provide a timeout mechanism, and if they do, MUST inform the client
of the timeout interval during the Login transaction (Section 4.7).

Version 1.7.2 15-1

S E C T I O N

CHAPTER 0[DEPRECATED] SERVERINFORMATION
TRANSACTION

The ServerInformation transaction allows retrieving global information about a server, or
dynamic information about resources offered by a server.[deprecated]

15.1 Required Request Arguments

There are no required request arguments. A ServerInformation transaction with no
request arguments requests global information.

15.2 Optional Request Arguments

Resource The name of the resource for which dynamic information is
requested. This is interpreted as a SystemName unless the
StandardNames argument is present and nonzero.

Class The name of the class within the resource for which dynamic
information is requested. This is interpreted as a SystemName
unless the StandardNames argument is present and nonzero.

StandardNames A numeric value which, if zero, indicates that Resource and Class
are both SystemName values, and which, if equal to 1, indicates
that the Resource and Class names are both StandardName
values.

15.3 Response Format

The response to the ServerInformation transaction is a well-formed XML document:
<RETS ReplyCode="replycode" ReplyText="replytext">
<ServerInformation>
 <Parameter name="parametername" [resource="resourceID"
[class="classID"]]>
 value
 </Parameter>

15-2 Real Estate Transaction Specification Version 1.7.2

</ServerInformation>
</RETS>

NOTE

The server MUST supply the information that applies to the Class level even if the
information is global to the system. That is, the client is not required to infer information
from the class hierarchy.

The well-known names for parameters are given in Table 15-1.

15.4 Well-known names

Table 15-1 lists the well-known names for parameters defined in this specification. Servers
may extend this list, but MUST precede their parameter names with the string “X-”.

RETS 1.7.2 requires all server responses to be well-formed XML, and additionally requires
ServerInformation transaction responses to be valid XML. In addition, RETS requires that clients parse
server responses as XML, not as simple text streams. The response formats shown here are normative with
respect to content, but not normative with respect to form. That is, servers are free to produce response
XML in any format that complies with the W3C XML 1.0 recommendation, so long as it is valid with
respect to the appropriate DTD. XML escaping of content is implied. See the W3C XML Recommendation
1.0, Third Edition, for full information on XML.

Table 15-1Well-Known Parameter Names

Parameter Level Type Description

CurrentTimeStamp System DateTime The current system date and time, including the server
time zone, in ISO 8601 format.

LastTimeStamp ResourceClass DateTime The most recent modification timestamp of any record in
the given resource and class, in ISO 8601 format.

MinimumLimit ResourceClass Numeric/
String

The minimum Limit value for any search in this class.
the value NONE may be returned if there is no minimum
limit.

KeyLimit[depre-
cated]

ResourceClass Numeric/
String

The minimum Limit for any search in this class that
includes a Key optional parameter. the value NONE may
be returned if there is no minimum limit.[deprecated]

ReplicationSup-
port[deprecated]

Resource/Class Character An indication of the level of replication support available
for the given resource/class:
N indicates that replication is not supported for this
resource/class.
Y indicates that replication is supported, that the server
supports the optional Key search argument, and that all
fields are marked as to their controlling timestamp or for-
eign key. A blank query may be used to retrieve all
records that the user is permitted to access.
K indicates that replications is supported, and that the
server supports the optional Key search argument. A
query MUST contain one or more of the fields marked in
the metadata with the KeyQuery flag.[deprecated]

Version 1.7.2 15-3

15.5 Reply Codes

Table 15-2ServerInformation Reply Codes

Reply Code Meaning
0 Operation successful.
20601 Not supported.

The transaction is not supported for the given resource and class.
20602 Miscellaneous error.

The transaction could not be completed. The ReplyText gives additional infor-
mation.

15-4 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 16-1

S E C T I O N

CHAPTER 0ACKNOWLEDGMENTS

The creation of this specification would not have been possible without the sponsorship
and coordination of efforts provided by the National Association of REALTORS®.

This document has benefited greatly from the comments of all those participating in the
National Association of REALTORS®-Standards Work Group.

In addition to the authors, valuable discussion instrumental in creating this document has
come from:

Richard Mendenhall
National Association of REALTORS®

Dale Stinton
National Association of REALTORS®

Mark Lesswing
National Association of REALTORS®

Larry Colson
Moore Data Management Services

Tom Curtis
Metro MLS

Kevin Knoepp
GTE Enterprise Solutions

Tom McLean
Resolution Software Consulting, Inc.

Tony Salvati
Grant Thornton

Errol Samuelson
RealSelect, Inc.

Allan Shapiro
Wantao Zhou
Interealty Corporation

16-2 Real Estate Transaction Specification Version 1.7.2

Stuart Schuessler
Libor Viktorin
Mathew McGuire
Steve Clarke
MarketLinx Corporation

Michael DelGaudio
MRIS, Inc.

Maggie Diaz
Brita Brodin
Laure Chipman
WyldFyre, Inc.

Joshua Vosper
Rapattoni Corporation

Laila Sharshar
NewportWorks, Inc.

Eric Schlosser
Hewlett-Packard Company

Frank Tadman
MLSListings Inc.

Sergio Del Rio
Templates for Business Inc.

Jaison Freed
FBS Data Systems, Inc.

Ryan Bonham
Transparent Technologies Inc.

Gina Accawi

Falcon Technologies Corp.

Version 1.7.2 17-1

S E C T I O N

CHAPTER 0AUTHORS

Leo Bijnagte
Vista Information Systems
100 Washington Square, Suite 1000
Minneapolis, MN 55401

Dan Musso
WyldFyre Technologies, Inc.
900 East Hamilton Ave.
Suite 500
Campbell, CA 95008

Bruce Toback
OPT, Inc.
11801 N. Tatum Blvd.
Suite 142
Phoenix, AZ 85028

Paul Stusiak
Falcon Technologies Corporation.
635 Ivy Ave..
Coquitlam, BC V3J 2H8

Email: pstusiak@falcontechnologies.com

17-2 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 18-1

S E C T I O N

CHAPTER 0REFERENCES

[1] Braden, R., “Requirements for Internet Hosts — Communication Layers” STD 3,
RFC 1123, IETF 1989.

[2] Fielding, R., “Hypertext Transfer Protocol — Version 1.1”, RFC 2616, January
1997

[3] Rivest, R., “The MD5 Message Authentication Algorithm”, RFC 1321, April 1992

[4] Crocker, D., “Standard for ARPA Internet Text Messages”, RFC 2822, IETF 2001

[5] US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information
Interchange. Standard ANSI X3.4-1986, ANSI, 1986.

[6] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L.
Stewart, “An Extension to HTTP: Digest Access Authentication”, RFC 2617,
January 1997.

[7] International Organization for Standards, “Data Elements and Interchange
Formats - Information Interchange - Representation of Dates and Times”, ISO
8601, June 1988.

[8] Borenstein, N., Freed, F., “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies”, RFC 2045, November 1996.

[9] American National Standard for Data Encryption Algorithm (DEA). Standard
ANSI X3.92, ANSI, 1981.

[10] Data Encryption Standard, FIPS46-2, December 30, 1993.

[11] DES Modes of Operation, FIPS81, December 2, 1980

[12] IEEE/ANSI Std. 1003.2-1992, Information Technology – Portable Operating
System Interface (POSIX®) Part 2

[13] Berners-Lee et al., “Uniform Resource Identifiers (URI): Generic Syntax”,
RFC 2396, IETF 1998

[14] Kaliski, “PKCS #7: Cryptographic Message Syntax Version 1.5”, RFC 2315, IETF
1998

18-2 Real Estate Transaction Specification Version 1.7.2

[15] Kristol, D. and Montulli, L., “HTTP State Management Mechanism”, RFC 2109,
IETF 1997

[16] W3C, “HTML 4.01 Specification”, W3C Recommendation 24 December 1999
(http://www.w3.org/TR/html401/)

[17] W3C, “Extensible Markup Language (XML) 1.0 (Third Edition)”, W3C
Recommendation 4 February 2004 (http://www.w3.org/TR/2004/REC-xml-
20040204/)

[18] Rescorla, E., “HTTP Over TLS”, RFC 2818, May 2000

[19] International Standards Organization, “ISO 8601:2004(E) Date elements and
interchange formats - Information interchange - Representations of dates and
times”

[20] W3C, “Date and Time Formats”, W3C Note 15 September 1997 [online] (http://
www.w3.org/TR/NOTE-datetime)

[21] Klyne, G. and Newman, C., “Date and Time on the Internet: Timestamps”,
RFC 3339, IETF 2002

[22] Crocker, D. and Overell, P., “Augmented BNF for Syntax Specification: ABNF”,
RFC 2234, IETF 1997

Version 1.7.2 A-1

A P P E N D I X

APPENDIXDTD REFERENCES

Table A-1 DTD References

Real Estate Transaction Standard Data Content DTD
Description The document returned by a search specifying STANDARD-XML format.

This DTD describes the document only, not the entire response. It may be
used when transmitting listing or membership data through a channel other
than a RETS server (for example, FTP).

Public Identifier -//RETS//DTD RETS Data Content 1.7.2//EN

System Identifier http://www.rets.org/dtd/2008/08/REData-20080829.dtd

Real Estate Transaction Standard STANDARD-XML Search Response DTD
Description The response returned by a search specifying STANDARD-XML format. This

DTD simply encapsulates the REData DTD (above) in a standard RETS
response element.

Public Identifier -//RETS//DTD RETS XML Search Response 1.7.2//EN

System Identifier http://www.rets.org/dtd/2008/08/RETS-20080829.dtd

Real Estate Transaction Standard COMPACT Search Response DTD
Description The response returned by a search specifying COMPACT or COMPACT-

DECODED format.
Public Identifier -//RETS//DTD RETS COMPACT Search Response 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-compact-search-1_7_2.dtd

RETS Metadata Content DTD
Description This DTD describes the STANDARD-XML metadata format. It may be used

when transmitting metadata through a channel other than a RETS server.
Public Identifier -//RETS//DTD Metadata Content 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-metadata-content-1_7_2.dtd

RETS Metadata STANDARD-XML GetMetadata Response DTD
Description The document returned by a GetMetadata transaction specifying a format of

STANDARD-XML. This encapsulates the RETS Metadata Content DTD in a
standard RETS response element.

Public Identifier -//RETS//DTD Metadata 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-metadata-1_7_2.dtd

A-2 Real Estate Transaction Specification Version 1.7.2

Note Certain System Identifier values have been split across multiple lines to prevent
hypenation characters being added to the document that are not part of the identifier.
Each System Identifier is a well-formed URI.

RETS Metadata COMPACT GetMetadata Response DTD
Description The document returned by a GetMetadata transaction specifying a format of

COMPACT.
Public Identifier -//RETS//DTD Compact Metadata 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-compact-metadata-1_7_2.dtd

RETS Login Response DTD
Description The document returned by a Login transaction.
Public Identifier -//RETS//DTD Login Response 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-login-1_7_2.dtd

RETS Update Response DTD
Description The document returned by an Update transaction.
Public Identifier -//RETS//DTD Update 1.7.2//EN

System Identifier http://www.rets.org

/dtd/2008/08/rets-update-1_7_2.dtd

Table A-1 DTD References

Version 1.7.2 B-1

A P P E N D I X

APPENDIXSAMPLE COMPACT METADATA RESPONSES

This appendix contains examples for COMPACT metadata responses. It is NON-
NORMATIVE: these examples illustrate one way of formatting COMPACT metadata, and
one set of values. Section 11 describes the content and formatting rules in detail.

B.1 System
<METADATA-SYSTEM Version="1.00.000" Date="2002-03-20T12:03:38Z">
<SYSTEM SystemID= "NTREIS" SystemDescription= "North Texas Real Estate
Information System" />
<COMMENTS>
This is a comment line
</COMMENTS>
</METADATA-SYSTEM>

B.2 Resource
<METADATA-RESOURCE Version="1.00.000"

Date="2002-03-20T12:03:38Z" >
<COLUMNS>→ResourceID→StandardName→VisibleName→Description→

ClassCount→KeyField→ClassVersion→ClassDate→ObjectVersion→
ObjectDate→SearchHelpVersion→SearchHelpDate→EditMaskVersion→
EditMaskDate →LookupVersion→LookupDate→UpdateHelpVersion→
UpdateHelpDate →ValidationExpressionVersion→
ValidationExpressionDate→ValidationLookupVersion →
ValidationLookupDate→ValidationExternalVersion→
ValidationExternalDate→</COLUMNS>

<DATA>→Agent→Agent→ Agent→Agent Table→1→ Agentid→1.00.000→
2002-03-20T12:03:38Z→→→→→→→→→→→→→→→→→</DATA>

<DATA>→Property→Property→Property→Property Tables→5→
LN→1.00.000→2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→</DATA>

<DATA>→Tax→Tax→Tax→Multimedia objects→2→0→ PID→1.00.000→

B-2 Real Estate Transaction Specification Version 1.7.2

2002-03-20T12:03:38Z→→→→→→→→→→→→→→→→→</DATA>
</METADATA-RESOURCE>

B.3 Foreign Keys
<METADATA-FOREIGNKEYS Version="1.00.000000"

Date="2002-01-23T12:37:38Z">
<COLUMNS>PARENT_RESOURCE_ID→PARENT_CLASS_ID→PARENT_SYSTEMNAME→
CHILD_RESOURCE_ID→CHILD_CLASS_ID→CHILD_SYSTEMNAME→</COLUMNS>
<DATA>→Property→RES→MLSNUM→TAX→TAX→MLSNUM→</DATA>
<DATA>→Property→RES→MLSNUM→History→History→MLSNUM→</DATA>
<DATA>→Property→RES→MLSNUM→OpenHouse→OpenHouse→MLSNUM→</DATA>
<DATA>→Property→RES→ListingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→COListingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→SellingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→COSellingAgentIDvAgent→Agent→AgentID→</DATA>
<DATA>→Property→RES→ListingOfficeID→Office→Office→OfficeID→</DATA>
<DATA>→Property→RES→SellingOfficeID→Office→Office→OfficeID→</DATA>
</METADATA-FOREIGNKEYS>

B.4 Class

GetMetadata request:
Type: METADATA-CLASS
ID: 0

Compact reply:
<METADATA-CLASS Resource="Property" Version="1.00.000"

Date="2002-03-20T12:03:38Z">
<COLUMNS>→ClassName→VisibleName→StandardName→Description→

TableVersion→TableDate→UpdateVersion →UpdateDate →</COLUMNS>
<DATA>→RES→Single Family→Residential→

Single Family Residential→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→</DATA>

<DATA>→CON→Condos→CommonInterest→Condos→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→</DATA>

<DATA>→MUL→Multi Family→MultiFamily→
Multi Family Residential→1.00.000→
2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→</DATA>

<DATA>→MOB→Mobile Home→ResidentialProperty→
Mobile Homes→1.00.000→2002-03-20T12:03:38Z→
1.00.000→2002-03-20T12:03:38Z→</DATA>

<DATA>→LND→Lots and Land→Lots and Land→Lots and Land→
1.00.000→2002-03-20T12:03:38Z→1.00.000→
2002-03-20T12:03:38Z→</DATA>

</METADATA-CLASS>
<METADATA-CLASS Resource="Agent" Version="1.00.000"

Date="2002-03-20T12:03:38Z" />
<COLUMNS>→ClassName→VisibleName→StandardName→Description→

TableVersion→TableDate→UpdateVersion →UpdateDate →</COLUMNS>
<DATA>→Agent→Agent→Agent→All Agents→1.00.000→

2002-03-20T12:03:38Z→→→</DATA>
</METADATA-CLASS>

Version 1.7.2 B-3

B.5 Table

GetMetadata request:
Type: METADATA-TABLE
ID: Property: RES

Compact reply:
<METADATA-TABLE Resource="Property" Class="RES" Version="1.00.000"

Date= "2002-03-20T12:03:38Z" >
<COLUMNS>→SystemName→StandardName→LongName→DBName→ShortName→

Maximumlength→DataType→Precision→Searchable→Interpretation→
Alignment→UseSeparator→EditMaskID→LookupName→MaxSelect→Units→
Index→Minimum→Maximum→Default→Required→SearchHelpID→
MetadataEntryID→ModTimeStamp→ForeignKey→ForeignField→KeyQuery→
KeySelect→</COLUMNS>

<DATA>→LN→ListID→Listing ID→LN→ListID→8→Int→0→1→
Number→Left→0→→→→→1→→→1→→→→→→→→→</DATA>

<DATA>→PTYP→PropType→Property Type→PT→Prop Type→
2→Int→0→1→Number→Left→0→→→→→→→→→→→→1→→→→→</DATA>

<DATA>→LP→ListPrice→List Price→LP→Lst Pr→8→Int→0→1→
Currency→Right→1→→→→→14→→→2→→→→→1→→→→→</DATA>

<DATA>→OWN→Owner→Owner Name→OWN→Own Name→20→Character→
0→0→→Left→0→→→→→→→→→→→</DATA>

<DATA>→VEW→View→View→VEW→View→10→Long→0→1→LookupBitmask→Left→
0→→VEW→1→→→→→→→→→1→→→→→</DATA>

<DATA>→EF→ExtFeat→Features→EF→Ext Feat→10→Character→0→1→
LookupMulti→Left→0→→EFT→2→→→→→→→→→→1→→→→→</DATA>

<DATA>→SD→SchDist→School District→SD→SchDist→10→Character→
0→1→Lookup→Left→0→→SD→→→→→→→→→→→1→→→→→</DATA>

<DATA>→AR→MLSArea→MLS Area→AR→Area→4→Int→0→1→Lookup→Left→
0→→AR→→→30→→→3→1→→→→1→→→→→</DATA>

</METADATA-TABLE>

B.6 Update

GetMetadata request:
Type:METADATA-UPDATE
ID: Property: RES

Compact reply:
<METADATA-UPDATE Resource="Property" Class="RES" Version="1.00.000"

Date= "2002-03-20T12:03:38Z" >
<COLUMNS> →UpdateName→Description→KeyField→Version→Date→

MetadataEntryID→</COLUMNS>
<DATA>→Add→Add a new Residential Listing→→1.00.000→

2002-03-20T12:03:38Z→→</DATA>
<DATA>→Change→Change a Residential Listing→ListNumber→1.00.000→

2002-03-20T12:03:38Z→→</DATA>
<DATA>→BOM→Put a Residential Listing Back on Market →ListNumber→

1.00.000→2002-03-20T12:03:38Z→→</DATA>
</METADATA-UPDATE>

B.7 Update Type

GetMetadata request:

B-4 Real Estate Transaction Specification Version 1.7.2

Type: METADATA-UPDATE_TYPE
ID: Property: RES: Add

Compact reply:
<METADATA-UPDATE_TYPE Resource="Property" Class="RES" Update="Add"

Version="1.00.000" Date="2002-03-20T12:03:38Z" >
<COLUMNS>→SystemName→Sequence→Attributes→Default→

ValidationExpressionID→UpdateHelpID→ValidationLookupName→
ValidationExternalName→MetadataEntryID→MaxUpdate→</COLUMNS>

<DATA>→STNUM→1→2→→→StNumHelp→→→→→</DATA>
<DATA>→STNAME→2→2→→→→StreetName→→→→</DATA>
<DATA>→LD→3→2→→ListDate→DateHelp→→→→→</DATA>
<DATA>→LISTOFF→4→2,3→→→→→→</DATA>
</METADATA-UPDATE_TYPE>

B.8 Object

GetMetadata request:
Class:METADATA-OBJECT
ID:0

Compact reply:
<METADATA-OBJECT Resource="Property" Version="1.00.000"

Date="2002-03-20T12:03:38Z" >
<COLUMNS>→ObjectType→StandardName→VisibleName→Description→

MetadataEntryID→MIMEType→ObjectTimeStamp→ObjectCount→</COLUMNS>
<DATA>→Photo→image→Full Photos→High Resolution Property Photos→

1→image/jpeg→PhotoTimestap→PhotoCount→</DATA>
<DATA>→Thumbnail→image→Small Photos→Low Resolution Property Photos→

1→image/jpeg→PhotoTimestap→PhotoCount→</DATA>
</METADATA-OBJECT>

B.9 Lookup

GetMetadata request:
Type: METADATA-LOOKUP
ID: 0

Compact reply:
<METADATA-LOOKUP Resource="Property" Version="1.00.000"

Date="2002-03-20T12:03:38Z" >
<COLUMNS>→LookupName→VisibleName→Version→Date→MetadataEntryID→</COLUMNS>
<DATA>→1→Status→1.00.000→2002-03-20T12:03:38Z→</DATA>
<DATA>→2→Phone Type→1.00.000→2002-03-20T12:03:38Z→</DATA>
</METADATA-LOOKUP>
<METADATA-LOOKUP Resource="Agent" Version="1.00.000"

Date="2002-03-20T12:03:38Z">
<COLUMNS>→LookupName→VisibleName→Version→Date→MetadataEntryID→</COLUMNS>
<DATA>→1→Status→1.00.000→2002-03-20T12:03:38Z→→</DATA>
</METADATA-LOOKUP>

B.10 Lookup Type

GetMetadata request:

Version 1.7.2 B-5

Type: METADATA-LOOKUP_TYPE
ID: *

Compact reply:
<METADATA-LOOKUP_TYPE Resource="Property" Lookup="AR" Version="1.00.000"

Date="2002-03-20T12:03:38Z">
><COLUMNS>→LongValue→ShortValue→Value→MetadataEntryID→</COLUMNS>
<DATA>→Capitol Hill→Cap Hill→1→</DATA>
<DATA>→Juanita Hill→Juanita→2→→</DATA>
<DATA>→Maple Valley→Mpl Valley→3→→</DATA>
<DATA>→Downtown Redmond→Dntn Rdmd<4>→→</DATA>
</METADATA-LOOKUP_TYPE>
<METADATA-LOOKUP_TYPE Resource="Agent" Lookup="STAT" Version="1.00.000"

Date= "2002-03-20T12:03:38Z">
<COLUMNS>→LongValue→ShortValue→Value→MetadataEntryID→</COLUMNS>
<DATA>→Active →ACT→1→→</DATA>
<DATA>→Suspended→SUS→2→→</DATA>
<DATA>→Inactvie→INA→3→→</DATA>
</METADATA-LOOKUP_TYPE>

B.11 Search Help

GetMetadata request:
Type: METADATA-SEARCH_HELP
ID: Property

Compact reply:
<METADATA-SEARCH_HELP Resource="Property" Version="1.00.000"

Date="2002-03-20T12:03:38Z" >
<COLUMNS>→SearchHelpID→Value→MetadataEntryID→</COLUMNS>
<DATA>→1→Enter the number in the following format dxd→→</DATA>
<DATA>→2→Enter the number in the following format d.dd→→</DATA>
</METADATA-SEARCH_HELP>

B.12 Edit Mask

GetMetadata request:
Type: METADATA-EDITMASK
ID: Property

Compact reply:
<METADATA-EDITMASK Resource="Property" Version="1.00.000" Date= "2002-03-
20T12:03:38Z">
<COLUMNS>→EditMaskID→Value→MetadataEntryID→</COLUMNS>
<DATA>→1→[0-9]{1,2}[x][0-9]{1,2} →</DATA>
<DATA>→2→[0-9]{3}-[0-9]{2}-[0-9}{4} →</DATA>
</METADATA-EDITMASK>

B.13 Update Help

GetMetadata request:
Type: UPDATE_HELP
ID: Property

Compact reply:

B-6 Real Estate Transaction Specification Version 1.7.2

<METADATA-UPDATE_HELP Resource="Property" Version="1.00.000"
Date="2002-03-20T12:03:38Z" >

<COLUMNS>→UpdateHelpID→Value→MetadataEntryID→</COLUMNS>
<DATA>→1→Enter the number in the following format dxd→→</DATA>
<DATA>→2→Enter the number in the following format d.dd→→</DATA>
</METADATA-UPDATE_HELP>

B.14 Validation Lookup

GetMetadata request:
Type: METADATA-VALIDATION_LOOKUP
ID: Property

Compact reply:
<METADATA-VALIDATION_LOOKUP Resource="Property" Version="1.00.000"

Date= "2002-03-20T12:03:38Z" >
<COLUMNS>→ValidationLookupName→Parent1Field→ Parent2Field→

Version→Date→MetadataEntryID→</COLUMNS>
<DATA>→School→Area→Subarea→1.00.000→2002-03-20T12:03:38Z→→

</DATA>
<DATA>→ZipCode→Area→→1.00.000→2002-03-20T12:03:38Z→→</DATA>
<DATA>→City→→→1.00.000→2002-03-20T12:03:38Z →→</DATA>
</METADATA-VALIDATION_LOOKUP>

B.15 Validation Lookup Type

GetMetadata request:
Type: METADATA-VALIDATION_LOOKUP_TYPE
ID: Property: School

Compact reply:
<METADATA-VALIDATION_LOOKUP_TYPE Resource="Property"

ValidationLookup="School" Version="1.00.000"
Date="2002-03-20T12:03:38Z" >

<COLUMNS>→ValidText→Parent1Value→ Parent2Value→MetadataEntryID→</COLUMNS>
<DATA>→133→AREA1→SUBAREA1→→</DATA>
<DATA>→134→AREA1→SUBAREA2→→</DATA>
<DATA>→135→AREA2→→→</DATA>
</METADATA-VALIDATION_LOOKUP_TYPE>

B.16 Validation Expression

GetMetadata request:
Type: METADATA-VALIDATION_EXPRESSION
ID: Property

Compact reply:
<METADATA-VALIDATION_EXPRESSION Resource="Property" Version="1.00.000"

Date= "2002-03-20T12:03:38Z" >
<COLUMNS>→ValidationExpressionID→ValidationExpressionType→Value→

MetadataEntryID→</COLUMNS>
<DATA>→Office1→ACCEPT>→

 LAG=.AGENTCODE. .OR. (LO=.BROKERCODE. .AND. .ENTRY.=OFFICE)→→</DATA>
<DATA>→Agent1→ACCEPT→(LAG=.AGENTCODE.) .OR. (SAG=.AGENTCODE.)→→</DATA>

Version 1.7.2 B-7

<DATA>→ListDate→ACCEPT→ LD>.TODAY. - 3 .AND. LD<.TODAY. + 3→→</DATA>
</METADATA-VALIDATION_EXPRESSION>

B.17 Validation External

GetMetadata request:
Type: METADATA-VALIDATION_EXTERNAL
ID: Property

Compact reply:
<METADATA-VALIDATION_EXTERNAL Resource="Property" Version="1.00.000"

Date= "2002-03-20T12:03:38Z" >
<COLUMNS>→ValidationExternalName→SearchResource→SearchClass→Version→Date→

MetadataEntryID→</COLUMNS>
<DATA>→1→Office→ Office→1.00.000→2002-03-20T12:03:38Z→</DATA>
<DATA>→2→Tax→HENN→1.00.000→2002-03-20T12:03:38Z→→</DATA>
</METADATA-VALIDATION_EXTERNAL>

B.18 Validation External Type

GetMetadata request:
Type: METADATA-VALIDATION_EXTERNAL_TYPE
ID: Property: VET1

Compact reply:
<METADATA-VALIDATION_EXTERNAL_TYPE Resource="Property"

ValidationExternal="VET1" Version="1.00.000"
Date="2002-03-20T12:03:38Z" >

<COLUMNS>→SearchField→DisplayField→ResultsFields→MetadataEntryID→
</COLUMNS>

<DATA>→AgentID, AgentCode→AgentName, OfficeName→SaleAgentID=AgentID,
SaleAgentName=AgentName, SaleOfficeID=OfficeID,
SaleOfficeName=OfficeName→→</DATA>

</METADATA-VALIDATION_EXTERNAL_TYPE>

B-8 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 C-1

A P P E N D I X

APPENDIXSUMMARY OF RETS REPLY CODES

Table C-1 Consolidated list of RETS reply codes (Sheet 1 of 4)

Reply Code Meaning
0 Operation successful
10000 System error

The server has detected an error with the request that prevents it from
identifying the type of request, or that prevents the server from routing the
request for processing. This return code MUST NOT be used when a more
specific return code can be determined.

20003 Zero Balance
The user has zero balance left in their account.

20004 thru 20011 RESERVED
20012 Broker Code Required

The user belongs to multiple broker codes and one must be supplied as part of
the login. The broker list is sent back to the client as part of the login response
(see section 4.6).

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019 RESERVED
20022 Additional login not permitted

There is already a user logged in with this user name, and this server does not
permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037 Client authentication failed.
The server requires the use of a client password (section 4.1.2), and the client
either did not supply the correct client password or did not properly compute
its challenge response value.

20041 User-agent authentication required.
The server requires the use of user-agent authentication (section 4.1.2), and
the client did not supply the user-agent header values.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

20140 Insecure password.
The password does not meet the site’s rules for password security.

C-2 Real Estate Transaction Specification Version 1.7.2

20141 Same as Previous Password.
The new password is the same as the old one.

20142 The encrypted user name was invalid.
20200 Unknown Query Field

The query could not be understood due to an unknown field name.
20201 No Records Found

No matching records were found.
20202 Invalid Select

The Select statement contains field names that are not recognized by the
server.

20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed
to the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the
supplied login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This reply
code indicates that the maximum records allowed to be returned by the server
have been exceeded. Note: reaching/exceeding the "Limit" value in the client
request is not a cause for the server to generate this error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be
accepted at this time.

20211 Query too complex
The query is too complex to be processed. For example, the query contains
too many nesting levels or too many values for a lookup field.

20212 [deprecated] Invalid key request [deprecated]
The transaction does not meet the server’s requirements for the use of the
Key option.

20213 [deprecated] Invalid Key [deprecated]
The transaction uses a key that is incorrect or is no longer valid. Servers are
not required to detect all possible invalid key values.

20301 Invalid parameter. Additional information is provided in the error block.
20302 Unable to save record on server.
20303 Miscellaneous Update Error.
20311 WarningResponse was not given for all warnings that contained a

response-required value of 2.
20312 WarningResponse was given for a warning that contained a response-

required value of 0.
20400 Invalid Resource

The request could not be understood due to an unknown resource.
20401 Invalid Type

The request could not be understood due to an unknown object type for the
resource.

20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.

20403 No Object Found
No matching object was found to satisfy the request.

Table C-1 Consolidated list of RETS reply codes (Sheet 2 of 4)

Reply Code Meaning

Version 1.7.2 C-3

20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME types.

20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to which the
supplied login does not grant access.

20408 Resource Unavailable
The requested resource is currently unavailable.

20409 Object Unavailable
The requested object is currently unavailable.

20410 Request Too Large
No further objects will be retrieved because a system limit was exceeded.

20411 Timeout
The request timed out while executing

20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.

20413 Miscellaneous error
The server encountered an internal error.

20500 Invalid Resource
The request could not be understood due to an unknown resource.

20501 Invalid Type
The request could not be understood due to an unknown metadata type.

20502 Invalid Identifier
The identifier is not known inside the specified resource.

20503 No Metadata Found
No matching metadata of the type requested was found.

20506 Unsupported MIMEType
The server cannot return the metadata in any of the requested MIME types.

20507 Unauthorized Retrieval
The metadata could not be retrieved because it requests metadata to which
the supplied login does not grant access (e.g. Update Type data).

20508 Resource Unavailable
The requested resource is currently unavailable.

20509 Metadata Unavailable
The requested metadata is currently unavailable.

20510 Request Too Large
Metadata could not be retrieved because a system limit was exceeded.

20511 Timeout
The request timed out while executing.

20512 Too many outstanding requests
The user has too many outstanding requests and new requests will not be
accepted at this time.

20513 Miscellaneous error
The server encountered an internal error.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using a
DTD version that the server cannot provide.

Table C-1 Consolidated list of RETS reply codes (Sheet 3 of 4)

Reply Code Meaning

C-4 Real Estate Transaction Specification Version 1.7.2

20701 Not logged in
The server did not detect an active login for the session in which the Logout
transaction was submitted.

20702 Miscellaneous error.
The transaction could not be completed. The ReplyText gives additional
information.

Table C-1 Consolidated list of RETS reply codes (Sheet 4 of 4)

Reply Code Meaning

Version 1.7.2 D-1

A P P E N D I X

APPENDIXMAXIMUM FIELD LENGTH AND DISPLAY
INFORMATION

This appendix contains examples for METADATA-TABLE Maximum Field Length and
sample displays for various combinations of data types, interpretation and other attributes
of a field. It is NON-NORMATIVE: these examples illustrate one case of calculating and
formatting field values and their metadata and one set of values. Section 11.3.2 describes
the rules in detail.

D.1 Datatype Boolean

Interpretation Precision Separator Units Max Select Extreme

Example

Maximum

Length

Display Example

null n/a n/a n/a n/a 0 1 False

null n/a n/a n/a n/a 1 1 True

Lookup n/a n/a n/a n/a 12345678 8 from lookup
LookupName,
longvalue,
lookup
shortvalue, the
value from the
corresponding
lookup values,
from value, 0
or 1

D-2 Real Estate Transaction Specification Version 1.7.2

D.2 Datatype Character

D.3 Datatype Decimal

Interpretation Precision Separator Units Max Select Extreme

Example

Maximum

Length

Display Example

null n/a n/a n/a n/a random_string 13 random_strin
g

Lookup n/a n/a n/a n/a random_string 13 from lookup
LookupName,
True

Interpretation Precision Separator Units Max Select Extreme

Example

Maximum

Length

Display Example

Numeric 2 , null n/a -12342.21 9 -12,342.21

Numeric 1 , Feet n/a 123.1 5 123.1 feet

Currency 2 , n/a n/a 1246.227 7 $1246.22

Version 1.7.2 E-1

A P P E N D I X

APPENDIXDOCUMENT REVISION HISTORY

This appendix contains the document revision history that identifies changes to the
document. Such changes will be minor grammar, formating and spelling corrections and
additional examples. Changes that modify the compliance suite for the standard or
changes that add functionality are not reflected in this appendix. Those types of changes
will be reflected in a new version number for the document.

Table E-1 Revision History
Date Author Sections Notes
2008-08-29 P. Stusiak all Release of 1.7.2
2008-09-10 P. Stusiak 3, 5, 7, 11,

12, 15
Correct the doctype url of section 7.6, page
7-7, section 11.1.4, section 12 and section
15 to that for 1.7.2

E-2 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 Real Estate Transaction Specification IOC-1

B
Backwards compatibility for XML metadata 2
Backwards compatibility in XML 4, 7
C
Cache-Control header 6
Classless searches, resource identifier 2
Compression options 7
cookies 1
E
end-reply-code on successful transaction 5
I
Interpretation of the LIMIT tag 4
L
Logoff 2
Logout transaction 1
M
Metadata extension names 2, 3, 4, 5
MIME type acceptance 1

Minimum requirements for compact-decoded for-
mat 2
P
Pending transactions at logoff 2
Q
Query parameter rounding 9
R
Representation of undefined data in COMPACT
format 1, 2
Requirement for search 5
S
Session timeout 5
T
TCP port for SSL connection 2
V
Version identifier usage 2

Index of Compliance Items

IOC-2 Real Estate Transaction Specification Version 1.7.2

Version 1.7.2 Real Estate Transaction Specification IX- 1

Symbols
.ANY. token, 7-9
.EMPTY. token, 7-9

A
Accept-Encoding header, 3-7
account balance, 4-5
Accounting, 4-5

billing information, 6-1
logout, 6-1

agent code, 4-5
Authentication, 9-2, 14-1
Authorization, 4-2

example, 4-2
Auto-population, 10-1, 11-17

B
Body, response, 3-2
Broker Code, 4-2
Broker information, 4-2

in expressions, 4-6
in login, 4-3, 4-6

C
Cache-Control header, 3-5
Capability URL, 4-7
Case-sensitivity, 11-1
Change Password transaction, 9-1
Class

defined, 1-2
ClassName, 11-11
Client Authentication, 4-1
Client password, 3-3, 3-9
Compatibility, 1-2
Compliance, 1-1
compliance, 1-2, 10-4
compression, 3-7
Content-Type header, 3-6
Cookies, 3-1, 3-3, 3-7, 4-1
Count, retrieving, 7-3
cursor, 7-4

D
data types, 11-13
Date header, 3-5
dates

calculations, 11-26
format, 2-4
time zone, 7-9

defaults, required specification items, 1-2
Delimiters

field, 7-2

E
ECB padding, 9-2
Edit Mask, 11-21
End reply code, 3-5
Error handling

GetObject, 5-6
multipart, 5-6
reporting, in update, 10-2, 10-3

Examples
update transaction, 10-1

Extending, 1-1
adding transactions, 4-7

Extensions
capability URL, 4-7
functions, 4-7

extensions, metadata, 11-2
External validation, 10-5

F
Field

selecting in search, 7-5
Field delimiter, 7-7
fields, restricting access to, 7-5
foreign keys, 11-8, B-2, D-2

G
GET transaction, 8-1

H
header

Accept-Encoding, 3-3, 3-7
Authorization, 3-3
Cache-Control, 3-5
Content-Length, 3-6
Content-Type, 3-6
Cookie, 3-3
Date, 3-5
Location, 5-4
RETS-Request-ID, 3-3, 3-7
RETS-Server, 3-7
RETS-UA-Authorization, 3-3
RETS-Version, 3-3, 3-6
server response, 3-7
Set-Cookie, 3-7
Transfer-Encoding, 3-6
User-Agent, 3-2

Headers
RETS version, 3-3

help text
search, 11-20
update, 11-22

HTTP
GET vs. Post, 3-2
Header usage, 3-2
method, 10-1
status code, usage, 3-4
Status codes, 3-8
update and, 10-1

Index

IX-2 Real Estate Transaction Specification Version 1.7.2

J
Justification, text, specifying, 11-14

K
KeyField, 11-6

L
literal string, 7-9
Login, 4-1
Logout, 6-1

M
MAXROWS, 7-4, 7-7
Message format, 3-1
Metadata

version control, 4-4
versioning, 4-3

metadata, 11-1
caching, 11-1
system, 11-4
version control, 11-1, 11-5, 11-6, 11-9, 11-10, 11-12, 11-16,

11-17, 11-18, 11-19, 11-20, 11-21, 11-23, 11-24, 11-27,
11-28, 11-29

Metadata extensions, 11-2
Metadata fields, unknown, 11-2
metadata, case-sensitivity, 11-1
MIME (Multimedia Internet Mail Extensions), 5-1

Multipart responses, 5-5
MIME Type, 5-1
multimedia

location, 5-3, 5-4
Multi-select

in update, 10-5
interpretation, 11-14

N
NOW, search token, 7-9

O
Object description, 5-4
Object ID, 5-2
Office list tag, 4-6
offset, in query, 7-4
Optional

defined, 1-3

P
Password expiration, 4-5
Passwords

expiration, 4-5
photos

location, 5-3, 5-4
object-ID, 5-2

Port number, 14-1
port number, 4-2

Q
Query

example, 7-10
field names in, 7-6
limiting records returned, 7-3
specification, 7-3

query
cursor, 7-4

query language, 7-8
qvalue, 5-2

R
record count, 7-2, 7-7
record limit, 7-3
regular expressions, 11-22
Reply code

at end of reply, 3-5
Request

arguments, 3-1
defined, 3-1
required headers, 3-2

Request format, 3-2
Request ID

defined, 1-3
in response, 3-7
transmitting, 3-3

Resource
defined, 1-3
standard names for, 11-5

Resource ID, 5-2
resources

well-known names, 11-5
Response, 3-2

general format, 3-4
RestrictedIndicator, 7-5
RETS status code, 3-4
RETS-Request-ID

header, 3-7
RETS-Server header, 3-7
RETS-Version header, 3-3, 3-6
rounding, in query computations, 7-9

S
Search

return format, 7-3
Search Help, 11-20
Search types, 7-1
Security, 4-1

controlling access to functions, 4-6
security

controlling access to fields, 7-5
password, 9-1

Server header, 3-7
ServerInformation transaction, 15-1
Set-Cookie header, 3-7
Sign-off message, 6-1
SSL, 4-1

Version 1.7.2 Real Estate Transaction Specification IX-3

SSL (Secure Sockets Layer), 14-1
Standard name

defined, 1-3
syntax, 2-3

standard name, 7-6, 11-6
Standard-Name

searching with, 7-10
System Name

defined, 1-3
SystemName, 7-10

T
TCP port number, 14-1
Text justification, 11-14
Timeouts, 4-5
Timestamp

metadata, 4-3
TODAY, search token, 7-9
transaction

Change Password, 9-1
GET, 8-1
Update, 10-1

U
Update Help, 11-22

Update transaction, 10-1
Update warnings, 10-2
User class, 4-5
User information, 4-4
User level, 4-5
User-Agent, 3-3
User-Agent header, 3-2

V
Validation

external, 10-5, 11-17
validation, 10-4
validation expression, 11-25
Validation expressions, 10-5, 11-17
VisibleName, 11-6, 11-11

W
Warning block, 10-4
well-known names

login fields, 4-6
object types, 11-18
resources, 11-5
transactions, 4-7

IX-4 Real Estate Transaction Specification Version 1.7.2

	Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Requirements
	1.3.1 Required Features
	1.3.2 Compatibility with Prior Versions

	1.4 Terminology

	Notational Conventions
	2.1 Augmented BNF
	2.2 Typographic Conventions
	2.3 Rules
	2.4 Atoms and Primitive Entities

	Message Format
	3.1 General Message Format
	3.1.1 RETS HTTP/1.1 Encapsulation
	3.1.2 Request Arguments
	3.1.3 Response Bodies

	3.2 Request Format
	3.3 Required Client Request Header Fields
	3.4 Optional Client Request Header Fields
	3.5 Response Format
	3.6 Required Server Response Header Fields
	3.7 Optional Server Response Header Fields
	3.8 Data Compression in RETS Transactions
	3.9 General Status Codes
	Table 3-1 General Status Codes

	3.10 Computing the RETS-UA-Authorization Value

	Login Transaction
	4.1 Security
	4.1.1 User Authentication
	4.1.2 Client Authentication
	4.1.3 Data Security

	4.2 Authorization Example
	4.3 Required Request Arguments
	4.4 Optional Request Arguments
	4.4.1 BrokerCode Argument
	4.4.2 SavedMetadataTimestamp Argument

	4.5 Optional Response Header Fields
	4.6 Login Response Body Format
	4.7 Required Response Arguments
	4.7.1 Broker
	4.7.2 Member Name
	4.7.3 Metadata Version Information
	4.7.4 User information
	4.7.5 Capability URL List

	4.8 Optional Response Arguments
	4.8.1 Accounting Information
	4.8.2 Access Control Information
	4.8.3 Office List Information

	4.9 Well-Known Names
	Table 4-1 Well-Known Names for Input Fields

	4.10 Capability URL List
	Table 4-2 Capability URL Descriptions

	4.11 Reply Codes
	Table 4-3 Valid Reply Codes for Login Transaction

	GetObject Transaction
	5.1 Required Client Request Header Fields
	5.2 Optional Client Request Header Fields
	5.3 Required Request Arguments
	5.4 Optional Request Arguments
	5.4.1 Location

	5.5 Required Server Response Header Fields
	5.6 Optional Server Response Header Fields
	5.6.1 Location
	5.6.2 Description

	5.7 Required Response Arguments
	5.8 Optional Response Arguments
	5.9 Metadata
	5.10 Resources
	5.11 Multipart Responses
	5.11.1 General Construction
	5.11.2 Error Handling

	5.12 Reply Codes
	Table 5-1 GetObject Reply Codes

	Logout Transaction
	6.1 Required Request Arguments
	6.2 Optional Request Arguments
	6.3 Required Response Arguments
	6.4 Optional Response Arguments
	6.5 Logout Response Body Format
	6.6 Reply Codes
	Table 6-1 Logout Reply Codes

	Search Transaction
	7.1 Search Types
	7.2 Search Terminology
	7.2.1 Field Delimiter
	7.2.2 Field Name
	7.2.3 Record Count
	7.2.4 Other terms

	7.3 Required Request Arguments
	7.3.1 Search Type and Class
	7.3.2 Query Specification

	7.4 Optional Request Arguments
	7.4.1 Count
	7.4.2 Format
	7.4.3 Limit
	7.4.4 Offset
	7.4.5 Select
	7.4.6 Restricted Indicator
	7.4.7 StandardNames

	7.5 Required Response Arguments
	7.6 Search Response Body Format
	7.7 Query language
	7.7.1 Query language BNF
	7.7.2 Query parameter interpretation
	7.7.3 Sub-queries

	7.8 Reply Codes
	Table 7-1 Search Transaction Reply Codes

	Get Transaction
	8.1 Required Request Arguments
	8.2 Optional Request Arguments
	8.3 Required Response Arguments
	8.4 Optional Response Arguments
	8.5 Status Conditions

	Change Password Transaction
	9.1 Required Request Arguments
	9.2 Optional Request Arguments
	9.3 Required Response Arguments
	9.4 Optional Response Arguments
	9.5 Reply Codes
	Table 9-1 Change Password Reply Codes

	9.6 Encryption Key Construction
	9.7 ECB Padding
	9.8 Effect of change

	Update Transaction
	10.1 Required Request Arguments
	10.2 Optional Request Arguments
	10.3 Required Response Arguments
	10.4 Optional Response Arguments
	10.5 Update Response Body Format
	10.5.1 Error block
	10.5.2 Warning block

	10.6 Validation
	10.6.1 Lookup
	10.6.2 MultiSelect Lookup
	10.6.3 Range
	10.6.4 Test Expression
	10.6.5 External

	10.7 Reply Codes
	Table 10-1 Update Transaction Reply Codes

	Metadata Format
	11.1 Organization and Retrieval
	11.1.1 Metadata Organization
	11.1.2 General Rules for Interpretation
	11.1.3 Metadata Retrieval Hierarchy
	11.1.4 Metadata Format

	11.2 System-Level Metadata
	11.2.1 System
	Table 11-1 MetadataSystem Compact Header Attributes
	Table 11-2 System Compact Header Attributes
	Table 11-3 Metadata: System Field

	11.2.2 Resources
	Table 11-4 Well-Known Resource Names
	Resource Metadata Content
	Table 11-5 Resource Metadata Compact Header Attributes
	Table 11-6 Metadata: Resource Description Fields (Sheet 1 of 3)

	11.2.3 Foreign Keys
	ForeignKeys Metadata Content
	Table 11-7 ForeignKeys Metadata Compact Header Attributes
	Table 11-8 Metadata Content: Foreign Keys (Sheet 1 of 2)

	11.3 Metadata Format for Class Elements
	11.3.1 Class
	Table 11-9 Class Metadata Compact Header Attributes
	Table 11-10 Metadata Content: Resource Class

	11.3.2 Table
	Table 11-11 Table Metadata Compact Header Attributes
	Table 11-12 Metadata Content - Tables (Sheet 1 of 4)

	11.3.3 Update
	Table 11-13 Update Metadata Compact Header Attributes
	Table 11-14 Metadata Content – Update

	11.3.4 Update Type
	Table 11-15 UpdateType Metadata Compact Header Attributes
	Table 11-16 Metadata Content – Update Type

	11.4 Metadata Format for Shared Elements
	11.4.1 Object
	Table 11-17 Well-known Object Types
	Table 11-18 Object Metadata Compact Header Attributes
	Table 11-19 Metadata Content: Resource Object (Sheet 1 of 2)

	11.4.2 Lookup
	Table 11-20 Lookup Metadata Compact Header Attributes
	Table 11-21 Metadata Content: Lookup

	11.4.3 Lookup Type
	Table 11-22 Lookup Type Metadata Compact Header Attributes
	Table 11-23 Metadata Content: Lookup Type

	11.4.4 Search Help
	Table 11-24 Search Help Metadata Compact Header Attributes
	Table 11-25 Metadata Content: Search Help

	11.4.5 Edit Mask
	Table 11-26 EditMask Metadata Compact Header Attributes
	Table 11-27 Metadata Content: Edit Mask
	RETS Regular Expression Specification
	Table 11-28 RETS Regular Expression Metacharacters

	11.4.6 Update Help
	Table 11-29 Update Help Metadata Compact Header Attributes
	Table 11-30 Metadata Content: Update Help

	11.4.7 Validation Lookup
	Table 11-31 ValidationLookup Metadata Compact Header Attributes
	Table 11-32 Metadata Content: Validation Lookup (Sheet 1 of 2)

	11.4.8 Validation Lookup Type
	Table 11-33 Validation Lookup Type Metadata Compact Header Attributes
	Table 11-34 Metadata Content: Validation Lookup Type

	11.4.9 Validation Expression
	Table 11-35 Validation Expression Types
	Table 11-36 Validation Expression Operators
	Table 11-37 Validation Expression Special Operand Tokens (Sheet 1 of 2)
	Table 11-38 Validation Expression Metadata Compact Header Attributes
	Table 11-39 Metadata Content: Validation Expression

	11.4.10 Validation External
	Table 11-40 Validation External Metadata Compact Header Attributes
	Table 11-41 Metadata Content: Validation External

	11.4.11 Validation External Type
	Table 11-42 Validation External Type Metadata Compact Header Attributes
	Table 11-43 Metadata Content: Validation External Type

	GetMetadata Transaction
	12.1 Required Client Request Header Fields
	12.2 Required Request Arguments
	12.3 Optional Request Arguments
	12.4 Required Server Response Header Fields
	12.5 Required Response Arguments
	12.6 Optional Response Arguments
	12.7 Metadata Response Body Format
	12.8 Reply Codes
	Table 12-1 GetMetadata Reply Codes (Sheet 1 of 2)

	Compact Data Format
	13.1 Overall format
	13.2 Decoded Format
	13.3 Multivalued Fields
	13.4 Transmission standards
	Table 13-1 Compact Data Field Format Representation

	Session Protocol
	14.1 Connection Establishment
	14.2 Authorization
	14.3 Session
	14.4 Termination

	[deprecated] ServerInformation Transaction
	15.1 Required Request Arguments
	15.2 Optional Request Arguments
	15.3 Response Format
	15.4 Well-known names
	Table 15-1 Well-Known Parameter Names

	15.5 Reply Codes
	Table 15-2 ServerInformation Reply Codes

	Acknowledgments
	Authors
	References
	Table A-1 DTD References
	B.1 System
	B.2 Resource
	B.3 Foreign Keys
	B.4 Class
	B.5 Table
	B.6 Update
	B.7 Update Type
	B.8 Object
	B.9 Lookup
	B.10 Lookup Type
	B.11 Search Help
	B.12 Edit Mask
	B.13 Update Help
	B.14 Validation Lookup
	B.15 Validation Lookup Type
	B.16 Validation Expression
	B.17 Validation External
	B.18 Validation External Type
	Table C-1 Consolidated list of RETS reply codes (Sheet 1 of 4)

	D.1 Datatype Boolean
	D.2 Datatype Character
	D.3 Datatype Decimal
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

