Real Estate Data Interchange Standard:
Real Estate Transaction Specification
Version 2.0

RETS2 Payloads

July 31, 2006
Draft 3

Table of Contents

1 RETS2 Resources and Payloadscccceeiieiiiiiienieciieececeeeee e 1-1
1.1 XML Document Development PTOCESScccveeeeviierciiieniiieeniieeciee e I-1
1.1.1 Schema Development PrOCESSc.cccvevieeiiienieeiienieeieeee e 1-1
1.1.1.1 Development Process Principlescccceeeveeeviieeiiieniieeeie e 1-1
1.1.1.2 Development Process OVErVIEWccceccveevueeniieriieniienieeiieeieeieenenes 1-1

1.2 XML Schema GUIdelinesccueeiueeiiiiiiiiiiiiiieieeeee e 1-2
1.2.1 INrOAUCLION ... 1-2
1.2.1.1 Backgroundccccuieeiiieeiiieeiee ettt 1-2
1.2.1.2 RESOUICES cuviiiiiiiiieiieeeiieeieeit ettt sttt e 1-2
1.2.2 Overall Document GUIAANCe...........coueeruieriiiiieniieieeie et 1-3
1.2.2.1 Keep Schemas SImple.........ccoceeviiiiiiiiiiiiiiiieeeeee e 1-3
1.2.3 NAMESPACESvveeeeeeiiiieeeeiieee et ettt e e et e e et e e e sebeee e estteeesenaneeeeenannes 1-3
1.2.3.1 Target NaAmMESPACES ...ccccuveeririeriieeniiieeiieeeieeeeieeeeiteestteesneeesabeeesareeens 1-3
1.2.3.2 Default NameSPpaCeS......c.eeevuviiriiieriieeiieerieeeveeeieeeeireesaeeesveeesnneeens 1-4
1.2.3.3 XML schema NameSPaCe.........cccueeruieeriieriieiieeniieeieeiie e esiee e eiee e 1-4
1.2.3.4 VEISIONINGoeiiiiiieiiieeiiieeeiieesieeesteeeseteeeseseessseesseeesseeessseessssessssseenns 1-4
1.2.4 Global Vs. Localized (Qualified Vs. Unqualified) Elements................... 1-5
1.2.4.1 elementFormDefault and attributeFormDefault...............ccccoeienenne. 1-5
1.2.4.2 More INformationcooeeriiiiiiiniiiieeeceee e 1-5
1.2.5 Multiple Schema Documentsccceeeieevieriieniienieeiece e 1-5
1.2.6 Naming CONVENTIONS........eeervieeriireeiieeeireesreeerteeesreeesseeessseeesseeessseesssses 1-5
1.2.6.1 General Guidelines for Namingcccocceevuienieniiienieniieieeieeeeee. 1-5
1.2.6.2 Naming of Elements and Attributes.........cccceeevieevieeniieenieeeiieeiene 1-6
1.2.7 Element VS, TYPe..couie ettt et 1-8
1.2.8 Element VS. Atribute.........cooiiiiiiiiiiiiiiiceceeeee e 1-8
1.2.9 Creating Extensible Content Models............cccceeviiiiniiniiiiiiiiiiicieieeee 1-9
1.2.9.1 Extensibility Using Type Inheritance in XML Schema....................... 1-9
1.2.9.2 SIMPLE TYPES.ccutiiriiieiieiieeiieeie ettt ettt ettt e 1-9
1.2.9.2.1 Example - this example derives a new Simple Type Declaration:.1-9

1.2.9.3 COmMPIEX TYPES weeeurieiiieiieiieeiieeie ettt ettt eee s 1-10
1.2.9.4 Extensibility via the <any> Element............ccccccevviieniiienienenieeeen. 1-13
1.2.9.5 General extensibility Guidelines — Avoiding Non-Determinism....... 1-14
1.2.10 Schema Design Patterns — Styles of Schema Design............ccccceeunennee. 1-15
1.2.10.1 Recommended Design Pattern — Venetian Blind pattern................... 1-15

1.3 RETS2 Common SChemascoouiiiiiniiiiiinieiieenieeeeee et 1-17
1.4 RETS2 RESOUICES....ceeiuiiiiiieiiiieeeitt ettt ettt sttt et eenaneeeas 1-17
1.4.1 Standard RESOUICESeoviiiiiiiiiiiiiiceceeeeete e 1-17
1.4.1.1 System Resources........c..cccoceervueeneenncnns Error! Bookmark not defined.
1.4.1.1.1 Metadata RESOUICEcccueeruiiriiiniiiiiiiiieeeeeeeeee e 1-17
1.4.1.1.2 Reference Resource............cceenneen. Error! Bookmark not defined.
1.4.1.1.3 User Information Resource Error! Bookmark not defined.
1.4.1.1.4 System Resource.......cccccecveeueennnennn Error! Bookmark not defined.

1.4.1.2 MLS RESOUICESuveeniiiiiiiiiieieeiieeiteesite ettt 1-18
1.4.1.2.1 Property Resources..........ccocueeunenee. Error! Bookmark not defined.
1.4.1.2.2 AZENCY wevveiiieeiieeiieeeiee e Error! Bookmark not defined.

1

1.4.1.2.3 Office..uuiiiiiiiiiiiciiieeeeeiieeeeeeeee Error! Bookmark not defined.
1.4.1.2.4 Listing HiStory......coceevvvveerveeeneeennne. Error! Bookmark not defined.
1.4.1.2.5 Public Record...........ccouvvviieennnnenns Error! Bookmark not defined.
1.4.1.2.6 ProSpect.....cccceeeevcveeeenniiieeeeiiieeeens Error! Bookmark not defined.
1.4.1.2.7 Activities (Open House and Tour) .. Error! Bookmark not defined.
1.4.1.2.8 Office ROStEruvvvvvveiieiiirieieeenenn, Error! Bookmark not defined.
1.4.1.3 Transaction RESOUICEccccuvieieiiuiiieieiieie et 1-21
1.4.1.4 OfferManagement Resource Error! Bookmark not defined.
1.4.1.5 Referral Resource.......ccoceeeeveuvveeeennnnn... Error! Bookmark not defined.
1.4.1.6 Calendar Resource........cccoovuvvvvvreeeeennnnnns Error! Bookmark not defined.
1.4.1.7 Contact Resource..........ccceeevvveeeeeeeeennns Error! Bookmark not defined.
1.4.1.8 Transaction Activities Resource............ Error! Bookmark not defined.
1.4.1.9 Transaction List Resource..................... Error! Bookmark not defined.

1.4.1.10 Transaction Service Order Resource..... Error! Bookmark not defined.
1.4.1.11 Transaction Summary (“Cover Sheet”) Resource Error! Bookmark not

defined.
1.4.2 Local ReSOUICeScoovvvvvvveiiiiiiiiiiiiiiiiianann. Error! Bookmark not defined.
1.43 Local Payloadscc.eeeeiieeiiieeiieceeeee e 1-23

11

—_
—_— O O 0

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1 RETS2 Resources and Payloads

1.1 XML Document Development Process

1.1.1 Schema Development Process
This section discusses the recommended process for the development of schemas.

1.1.1.1 Development Process Principles

Successful schema development depends upon:.

Active participation of the stakeholders within the community.

Collaboration between key business people and XML schema experts.

Use cases to align schemas with business goals.

A software implementation that validates the XML schema and demonstrates the
business benefits.

1.1.1.2 Development Process Overview

Schema development projects should follow these steps:

1.

2.

Key business people identify documents that are heavily reused. Engineering
resources identify relevant existing industry standards to drawn upon.

Key business people identify use cases that demonstrate business value. Existing
roles, documents and processes are also identified. The results are presented in an
information flow diagram.

Key business people identify the data items on the document(s) that support the
use cases and, at the same time, define the minimum required data to support each
use case/transaction.

Key Business people develop a vocabulary for the data items in the documents in
the use cases. Schema developers collaborate to designate data type definitions
and roles for vocabulary items. This vocabulary should be presented in a
spreadsheet.

Key Business people collaborate with Schema experts to arrange the vocabulary
data into a dictionary with logical groupings. This task includes designating which
groupings are common to multiple documents and across multiple use cases.
Schema experts develop the XML schema definition from these dictionaries. The
result is an object-oriented XML Schema that may be readily implemented in
software data mappings. Key business people and software developers must
review the XML schema to ensure that it supports the use cases and can be used
in software implementations.

Software developers validate the proposed XML schema by building example
implementations using the XML schema. The schema may be revised as needed
to address any software implementation issues that arise.

1-1

37
38
39
40
41
42

43

44

45
46

47

48
49
50
51
52
53

54
55
56
57
58
59

60
61

62

63
64
65
66
67
68
69

8. The XML schema and associated documentation is published as an initial version
and made available to the community as a standard schema.

9. The standard schemas may be reviewed and revised publishing new versions over
time, as approved by the community following the schema development process
outlined here.

1.2 XML Schema Guidelines
1.2.1 Introduction

This document suggests best practices and guidelines that should be followed by RETS
XML Schema designers when defining XML-based specifications.

1.2.1.1 Background

The RETS2 Data Interchange Standard uses XML and Web Services as the basis for this
specification to promote interoperability between data providers and consumers.
Unfortunately, the W3C specification for XML Schema is large and complex leaving it
nearly impossible for anyone to completely understand its breadth and depth.
Furthermore, the W3C offers no guidance with respect to best practices or guidelines for
implementing XML Schemas within the enterprise.

This document lays out the best practices and guidelines that should be followed by
RETS2 implementers to ensure consistency with respect to XML schema documents
across the industry. These schemas are to describe the way that data will be exchanged
between different implementers of the RETS2 standard. This document addresses many
of the common features and issues pertaining to XML Schema; obscure aspects of XML
Schema will not be addressed.

As the W3C XML Schema specification continues to evolve and mature, this document
may be modified to keep pace with industry standard best practices and guidelines.

1.2.1.2 Resources

This document draws upon several Web-based and non-web resources that offer opinions
and contributions to the data exchange (XML) and software industry’s general
understanding of XML Schema document Best Practices and guidelines. These resources
will be referenced liberally throughout this draft version of the document. Where there
has been any significant disagreement about the right approach to that particular area of
using a Schema, this document will attempt to present both contrasting opinions and
allow the community member to decide which approach to take.

70

71
72
73
74
75
76
77
78

79
80

81

82
&3

84

85
86

The following resources were used in the writing of this document.

www.medbig.org MedBiquitous XML Schema Design Guidelines document from
the MedBiquitous consortioum. This document was used as
an example of another industry’s standards-based
organization that has an implementation of an XML Schema
Guidelines document.

www.w3.org/TR/xmlschema-2 W3C specification and Guidance document for Schema,
Schema Part 2: Datatypes.

www.xfront.com Roger Costello maintains this site.

www.xml.com This site is part of the O'Reilly Network and contains an
annotated version of the XML specification, created by Tim
Bray.

xml.sys-con.com XML Journal is a site published by SYS-CON Media
Articles:

o http://www.xml.com/pub/a/2001/08/22/easyschema.ht
ml - understanding Complex Types in XML Schema
e http://xml.sys-con.com/read/40481.htm - XML Schema
Best Practices
o http://www.xml.com/pub/a/2001/06/06/schemasimple.h
tml - XML Schema Made Simple
www.govtalk.gov.uk The United Kingdom’s GovTalk site has another example XML
Schema guideline document that includes “mandatory
requirements for XML Schema structure and content, as well
as best practice recommendations for schema design”

1.2.2 Overall Document Guidance

1.2.2.1 Keep Schemas Simple

The less common facilities available with XML Schema SHOULD NOT be used where
there are simpler alternatives. Schema developers SHOULD take into account the
testability of their schemas.

This is perhaps the most important rule. XML Schema allows enormous power and
flexibility in the way schemas are defined. In most cases, schemas can be made simple or
complex while achieving the same aim. Many people who will be looking at your
schemas will have little experience, so try to keep them simple.

1.2.3 Namespaces

The following defines the guidelines for handling namespaces in XML schema definition
files.

1.2.3.1 Target Namespaces

The XML Schema definition file should define a target namespace. The namespace
should be defined as a URL that uniquely qualifies this schema and its definitions.

1-3

87
88
&9
90

91

92
93
94
95
96

97

98

99
100

101

102

103

104
105
106
107
108
109

110
111

112

113

114

115

116

Avoid creating XML Schema definition files with no target namespace (“‘chameleon”).
Although chameleon schemas offer flexibility, validation performance is degraded since
most parsers will not be able to cache components of the schema based on the
namespace.

1.2.3.2 Default Namespaces

Any default namespace for the document MUST be the same as the target namespace. There is never a
disadvantage of making the default namespace of a schema document the same as the
target namespace. All other namespaces will require a prefix. This makes the usage of
namespaces more explicit, and allows schema designers more flexibility in using
namespaces within the schema.

XML Schema should never be the default namespace.

1.2.3.3 XML schema Namespace

The W3C XML Schema namespace MUST be qualified with a prefix with a prefix of either
xsd orxs. A suitable qualifier MUST be used for other namespaces.

Example:

xmlns:xs="http://www.w3.0rg/2001/XMLSchema”

1.2.3.4 Versioning

In order to promote a uniform approach to versioning schemas, the default and target
namespaces defined in the XML Schema definition file must include a version
identification value. The value is the year followed by the month, optionally followed by
the day. Whenever the schema is changed, and the new schema is NOT backward
compatible with the previous schema, the default and target namespaces versioning must
be incremented.

Each XML Schema payload also includes a versionTimestamp attribute. This value, in
ISO 8601 format, is UTC. It must change each time the Schema is modified.

Example

<xsd:schema
targetNamespace="http://www.rets.org/ns/Listing/200604"
xmlns=" http://www.rets.org/ns/Listing/200604n"

xmlns:xs=http://www.w3.0rg/2001/XMLSchema

117

118

119
120

121

122
123
124

125
126
127
128
129

130

131
132
133
134

135
136
137

138
139

140
141
142
143
144
145

146
147

versionTimestamp="2006-04-07T00:00:00Z2">

1.2.4 Global Vs. Localized (Qualified Vs. Unqualified) Elements

Two attributes of your schema file that should be specified are
elementFormDefault and attributeFormDefault.

1.2.4.1 elementFormDefault and attributeFormDefault

elementFormDefault MUST be set to qualified and attributeFormDefault SHOULD beset
to unqualified. This is the industry best practice and RETS2 implementers should follow
this practice, as well.

The setting of these schema attributes with these values implies that all schema instance
files must qualify the namespace of all elements regardless of whether the element is
defined in a global or local namespace. This ensures that a developer reading or reusing
a schema can rely on the visible prefixes and namespaces, instead of having to trace the
detailed internal structure of a schema.

1.2.4.2 More Information

For a more detailed explanation of the difference between global
(elementFormDefault="qualified") versus localized
(elementFormDefault="unqualified") namespaces within a schema, see the
following resources:

X-Front PDF: Hide Vs. Expose Namespaces

MedBiquitous PDF - See Section 5

The X-Front document provides a thorough explanation of of this issue at hand, but does
not make any concrete recommendations. The MedBiquitous PDF also provides a
detailed explanation of WHY it is best to use the approach set forth in section 4.1.

1.2.5 Multiple Schema Documents

Give each separate schema document a separate targetNamespace, except, perhaps only
when you benefit by breaking down a very large vocabulary into multiple physical
schema documents.

1.2.6 Naming Conventions

1.2.6.1 General Guidelines for Naming

A very important part of the XML grammar within your schema documents is consistent
naming conventions for tags that represent the infrastructure and business related

148
149
150
151

152
153
154
155
156

157
158

elements. Abbreviations SHOULD NOT be used, except for the case of well known abbreviations. Well
known abbreviations, including the use of initial letters only, MAY be used. However, be sure that any
abbreviation used is well-known across the RETS developer community. Extremely long names SHOULD be
avoided by designing concise and informative names.

1.2.6.2 Naming of Elements and Attributes

Naming conventions are based on the XML tagging from the ebXML group (ebXML
Naming Conventions PDF) and the MedBiquitous schema guidelines document (see section
1.2 — Resources).

Tag name writers MUST follow these following rules unless business requirements
require other naming conventions.

1-6

159

160

Naming Conventions

Rule Description Example
Element and Elements and types should | <PostalCode>
Type be defined using upper

Case camel case (UCC).

Attribute Case | Attributes should be <Degree
defined using lower camel | dtscipline="Chemistry”>
case (LCC).

Acronyms Acronyms are discouraged, | <UserID>
but where needed, use all
upper case.

Illegal Illegal characters cannot be | NOT allowed:

Characters used (e.g.: forward slash, <Date/Time>

Allowed:
etc.). Recommended <DateTimes
characters in a tag name are
basically limited to letters
and underscores.

Similar Names | Use the similar tag names | <ContactaAddress>
with elements in a similar | <Homeaddress>
child structure. WorkRddress>

Plural Names | Use plural tag names only | <CreditCards>

<CreditCard>

for collections.

Name Size

Element and attribute name
size have no limitation. The
names must be meaningful.
Very long names are
discouraged. Design
concise, descriptive names.

<CustomerRelationshipInformation>

Suffixes

Element and attribute
names should incorporate
suffixes from the proposed
list of representation types
(adapted from ebXML)
when appropriate.

<StartDate>
<BilledAmount>

1-7

161 Tag Suffixes Table

Representation Type Description

Amount A number of monetary units specified in a currency where the
unit of currency is explicit or it may be implied.

Code A character string that represents a member of a set of values.

Boolean (Flag) An enumerated list of two, and only two, values which indicates

a Condition such as on/off; true/false etc. (It was the general
consensus to use ‘Flag’ as a term to indicate a Boolean value.)

Date A day within a particular calendar year. Note: Reference ISO
8601.

Time The time within any day in public use locally, independent of a
particular day. Reference ISO 8601:1988.

DateTime A particular point in the progression of time. Note: This may
incorporate dependent on the level of precision, the concept of
date.

Identifier (standard abbreviation ID, meaning a unique identifier) A

character string used to identify and distinguish uniquely, one
instance of an object within an identification scheme.

162
163 1.2.7 Element Vs. Type

164 Generally, Named types should be used instead of anonymous types.

165 In many cases, there is a choice of defining a re-usable component as either a data type or as an element. A
166 component MUST be defined as a data type if either: it is to be used with different element names in different
167 contexts; or it is expected that further data types will be derived from it.

168 A component SHOULD be defined as an element if there is no intention to derive new components from it; and
169 the element is to be used with its name unchanged

170 There are many circumstances in which an element should be used with its name unchanged. It is therefore
171 possible to build a dictionary of element names with known interoperable semantics. For example, an address

172 could have several meanings and so be used with different names. An address should therefore be defined as a
173 global data type

174 The other reason to choose between an element and a data type to define a component is if there is an intention to
175 derive other components from it. By only using data types in this case, we simplify understanding of schemas by
176 only having a single inheritance mechanism and avoiding use of xs: redefine for this purpose.

177 1.2.8 Element Vs. Attribute

178 Schemas SHOULD be designed so that elements are the main holders of information
179 content in the XML instances. Attributes are more suited to holding ancillary metadata —
180 simple items providing more information about the element content. Attributes MUST
181 NOT be used to qualify other attributes where this could cause ambiguity.

1-8

182
183
184
185
186

187
188
189
190
191
192

193
194

195

196
197

198

199

200

201

202
203

204

205
206
207
208
209
210

211

212

Unlike elements, attributes cannot hold structured data. For this reason, elements are
preferred as the principal holders of information content. However, allowing the use of
attributes to hold metadata about an element's content (for example, the format of a date,
a unit of measure or the identification of a value set) can make an instance document
simpler and easier to understand.

1.2.9 Creating Extensible Content Models

If an existing type definition does not meet your exact requirements, you MAY use the
XML Schema inheritance mechanism to define a new data type based largely on an
existing one.

In some cases a data type enumerates all permitted values, or defines a standardized data
format such as an address whose importance for interoperability goes beyond XML

messages. In this instance, make sure the modified definition still complies with the
underlying data standard.

1.2.9.1 Extensibility Using Type Inheritance in XML Schema

There are four types of inheritance available using extension and restriction.
These are:

restriction of a simple data type

extension of a simple data type (to form a complex type)
restriction of a complex data type

extension of a complex data type

The guidelines about which type of inheritance can be used are detailed below in sections
8.2 and 8.3.

1.2.9.2 Simple Types

When appropriate, simple data types defined in the XML Schema data model should be
used (and potentially restricted or extended) rather than creating a user defined complex
data type. Restriction of a simple type reduces the possible values of the type while
extension allows one to create a complex type with simple content that has attributes.
Schema designers will want to keep both of these forms of content extensibility in mind
as they create their RETS schemas.

1.2.9.2.1 Example - this example derives a new Simple Type Declaration:

<simpleType name="myRETSNameType"><restriction base="string">

213

214
215

216

217

218

219
220

221

222
223

224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241

242

<enumeration value="Paula O'Brien" /></restriction></simpleType>

Associating myRETSNameType with an element, and then I can use the type in an XML
document. So the element declaration:

<element name="RETSMeetingAttendee" type="my:myRETSNameType"/>
allows me to use:

<my:RETSMeetingAttendee>Paula O'Brien</my:RETSMeetingAttendee>

The designer should also keep in mind that the correct simple type defined in the XML
Schema data model should be used.

Example — Simple Data Types:

If a date value is needed, use <xsd:element name="Date" type="xsd:date"/> instead of
<xsd:element name="Date" type="xsd:string"/>

Please refer to the section in the W3C Schema DataTypes document
(http://www.w3.org/TR/xmlschema-2/#built-in-datatypes) that lists the hierarchy of

Built-in datatypes (Section 3) for more information about the type hierarchy for more
guidance on which built-in types a Simple Type should derive from or may derive from.

1.2.9.3 Complex Types

Complex types should be extended but not restricted. Extension involves adding extra
attributes or elements to a derived type. Derivation by restriction of complex types should
be avoided.

Schema designers should use caution adding complex types by way of extension, since
they may derive new complex types that can extend any simple or complex type from
within the current schema or any imported schema. This feature, while powerful may
add additional complexity that makes it difficult for creators of instance documents to
understand the nature of the inheritance. However, this feature is an important tool for
schema designers in creating an extensible content model.

Example:

Base Type

<xsd:complexType name="BaseAddress”>

<xsd:sequence>

<xsd:element name="State” type="xsd:string”/>

1-10

243

244

245

246

247

248

249

250

251

252

253
254

255
256

257

258

259

260
261

262
263

264
265

266
267

268
269

</xsd:sequence>

</xsd:complexType>

Derived Type

<xsd:complexType name="RETSAddress”>

<xsd:extension base="BaseAddress”>

<xsd:sequence>

<xsd:element name="City” type="xsd:string”/>

</xsd:sequence>

</xsd:extension>

</xsd:complexType>

Note that we can also extend the content model of one schema by using a datatype from
another, imported schema.

In another example, 1f the following text is the content of a schema named
RETSDataTypes.xsd:

xmlns="http://www.RETS.org/RETS2/RETSDataTypes"

<xsd:complexType name="“"RETSAddress”>

<xsd:

type="xsd:

type=“xsd:

type="xsd:

type=“xsd:

type=“xsd:

sequence>

<xsd:element
string”/>

<xsd:element
string”/>

<xsd:element
string”/>

<xsd:element
string”/>

<xsd:element
string”/>

name="StreetNamePrefix”

name="“"StreetNumber”

name="“"StreetName”

name="StreetSuffix”

name="AppartmentNumber”

270

271

272
273

274

275

276
277

278

279

280

281

282

283

284
285

286
287

288

289

290

291

292

293

294
295

<xsd:element name=“City” type=“xsd:string”/>
<xsd:element name=“State” type=“xsd:string”/>

<xsd:element name=“PostalCode”
type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>

Next, this complex type RETSAddress is extended in a new schema document
MyRETSTypeDefinitions.xsd:

xmlns=" http://www.RETS.org/rets2/RETSDataTypes"
<xsd:include schemalLocation="RETSDataTypes.xsd"/>
<xsd:complexType name="RETSInternationalAddress">
<xsd:complexContent>
<xsd:extension base="RETSAddress" >
<xsd:sequence>

<xsd:element name=“Country”
type=“xsd:string”/>

<xsd:element name=%"CountryCode”
type=“xsd:string”/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
An instance document will look like the following:
xmlns="http://www.RETS.org/rets2/RETSDataTypes"

xsi:schemaLocation="http://www.RETS.org/rets2/RETSDataTypes
/MyRETSTypeDefinitions.xsd

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312

313

314
315

316

317

318

319

320
321

<Address xsi:type="RETSInternationalAddress">
<StreetNamePrefix></StreetNamePrefix>
<StreetNumber>2665</StreetNumber>
<StreetName>North Moreland Blvd.</StreetName>
<StreetSuffix></StreetSuffix>
<City>Cleveland</City>
<State>OH</State>
<PostalCode>44240</PostalCode>
<Country>United States</Country>
<CountryCode>US</CountryCode>
</Address>
Note that a possible drawback to the extensibility done here is that it is location restricted.
The extensibility is restricted to appending elements onto the end of the content model (in
this case, after the <PostalCode> element). What if we wanted to extend
<Address> by adding elements to the beginning (before

<StreetNamePrefix>), or in the middle, etc? We can’t do it with this mechanism.
This is where the <Any> element comes in.

1.2.9.4 Extensibility via the <any> Element

An <any> element may be inserted into a content model to enable instance documents to
contain additional elements.

An Example showing an <any> element:

xmlns="http://www.RETS.org/rets2/RETSDataTypes"

<xsd:complexType name=“RETSAddress”>
<xsd:sequence>

<xsd:element name=“StreetNumber”
type=“xsd:string”/>

322
323

324
325

326

327

328
329

330
331

332

333

334
335
336

337
338
339
340

341

342
343
344
345

346
347

348
349

350
351

352

<xsd:element name=“"StreetName”
type=“xsd:string”/>

<xsd:element name=“StreetSuffix”
type=“xsd:string”/>

<xsd:element name=“City” type=“xsd:string”/>
<xsd:element name=“State” type=“xsd:string”/>

<xsd:element name=“PostalCode”
type=“xsd:string” />

<xsd:any namespace="##any” minOccurs="0"
maxOccurs="unbounded” />

</xsd:sequence>
</xsd:complexType>

This says “The content of RETSAddress is StreetNumber, StreetName, StreetSuffix,
City, State, PostalCode and then (optionally) any well-formed element. The new element
may come from any namespace.”

Note the <any> element may be inserted at any point, e.g., it could be inserted at the top,
in the middle, etc. In this version of the schema it has been explicitly specified that after
the <PostalCode> element any well-formed XML element may occur and that XML
element may come from any namespace.

1.2.9.5 General extensibility Guidelines — Avoiding Non-Determinism

RETS Schema designers may choose whether to include a single point of extensibility or
to allow extensibility at multiple points in the schema. Where to put extensibility points
is highly dependent on the domain being modeled by the schema. A few simple
guidelines should be followed when making these decisions:

Schemas or sections of schemas that define well-established or fundamental content need
not contain extensibility points.

Schemas or sections of schemas that attempt to codify a new or dynamic area of content
should use extensibility points throughout.

Only elements from a namespace different from the document namespace should be
allowed in the extension. This restriction is specified in XML Schema as:

<xsd:any namespace="##other"/>

353
354

355

356
357
358

359
360
361
362
363
364

365
366
367

368

369
370
371
372
373

374
375
376
377
378
379
380
381
382

383
384

385

A namespace constraint set to ##other avoids content collision and non-deterministic
content models.

1.2.10 Schema Design Patterns — Styles of Schema Design

As with software design, there are design patterns associated with XML Schema design.
The most popular XML Schema design patterns are Russian Doll, Salami, Bologna,
Venetian Blind, and Garden of Eden.

To understand any of these design patterns, it is necessary to differentiate between a
global component (element or type) and a local component (element or type). A global
component is an immediate child of the <schema> element in the XML Schema
definition file. A local component is not an immediate child of the <schema> element
in the XML Schema definition file. Global components are associated with the target
namespace of the schema and may be reused in other schema.

It is also important to understand that any element defined in the global namespace can
be the root for a valid XML instance document adhering to the schema defined for that
namespace.

1.2.10.1 Recommended Design Pattern — Venetian Blind pattern

The recommendation for a design pattern choice is the Venetian Blind pattern. The
Venetian Blind design corresponds to having a single global element that nests local
elements (that nest further local elements). Only one element, considered the root, is
defined within the global namespace. However, the local elements use types (simple or
complex) that are defined within the global namespace.

The benefits of a reusable type definitions coupled with a single ‘root’ element in the
global namespace provide a schema designer with the control and reusability necessary in
the messaging interface definitions. But, there may be exceptions to this rule. It is up to
the schema designer to determine if she her situation is viable for using another design
strategy. Please note that for the sake of brevity our example ONLY defines Simple
Types.

Example:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="LotSize">

386

387

388
389

390
391

392
393

394
395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

<xs:complexType>
<xs:sequence>

<xs:element name="Area" type="AreaType"
maxOccurs="unbounded" />

<xs:element name="Dimensions"
type="DimensionsType"/>

<xs:element name="Length"
type="LengthType"/>

<xs:element name="Width"
type="WidthType"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:simpleType name="AreaType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="35"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DimensionsType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="35"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="LengthType">

412

413

414

415

416

417

418

419

420

421

422

423

424
425

426

427

428

429
430

431

432

433
434
435
436
437
438

<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="35"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="WidthType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="35"/>
</xs:restriction>

</xs:simpleType>

</xs:schema>

Please see the following resources for a more thorough comparative discussion of the

other four types of design patterns:

MedBiquitous XML Schema Design Guidelines PDF — Section 4

UK GovTalk Schema Guidelines Document PDF — Appendix A

1.3 RETS2 Common Schemas
RETS2 Common schemas are reusable building blocks used to build the standard RETS2

schemas and are also expected to be used by the localized payload.

1.4 RETS2 Payloads

1.4.1 Standard Payloads

1.4.1.1.1 Metadata Payloads

The RETS2 Metadata supports a Separation of Concerns, such as:

Basic Data and Query
User Interface
Validation (future)
Security (future)

439
440
441
442

443

444

Current RETS2 WellKnown Metadata payloads are: ResourceList, LookupList,
Vocabulary, DataDictionary, and UserInformation. Additional details about these
documents and examples of the role they play in the RETS2 Service can be found within
the Discovery section of the RETS2 Service document.

Document

Schema Location

Resource List

The ResourceList Metadata
provides a Requestor with basic
information about all of the
Resources supported by a RETS2
Provider.

http://retsserver.realtors.org:8080/xsd/ResourceList.xsd

Vocabulary

Vocabulary Metadata supplies all of
the necessary information for a
RETS Requestor to construct a
Query for a RETS Search action.

http://retsserver.realtors.org:8080/xsd/Vocabulary.xsd

DataDictionary

The DataDictionary Metadata
contains detailed information for all
fields (searchable and non-
searchable) within a Resource.

http://retsserver.realtors.org:8080/xsd/DataDictionary.xsd

LookupList

The LookupList Metadata contains
Maps that can be used across
Resources to define Lookup types.

http://retsserver.realtors.org:8080/xsd/LookupList.xsd

UserInformation

The UserInformation Metadata
document contains system account
information about a user’s system
account for a given user.

http://retsserver.realtors.org:8080/xsd/UserInformation.xsd

1.4.1.2 MLS Payloads

Document

Schema Location

Activity http://retsserver.realtors.org:8080/xsd/Activity.xsd

The Activity schema provides a
general description for any
activity, with dates and roles
and a categorization. This
schema is used both as a MLS
and as a TMS payload.

Agency http://retsserver.realtors.org:8080/xsd/Agency.xsd

Agency is a schema that contains
information describing an agent

involved in a real estate
transaction. Its complexTypes
for both Agent and Agency are
used in other RETS payloads.

Listing

Listing is a schema that
combines types from
RETSCommons into a Listing
payload (it contains elements
that relate to the listing and sale
of the property). This Listing
complexType is also used in
other RETS payloads.

http://retsserver.realtors.org:8080/xsd/Listing.xsd

ListingHistory

ListingHistory schema describes
changes and change types, by
date, to ListingProperty records.

http://retsserver.realtors.org:8080/xsd/ListingHistory.xsd

ListingProperty
ListingProperty is a schema that
uses the Listing and Property
complexTypes to create a
payload that contains both
Listing and Property
Information for a real property.

http://retsserver.realtors.org:8080/xsd/ListingProperty.xsd

MessageOfDay

MessageOfDay is a schema that
contains text and timestamps for
a Provider’s broadcast system
messages.

http://retsserver.realtors.org:8080/xsd/MessageOfDay.xsd

ObjectReferenceList

The ObjectReferenceList schema
provides references between
Resources and Object Resources,
and describes object types for a
given resource, including size,
caption, URL, and id.

http://retsserver.realtors.org:8080/xsd/ObjectReferenceList.xsd

OfficeRoster

The OfficeRoster schema
describes a list of Offices for a
Brokerage or Franchise and the
Agents that are assigned to those
Offices.

http://retsserver.realtors.org:8080/xsd/OfficeRoster.xsd

Offices

Offices is a schema that contains
information describing a
broker/sales office. Its

http://retsserver.realtors.org:8080/xsd/Offices.xsd

1-19

complexTypes for both Office
and Offices are used in other
RETS payloads.

Property

Property is schema that
combines types from
RETSCommons to create a
payload describing a property (it
contains elements that relate to
the physical property and are
not subject to change when
listed). The property
complexType is also used in
other RETS payloads. The
PropertyType and
PropertySubType elements may
be used to define a property
record as Residential Single
Family, MultiFamily,
CommonlInterest, etc.

http://retsserver.realtors.org:8080/xsd/Property.xsd

Prospect

The Prospect schema describes
queries created for prospecting
and saved by an Agent. It
contains details about the Agent
and Office that generated the

query.

http://retsserver.realtors.org:8080/xsd/Prospect.xsd

PublicRecord

The PublicRecord schema
describes a property’s parcel,
tax, zoning, and valuation
information.

http://retsserver.realtors.org:8080/xsd/PublicRecord.xsd

RETSCommons
RETSCommons is an abstract
schema with simpleTypes,
complexTypes and
attributeGroups that are used to
compose the other RETS
payloads. It is based on data
from the RETS 1.7 REData DTD.
This “library” is used by MLS
Payloads, TMS Payloads, and
NRDS Payloads.

http://retsserver.realtors.org:8080/xsd/RETSCommons.xsd

SystemInformation
SystemInformation provides
information about a Provider

http://retsserver.realtors.org:8080/xsd/SystemInformation.xsd

1-20

445
446

447

implementation’s parameters. ‘

1.4.1.3 Transaction Payloads

Document

Schema Location

Activity

The Activity schema provides a
general description for any activity,
with dates and roles and a
categorization. This schema is used
both as a MLS and as a TMS payload.

http://retsserver.realtors.org:8080/xsd/Activity.xsd

Contact

Contact is a schema that describes
basic contact management: the
contact’s information, date created
and updated, and a history of
messages.

http://retsserver.realtors.org:8080/xsd/Contact.xsd

Documents

Documents is a schema that
describes individual transaction
documents and provides information
about their location, key dates,
senders, receivers, signers and
originators.

http://retsserver.realtors.org:8080/xsd/Documents.xsd

ical

ical is a schema used by Outlook and
other scheduling/calendar programs
to describing schedules and events.

http://retsserver.realtors.org:8080/xsd/ical.xsd

Offer

Offer is a schema that describes the
real estate transaction offer and
counter offer process between sellers
and potential buyers.

http://retsserver.realtors.org:8080/xsd/Offer.xsd

Participants

Participants is a schema that
describes the persons or entities
participating in the transaction.

http://retsserver.realtors.org:8080/xsd/Participants.xsd

Referral

Referral is a schema that describes an
agent’s or broker’s referrals,
including source, client, rate, dates
and notes.

http://retsserver.realtors.org:8080/xsd/Referral.xsd

ServiceOrder

ServiceOrder is a schema that
describes one or more transaction
service orders, including: key dates,

http://retsserver.realtors.org:8080/xsd/ServiceOrder.xsd

1-21

448

449
450

service providers, vendors, notes,
and description.

Transaction

Transaction is a schema that
describes a real estate transaction in
detail, including service orders,
documents, listing, property,
contacts, financing, activities and
participants.

http://retsserver.realtors.org:8080/xsd/Transaction.xsd

TransactionList
TransactionList is a list of transaction
ids, names and key dates.

http://retsserver.realtors.org:8080/xsd/TransactionList.xsd

1.4.1.4 NRDs Payloads

Association http://retsserver.realtors.org:8080/xsd/Association.xsd

Association schema provides
information about an MLS,
Local or State Association.

Course http://retsserver.realtors.org:8080/xsd/Course.xsd

Course schema provides
information about an specific
real estate license courses, such
as test results, amounts, and
sponsoring association.

MemberFinancial http://retsserver.realtors.org:8080/xsd/MemberFinancial.xsd

MemberFinancial schema
provides information
membership and dues.

MemberRecord http://retsserver.realtors.org:8080/xsd/MemberRecord.xsd

Provides detailed information
about a member, such as status,
reinstatement, preferences, and
association information.

MemberTransmittal http://retsserver.realtors.org:8080/xsd/MemberTransmittal.xsd

MemberTransmittal schema
describes a member record
update.

NRDSCommons http://retsserver.realtors.org:8080/xsd/NRDSCommons.xsd

NRDSCommons is an abstract
schema that contains as a
“library” of complexTypes
describing common NRDS data.
It is used by all other NRDS
payloads.

OfficeTransmittal http://retsserver.realtors.org:8080/xsd/OfficeTransmittal.xsd

1-22

451

452

453
454
455
456
457
458

OfficeTransmittal schema
describes an office record
update.

1.4.2 Local Payloads

In addition to well-known, or standard RETS MLS, RETS TMS and RETS NRDS
payloads, RETS2 supports user-defined local payloads. Local payloads are existing
standard schemas that have been extended, schemas developed from scratch or even
binary content (CSV, PDF, multi-media, etc.). These additional payload formats MUST
be defined in the OutputFormat section for a Resource in the ResourceList.

1-23

