

Why? - Business Cases

• Deduplication - DB (MLS, Vendor, Websites, etc.)
• Aggregation – Multiple sources (mash-up: Green data)
• Fraud Prevention – Uniqueness of mortgage contracts
• Prop History Report / CDOM – Even with address ‘typo’
• Internet Tracking Value to MLS, Vendor, Broker, Agent, …

Situation

• Multiple home-grown ‘dedup’ solutions exist in the wild
• These silo solutions work internally only, with varying success

Goal

• Raise the bar via standardization
• Avoid duplicate development & maintenance efforts
• Ultimately move the PUID outside the silos allowing property

information to flow and effectively mash-up

Perfect World

• (Latitude, Longitude, Elevation) DD: 8 decimal places = 1 mm
• Stick tricorder on main point of egress or middle of lot polygon

Real (Estate) World

• Use property data at hand (MLS, whatever)
• What data (DD fields) to use? See next slide!

• Design PUID to be ready to adapt when perfect world happens!

What is a PUID?

• Listing attribute identifying real property:
• Usually: House, Lot, Condo, Farm, Warehouse, etc.
• Can be: For Rent, Timeshare, Bus. Opp., Mobile Home, etc.

• Usually has Tax ID info –but not necessarily!

What if No Tax ID Info?

• Use Address info on hand, if available?
• Use Latitude, Longitude info on hand, if available?
• Eureka!: Don’t actually need a PUID # proper! Just need a way

to compare certain listing fields to determine the likelihood
two listings are associated with the same property.

ComparePUID()

• PUID not a classical ID with N alpha-numeric chars
• PUID is made up of a subset of DD fields which can be used to

determine uniqueness when intelligently compared

What Kind of DD Fields?

• FOR: Tax fields(i.e. Country + State + County + Parcel#)
• ADR: Address fields (i.e. StreetNumber, StreetName, Country)
• GEO: Geographic fields (i.e. Latitude, Longitude, Elevation)

PUID = DD Field Subset

PUID = DD Fields
Think new PUID
field made-up of
(FOR, ADR, GEO)
DD fields.

Or just a DB View.

Expect / Guess

• FOR: 95%

• ADR: 90%

• GEO: 85%

99% ???

FOR ADR GEO

X

 X

 X

X X

 X X

X X

X X X

FOR

 Field Name
Country
CountyOrParish
ParcelNumber
StateOrProvince
TaxBlock
TaxBookNumber
TaxLot
TaxMapNumber
TaxParcelLetter
TaxTract
Township
UnitNumber
PublicSurveySection
PublicSurveyTownship
PublicSurveyRange

ADR

 Field Name
City
Country

CountyOrParish
PostalCity

PostalCode
PostalCodePlus4
StateOrProvince

StreetDirPrefix
StreetDirSuffix

StreetSuffixModifier
StreetName
StreetNumber

StreetNumberNumeric

StreetSuffix

CrossStreet

GEO

 Field Name
Elevation
EntryLevel

ElevationUnits
Latitude

Longitude
FrontageType

WaterfrontYN

WaterBodyName
PropertyType

PropertySubType
LotSizeArea
LotSizeUnits

LotSizeAcres
LotSizeSquareFeet

ListAOR

Details

• Detailed field analysis performed on sample property listings
provided by various MLSs (Availability, Quality, Dependability)
• Required data cleansing & normalization
• How to compare each field: individually or collectively
• Compare: Equality, Fuzzy, # decimal places, etc.

• Output of ComparePUID() will be a confidence level of

properties being the same (0.0 – 1.0)

• Versioned: request version, used version

Now / Next …

• Starting to write & reference algorithms & pseudo code
• More info needed:

• DD Tax* field usage
• Field stats on larger property listing sample space

• Code and test via GitHub or RESO’s LineNode.com
• Test internally until V1 ready
• Publish and have parties to test internally, get feedback
• Setup an iterative process of releasing ComparePUID()

versions via successive refinements based on feedback
• Determine ComparePUID() input parameters (i.e. ListAOR,

#DecimalPlacesLatLong, etc.)

FUTURE >>>

• Add to DD Resources? Property, Open House, etc.
• Use in Internet Tracking?
• Create a parametrized framework to easily specify, update

and adjust versioned cleansing, normalization and
comparison functions

• Create a RESO ComparePUID() Web Service (WS)
• Accumulate usage and information to feedback into refining

the comparison algorithm
• NOTE: Still option to create GeneratePUID() to generate a

usable PUID value (i.e. hash based on FOR fields only) –but
this will will never be as powerful as ComparePUID()

PUID QUESTIONS?

Paul Desormeaux – PUID Workgroup Chair – lpd@equinet.ca

