
RETS Transport Authentication
April 2014

Matt Cohen

Clareity Consulting

Clareity.com

Use Cases (Thanks Cal!)

1. SP (Service Provider) to SP/IdP (Identity Provider) - Server or Client

to Server authorization without human intervention

Example: RETS 1.x style flow. A syndicator's recurring bulk download of

listing data.

Use Cases

2. SP to IdP to SP: Typical three-way authorization of a user.

(Transient authentication of an API Consumer on behalf of an MLS

member)

Example: A web application that interacts with the MLS on behalf of a user,

e.g., a real-time CMA.

Use Cases

3. SP to SP/IdP: Transparent three-way authorization of a user.

(Transient authentication of an API consumer on behalf of a user

without human intervention)

Example: A VOW provider's validation of eligibility for an existing customer.

Use Cases

4. SP to SP/IdP: Transparent, recurring “on behalf of” authorization of

a user. (Persistent, transient authentication of an API consumer on

behalf of a user without human intervention)

Example: Lead Management software that pulls leads from multiple

sources for a given customer.

Standards Recommendations

Following are the recommended standards and their uses:

• HTTP Digest Authentication SHOULD be supported, as the easiest

standard to implement which addresses the first and most prevalent use

case for RETS, and which can be made to serve some other use cases

as well.

• oAuth 2 SHOULD be supported as needed to support additional use

cases, especially where three-legged authorization is required.

• SAML 2.0 Bearer Assertion Grant Type Profile for OAuth 2.0 In

environments where SAML is already in use, SAML MAY be used as an

oAuth Profile.

• SAML. In environments where SAML is already in use, SAML MAY be

used.

Beyond

The final document includes:

• Implementation recommendations

• Code examples

• Links to toolkits for each standard

API (RETS) Security

April 2014

Matt Cohen

Clareity Consulting

Clareity.com

RETS Security Today

RETS Server

RETS

Client

(generally on a

server too)

Taxonomy of Threat Vectors

1. Hacking

a. Server

b. Client

2. Credential Sharing

3. Credential Theft (in transit)

4. Session Hijacking / Data Theft

5. Illicit Data Sharing (after the

transmission)

6. Data misuse (after the

transmission)

Risk Mitigations

1. Since both are server based, high

amount of protection possible. Policy,

Physical, Personnel, OS, Software.

When client not on a server –

storage encryption w/ key protection.

2. IP Address Restrictions, Usage

Tracking -> Credential Revocation,

password policies

3. #2 + Digest Auth, SSL (rare!)

4. SSL (rare!)

5-6 ??? – uses are often derivative

products or dark web – legal recourse.

?
(let’s come

back to this)

API Security (NOT just RETS)

What I’ve Seen in the Field – API Step and Beyond

1. APIs (restful and otherwise) with no credentials

• Surprisingly common!

2. Credential Sharing / Theft (all steps)

• Very little tracking / remediation

3. Session Hijacking / Data Theft (all steps)

• Use of encryption (even RETS supported) not common

4. Data Sharing / Misuse

• Individual legal action ineffective. Industry just starting to

organize (red-plan.org)

RETS

RETS

Client /

DB

API

API

client

(i.e.

mobile)

Mobile API (inc. NEW RETS)

Special Challenges

• Server-side -> Server client use is less an issue.

• Can be limited by IP and/or tracked by IP

Mobile? Especially using single “app” credential to the API?

Credentials then can be misused – for another app entirely
Yes, this isn’t just theoretical – it’s already happened.

• Credentials (and data stores) highly vulnerable to misuse
• Client credentials can be taken from disassembled app.

• Client credentials packet sniffed, easy ‘local’ to the app.

• One app looks just like another app to the server –

especially if generic credentials used – how to clamp down?

Mobile API (inc. NEW RETS)

Special Challenges

Now we want to release mobile-friendly RETS!

• How much protection is enough? (Imagine I’m auditing on

behalf of an MLSF)

• Goal for RESO: best practices doc (can be used to create

development contracts?)

Let’s Dig In - Restful API

• Credential-less restful API looks like a web address –

usually easy to traverse

• http://rest.DOMAIN.com/search/... /[search parameters]

• http://rest.DOMAIN.com/listing/... /4439594

• Today: often depending on “obscurity” for security –

hopefully we all agree – not good enough.

• “Anti-scraping” / security measures? No F

• Pages (listings) / minute rate limiting?

• Nope - slow crawl, multi-credential, multi-IP use. That

alone isn’t enough.

• Pages / “session”? Session length?

• What’s a session in the restful API context? (Also, as

above)

• It’s ALL ‘bots’!!!

Add individual credentials?

http://rest.DOMAIN.com/listing/... /4439594

• Require creation of individual credentials? Can track

credential overuse patterns.

• BUT D Data thieves can register / use multiple

credentials to defeat overuse protection.

• total listings / typical pages viewed per day

= # of IPs / users to create.

• Cloud makes it easy to spin up unique IP servers.

• Maybe this is part of a solution?

Matt’s Non-Ideal Solution

• Generate new API passwords every [short] period – make

them difficult to reverse engineer.

• Put a regularly changed key in difficult to-directly-

access protected storage (*is anything protected

enough on Android or IOS?*)

• Combine with part of a GMT timestamp

• Combine with other information provided to the app

from the server or vice versa (i.e. a checksum on app

size for current version)?

• Encrypt before transmission

• Server-side, a matching hash would be made to check

against - allowing the previous one to work for a short

grace period, of course).

Mike Sparr: Abandon restful

• Manage sessions are handled server side.

• Can monitor session patterns

• Generates authentication tokens with hybrid of:

• nonce

• identifier (UUID-like)

• and other factors (mix of client and server side

content so someone decompiling the app

cannot easily figure it out)

• Regular session expiration requiring re-

authentication adds additional security.

Similar to my approach. But session oriented.

Mark Flavin: use client side certificates

• Generate and store client side certificates and use those

for ongoing logins this would eliminate the need to cache

credentials locally and would create a more secure

authentication which remains flexible.

i.e.

• http://www.techrepublic.com/blog/software-

engineer/use-https-certificate-handling-to-protect-your-

ios-app/

• http://chariotsolutions.com/blog/post/https-with-client-

certificates-on/

• Why can’t hackers use the client side certificates?

• Isn’t this just another credential that can be misused?

• How does the server know an app’s okay to request the

certificate?

• It does increase effort (but on both sides?)

Cal Heldenbrand saysF

• Use unique IDs and add)

• Email address with verification.

• Pair ID with an access token, or maybe a completely

unique client_id/secret.

• Identities could still hypothetically be generated in

mass quantities, but it's still a difficult task, and it's

easier to track server side. If you usually see about 5

registrations per week, and all of a sudden you see

1,000 in an hour, then you block that IP for a while. Or

maybe just invalidate that huge batch of access tokens

that were generated from that one IP. You could also

just rate limit the token generation endpoint. And once

the access tokens are unique for each identity, you rate

limit the access token.

Discussion

What we're really talking about is whether there should be

best practices (minimum standards?) for:

A. Establishing individual access tokens (to use as

credentials in oAuth2, Digest, etc.)

B. Making token more difficult to access – even with device /

source code / network access

• Matt&Mike: Generate new API passwords every short

period – make them difficult to reverse engineer?

• Mark: Certificates?

C. Standards for issue identification (logging, pattern

recognition, alerting) & remediation

• Cal: watch for unusual patterns of credential creation

• Matt: watch unusual usage patterns? (easy to game)

• If we publish standard recommendations won’t

someone just take advantage and ‘game’ them?

Thank you!

Matt Cohen

Matt.Cohen@Clareity.com

Clareity Consulting

Clareity.com

